Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation
Guiqin Bai, Jianzhong Xia, Bing Cao, Rui Zhang, Junquan Meng, Pei Li
Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation
Pervaporation desalination has a unique advantage to recycle concentrated salt solutions. The merit can be applied to treat alkaline wastewater if the membrane has superior alkali-resistance. In this paper, we used polyethylene microfiltration membrane as the substrate and deposited a glutaraldehyde crosslinked sodium carboxymethylcellulose layer by spray-coating. Pervaporation flux of the composite membrane reached 35 ± 2 kg·m–2·h–1 with a sodium chloride rejection of 99.9% ± 0.1% when separating a 3.5 wt-% sodium chloride solution at 70 °C. The desalination performance was stable after soaking the membrane in a 20 wt-% NaOH solution at room temperature for 9 d and in a 10 wt-% NaOH solution at 60 °C for 80 h. Moreover, the membrane was stable in 4 wt-% sulfuric acid and a 500 mg·L−1 sodium hypochlorite solution. In a process of concentrating a NaOH solution from 5 to 10 wt-% at 60 °C, an average water flux of 23 kg·m–2·h–1 with a NaOH rejection over 99.98% was obtained.
pervaporation / alkaline solution concentration / polyethylene membrane / acid resistance / chlorine tolerance
[1] |
Mathew M L, Gopalakrishnan A, Aravindakumar C T, Aravind U K. Low-cost multilayered green fiber for the treatment of textile industry waste water. Journal of Hazardous Materials, 2019, 365: 297–305
CrossRef
Google scholar
|
[2] |
Buscio V, López Grimau V, Álvarez M D, Gutiérrez Bouzán C. Reducing the environmental impact of textile industry by reusing residual salts and water: ECUVal system. Chemical Engineering Journal, 2019, 373: 161–170
CrossRef
Google scholar
|
[3] |
Jia C, Chen C, Kuang Y, Fu K, Wang Y, Yao Y, Kronthal S, Hitz E, Song J, Xu F,
CrossRef
Google scholar
|
[4] |
Mirmohamadsadeghi S, Karimi K, Azarbaijani R, Parsa Yeganeh L, Angelidaki I, Nizami A S, Bhat R, Dashora K, Vijay V K, Aghbashlo M,
CrossRef
Google scholar
|
[5] |
Al Amshawee S, Yunus M Y B M, Azoddein A A M, Hassell D G, Dakhil I H, Hasan H A. Electrodialysis desalination for water and wastewater: a review. Chemical Engineering Journal, 2020, 380: 122231
CrossRef
Google scholar
|
[6] |
Hao J, Wu Y, Ran J, Wu B, Xu T. A simple and green preparation of PV A-based cation exchange hybrid membranes for alkali recovery. Journal of Membrane Science, 2013, 433: 10–16
CrossRef
Google scholar
|
[7] |
Padaki M, Surya Murali R, Abdullah M S, Misdan N, Moslehyani A, Kassim M A, Hilal N, Ismail A F. Membrane technology enhancement in oil-water separation: a review. Desalination, 2015, 357: 197–207
CrossRef
Google scholar
|
[8] |
He S, Jiang X, Li S, Ran F, Long J, Shao L. Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(10): 16543
CrossRef
Google scholar
|
[9] |
Yang F, Sadam H, Zhang Y, Xia J, Yang X, Long J, Songwei L, Shao L. A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chemical Engineering Science, 2020, 225: 115845
CrossRef
Google scholar
|
[10] |
Zhang Y, Cheng X, Jiang X, Urban J J, Lau C H, Liu S, Shao L. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 2020, 36: 40–47
CrossRef
Google scholar
|
[11] |
Wang J J, Yang H C, Wu M B, Zhang X, Xu Z K. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(31): 16289–16295
CrossRef
Google scholar
|
[12] |
Verbeke R, Gómez V, Vankelecom I F J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Progress in Polymer Science, 2017, 72: 1–15
CrossRef
Google scholar
|
[13] |
Xu Y M, Japip S, Chung T S. UiO-66-NH2 incorporated dual-layer hollow fibers made by immiscibility induced phase separation (I2PS) process for ethanol dehydration via pervaporation. Journal of Membrane Science, 2020, 595: 117571
CrossRef
Google scholar
|
[14] |
Liang B, Li Q, Cao B, Li P. Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes. Desalination, 2018, 433: 132–140
CrossRef
Google scholar
|
[15] |
Xue Y, Lau C H, Cao B, Li P. Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes. Journal of Membrane Science, 2019, 575: 135–146
CrossRef
Google scholar
|
[16] |
Zhang R, Xu X, Cao B, Li P. Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination. Petroleum Science, 2018, 15(1): 146–156
CrossRef
Google scholar
|
[17] |
Li Q, Cao B, Li P. Fabrication of high performance pervaporation desalination composite membranes by optimizing the support layer structures. Industrial & Engineering Chemistry Research, 2018, 57(32): 11178–11185
CrossRef
Google scholar
|
[18] |
Meng J, Li P, Cao B. High-flux direct-contact pervaporation membranes for desalination. ACS Applied Materials & Interfaces, 2019, 11(31): 28461–28468
CrossRef
Google scholar
|
[19] |
Haleem N, Arshad M, Shahid M, Tahir M A. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydrate Polymers, 2014, 113: 249–255
CrossRef
Google scholar
|
[20] |
Lakshmi D S, Trivedi N, Reddy C R K. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydrate Polymers, 2017, 157: 1604–1610
CrossRef
Google scholar
|
[21] |
Prasad C V, Sudhakar H, Swamy B Y, Reddy G V, Reddy C L N, Suryanarayana C, Prabhakar M N, Subha M C S, Rao K C. Miscibility studies of sodium carboxymethylcellulose/poly(vinyl alcohol) blend membranes for pervaporation dehydration of isopropyl alcohol. Journal of Applied Polymer Science, 2011, 120(4): 2271–2281
CrossRef
Google scholar
|
[22] |
Zhang Y H, Yu C, Lu Z H, Yu S C. Modification of polysulfone ultrafiltration membrane by sequential deposition of cross-linked poly(vinyl alcohol) (PVA) and sodium carboxymethyl cellulose (CMCNa) for nanofiltration. Desalination and Water Treatment, 2016, 57(38): 17658–17669
CrossRef
Google scholar
|
[23] |
Gao F S. Study on novel negative charged composite nanofiltration membrane from chitin/CMC macromolecule. Dissertation for the Master Degree. Qingdao: Ocean University of China, 2007, 1–74
|
[24] |
Zheng Z R, Gu Z Y, Huo R T, Luo Z S. Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition. Applied Surface Science, 2010, 256(7): 2061–2065
CrossRef
Google scholar
|
[25] |
Ross G J, Watts J F, Hill M P, Morrissey P. Surface modification of poly(vinylidene fluoride) by alkaline treatment. Part 2. Process modification by the use of phase transfer catalysts. Polymer, 2001, 42(2): 403–413
CrossRef
Google scholar
|
[26] |
Yin Q, Zhang Q, Cui Z L, Li W X, Xing W H. Alkali resisting polyphenylsulfone ultrafiltration membrane with tailored microstructure. Polymer, 2017, 124: 128–138
CrossRef
Google scholar
|
[27] |
Zuo J, Bonyadi S, Chung T. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation. Journal of Membrane Science, 2016, 497: 239–247
CrossRef
Google scholar
|
[28] |
Li J M, Xu Z K, Liu Z M, Yuan W F, Xiang H, Wang S Y, Xu Y Y. Microporous polypropylene and polyethylene hollow fiber membranes. Part 3. Experimental studies on membrane distillation for desalination. Desalination, 2003, 155(2): 153–156
CrossRef
Google scholar
|
[29] |
Zuo J, Bonyadi S, Chung T S. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation. Journal of Membrane Science, 2016, 497: 239–247
CrossRef
Google scholar
|
[30] |
Park S H, Kwon S J, Shin M G, Park M S, Lee J S, Park C H, Park H, Lee J H. Polyethylene-supported high performance reverse osmosis membranes with enhanced mechanical and chemical durability. Desalination, 2018, 436: 28–38
CrossRef
Google scholar
|
[31] |
Kwon S J, Park S H, Park M S, Lee J S, Lee J. Highly permeable and mechanically durable forward osmosis membranes prepared using polyethylene lithium ion battery separators. Journal of Membrane Science, 2017, 544: 213–220
CrossRef
Google scholar
|
[32] |
Kwon S J, Park S H, Shin M G, Park M S, Park K, Hong S, Park H, Park Y I, Lee J. Fabrication of high performance and durable forward osmosis membranes using mussel-inspired polydopamine-modified polyethylene supports. Journal of Membrane Science, 2019, 584: 89–99
CrossRef
Google scholar
|
[33] |
Li M S, Zhao Z P, Wang M X. Green hydrophilic modification of PE hollow fiber membranes in a module scale via long-distance and dynamic low-temperature H2O plasma flow. Applied Surface Science, 2016, 386: 187–195
CrossRef
Google scholar
|
[34] |
Sheng L, Song L, Gong H, Pan J, Bai Y, Song S, Liu G, Wang T, Huang X, He J. Polyethylene separator grafting with polar monomer for enhancing the lithium-ion transport property. Journal of Power Sources, 2020, 479: 228812
CrossRef
Google scholar
|
[35] |
Belmonte G K, Charles G, Strumia M C, Weibel D E. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation. Applied Surface Science, 2016, 382: 93–100
CrossRef
Google scholar
|
[36] |
Meng J, Lau C H, Xue Y, Zhang R, Cao B, Li P. Compatibilizing hydrophilic and hydrophobic polymers via spray coating for desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(17): 8462–8468
CrossRef
Google scholar
|
[37] |
Yun Long X, Huang J, Lau C, Cao B, Li P. Tailoring the molecular structure of crosslinked polymers for pervaporation desalination. Nature Communications, 2020, 11(1): 1461
CrossRef
Google scholar
|
[38] |
Vetere A. Empirical method to correlate and to predict the vapor-liquid equilibrium and liquid-liquid equilibrium of binary amorpous polymer solutions. Industrial & Engineering Chemistry Research, 1998, 37(7): 2864–2872
CrossRef
Google scholar
|
[39] |
Amiri A, Triplett Z, Moreira A, Brezinka N, Alcock M, Ulven C A. Standard density measurement method development for flax fiber. Industrial Crops and Products, 2017, 96: 196–202
CrossRef
Google scholar
|
[40] |
Mulder M H V, Smolders C A. On the mechanism of separation of ethanol/water mixtures by pervaporation I. Calculations of concentration profiles. Journal of Membrane Science, 1984, 17(3): 289–307
CrossRef
Google scholar
|
[41] |
Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, Yang X, Pan W. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydrate Polymers, 2017, 155: 208–217
CrossRef
Google scholar
|
[42] |
Das B, Ray D, De R. Influence of sodium carboxymethylcellulose on the aggregation behavior of aqueous 1-hexadecyl-3-methylimidazolium chloride solutions. Carbohydrate Polymers, 2014, 113: 208–216
CrossRef
Google scholar
|
[43] |
Shao L L, An Q F, Ji Y L, Zhao Q, Wang X S, Zhu B K, Gao C J. Preparation and characterization of sulfated carboxymethyl cellulose nanofiltration membranes with improved water permeability. Desalination, 2014, 338: 74–83
CrossRef
Google scholar
|
[44] |
Liu Y, Yan W, Wang Z, Wang H, Zhao S, Wang J, Zhang P, Cao X. 1-Methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability. Journal of Membrane Science, 2020, 599: 117830
CrossRef
Google scholar
|
[45] |
Zhang Y, Yu C, Lu Z, Yu S. Modification of polysulfone ultrafiltration membrane by sequential deposition of cross-linked poly(vinyl alcohol) (PVA) and sodium carboxymethyl cellulose (CMCNa) for nanofiltration. Desalination and Water Treatment, 2016, 57(38): 17658–17669
CrossRef
Google scholar
|
[46] |
Zhang Y, Guo M, Yan H, Pan G, Xu J, Shi Y, Liu Y. Novel organic-norganic hybrid composite membranes for nanofiltration of acid and alkaline media. RSC Advances, 2014, 4(101): 57522–57528
CrossRef
Google scholar
|
[47] |
Yin Q, Zhang Q, Cui Z, Li W, Xing W. Alkali resisting polyphenylsulfone ultrafiltration membrane with tailored microstructure. Polymer, 2017, 124: 128–138
CrossRef
Google scholar
|
[48] |
Gao Y, Li Z, Cheng B, Su K. Superhydrophilic poly(p-phenylene sulfide) membrane preparation with acid/alkali solution resistance and its usage in oil/water separation. Separation and Purification Technology, 2018, 192: 262–270
CrossRef
Google scholar
|
[49] |
Zhao P, Xue Y, Zhang R, Cao B, Li P. Fabrication of pervaporation desalination membranes with excellent chemical resistance for chemical washing. Journal of Membrane Science, 2020, 611: 118367
CrossRef
Google scholar
|
[50] |
Charfi A, Jang H, Kim J. Membrane fouling by sodium alginate in high salinity conditions to simulate biofouling during seawater desalination. Bioresource Technology, 2017, 240: 106–114
CrossRef
Google scholar
|
[51] |
Naidu G, Jeong S, Kim S J, Kim I S, Vigneswaran S. Organic fouling behavior in direct contact membrane distillation. Desalination, 2014, 347: 230–239
CrossRef
Google scholar
|
/
〈 | 〉 |