Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration

Feng Zhang, Lu Tan, Li Gong, Shuqi Liu, Wangxi Fang, Zhenggong Wang, Shoujian Gao, Jian Jin

PDF(1350 KB)
PDF(1350 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (5) : 699-708. DOI: 10.1007/s11705-021-2093-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration

Author information +
History +

Abstract

Layer-by-layer assembly is a versatile technique for fabricating nanofiltration membranes, where multiple layers of polyelectrolytes are usually required to achieve reasonable separation performance. In this work, an ionic strength directed self-assembly procedure is described for the preparation of nanofiltration membranes consisting of only a single bilayer of poly(diallyldimethylammoniumchloride) and poly(sodium-4-styrenesulfoate). The influence of background ionic strength as well as membrane substrate properties on the formation of single-bilayer membranes are systematically evaluated. Such a simplified polyelectrolyte deposition procedure results in membranes having outstanding separation performance with permeating flux of 14.2 ± 1.5 L∙m–2∙h–1∙bar–1 and Na2SO4 rejection of 97.1% ± 0.8% under a low applied pressure of 1 bar. These results surpass the ones for conventional multilayered polyelectrolyte membranes. This work encompasses an investigation of ionic strength induced coiling of the polyelectrolyte chains and emphasizes the interplay between-polyelectrolyte chain configuration and substrate pore profile. It thus introduces a new concept on the control of membrane fabrication process toward high performance nanofiltration.

Graphical abstract

Keywords

layer-by-layer self-assembly / single bilayer / nanofiltration membrane / desalination

Cite this article

Download citation ▾
Feng Zhang, Lu Tan, Li Gong, Shuqi Liu, Wangxi Fang, Zhenggong Wang, Shoujian Gao, Jian Jin. Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration. Front. Chem. Sci. Eng., 2022, 16(5): 699‒708 https://doi.org/10.1007/s11705-021-2093-3

References

[1]
Mi Y F, Zhao F Y, Guo Y S, Weng X D, Ye C C, An Q F. Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance. Journal of Membrane Science, 2017, 541: 29–38
CrossRef Google scholar
[2]
Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): 1–6
CrossRef Google scholar
[3]
Lively R P, Sholl D S. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
CrossRef Google scholar
[4]
Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018
CrossRef Google scholar
[5]
Paul M, Jons S D. Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer, 2016, 103: 417–456
CrossRef Google scholar
[6]
Santanu K, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science, 2015, 348(6241): 1347–1352
CrossRef Google scholar
[7]
Dizgea N, Epsztein R, Cheng W, Porter C J, Elimelech M. Biocatalytic and salt selective multilayer polyelectrolyte nanofiltration membrane. Journal of Membrane Science, 2018, 549: 357–365
CrossRef Google scholar
[8]
Tan Z, Chen S F, Peng X S, Zhang L, Gao C J. Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521
CrossRef Google scholar
[9]
Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: recent advances and future prospects. Desalination, 2015, 356: 2226–2254
CrossRef Google scholar
[10]
Wang Z, Wang Z X, Lin S H, Jin H L, Gao S J, Zhu Y Z, Jin J. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 2018, 9(1): 2004
CrossRef Google scholar
[11]
You X D, Wu H, Zhang R N, Su Y L, Cao L, Yu Q Q, Yuan J Q, Xiao K, He M R, Jiang Z Y. Metal-coordinated sub-10 nm membranes for water purification. Nature Communications, 2019, 10(1): 4160
CrossRef Google scholar
[12]
Lin Z, Zhang Q G, Qu Y, Chen M M, Soyekwo F, Lin C X, Zhu A, Liu Q L. LBL assembled polyelectrolyte nanofiltration membranes with tunable surface charges and high permeation by employing a nanosheet sacrificial layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(28): 14819–14827
CrossRef Google scholar
[13]
Zhang W H, Yin M, Zhao Q, Jin C G, Wang N, Ji S, Ritt C L, Elimelech M, An Q F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nature Nanotechnology, 2021, 16(3): 337–343
CrossRef Google scholar
[14]
Zhang Y Q, Cheng X Q, Urban J J, Lau C H, Liu S Q, Shao L. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 2020, 36: 40–47
CrossRef Google scholar
[15]
Liu J T, Han G, Zhao D L, Lu Ka J, Gao J, Chung T S. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Science Advances, 2020, 6(41): eabb1110
CrossRef Google scholar
[16]
Zhang Y Q, Guo J, Han G, Bai Y P, Ge Q C, Ma J, Lau C H, Shao L. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): eabe8706
CrossRef Google scholar
[17]
Wang J F, Liu Y Y, Fan Z M, Wang W, Wang B, Guo Z H. Ink-based 3D printing technologies for graphene-based materials: a review. Advanced Composites and Hybrid Materials, 2019, 2(1): 1–33
CrossRef Google scholar
[18]
Gu J E, Lee S, Stafford C M, Lee J S, Choi W, Kim B Y, Baek K Y, Chan E P, Chung J Y, Bang J, Lee J H. Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Advanced Materials, 2013, 25(34): 4778–4782
CrossRef Google scholar
[19]
Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348(6233): aaa2491
CrossRef Google scholar
[20]
Shubin V, Linse P. Self-consistent-field modeling of polyelectrolyte adsorption on charge-regulating surfaces. Macromolecules, 1997, 30(19): 5944–5952
CrossRef Google scholar
[21]
Ng L Y A, Mohammad W, Ng C Y, Leo C P, Rohani R. Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers. Desalination, 2014, 351: 19–26
CrossRef Google scholar
[22]
Klitzing R V. Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 2006, 8(43): 5012–5033
CrossRef Google scholar
[23]
Dubas S T, Schlenoff J B. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules, 1999, 32(24): 8153–8160
CrossRef Google scholar
[24]
Deng H Y, Xu Y Y, Zhu B K, Wei X Z, Liu F, Cui Z Y. Polyelectrolyte membranes prepared by dynamic self-assembly of poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). Journal of Membrane Science, 2008, 323(1): 125–133
CrossRef Google scholar
[25]
Shiratori S S, Rubner M F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 2000, 33(11): 4213–4219
CrossRef Google scholar
[26]
Bieker P, Schönhoff M. Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules, 2010, 43(11): 5052–5059
CrossRef Google scholar
[27]
Salomäki M, Vinokurov I A, Kankare J. Effect of temperature on the buildup of polyelectrolyte multilayers. Langmuir, 2005, 21(24): 11232–11240
CrossRef Google scholar
[28]
Tan H L, McMurdo M J, Pan G, Van Patten P G. Temperature dependence of polyelectrolyte multilayer assembly. Langmuir, 2003, 19(22): 9311–9314
CrossRef Google scholar
[29]
Bruening M L, Dotzauer D M, Jain P, Ouyang L, Baker G L. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir, 2008, 24(15): 7663–7673
CrossRef Google scholar
[30]
Richardson J J, Cui J, Björnmalm M, Braunger J A, Ejima H, Caruso F. Innovation in layer-by-layer assembly. Chemical Reviews, 2016, 116(23): 14828–14867
CrossRef Google scholar
[31]
Ng L Y, Mohammad A W, Ng C Y. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability. Advances in Colloid and Interface Science, 2013, 197–198: 85–107
CrossRef Google scholar
[32]
Cheng C, Yaroshchuk A, Bruening M L. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes. Langmuir, 2013, 29(6): 1885–1892
CrossRef Google scholar
[33]
Grooth J D, Oborný R, Potreck J, Nijmeijer K, de Vos W M. The role of ionic strength and odd-even effects on the properties of polyelectrolyte multilayer nanofiltration membranes. Journal of Membrane Science, 2015, 475: 311–319
CrossRef Google scholar
[34]
Joseph N, Ahmadiannamini P, Hoogenboom R, Vankelecom I F J. Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polymer Chemistry, 2014, 5(6): 1817–1831
CrossRef Google scholar
[35]
Schlenoff J B, Dubas S T. Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules, 2001, 34(3): 592–598
CrossRef Google scholar
[36]
Li X, Goyens W, Ahmadiannamini P, Vanderlinden W, Feyter S D, Vankelecom I. Morphology and performance of solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes: study of preparation conditions. Journal of Membrane Science, 2010, 358(1–2): 150–157
CrossRef Google scholar
[37]
DuChanois R M, Epsztein R, Trivedi J A, Elimelech M. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. Journal of Membrane Science, 2019, 581: 413–420
CrossRef Google scholar
[38]
Joseph N, Thomas J, Ahmadiannamini P, Gorp H V, Bernstein R, Feyter S D, Smet M, Dehaen W, Hoogenboom R, Vankelecom I F J. Ultrathin single bilayer separation membranes based on hyperbranched sulfonated poly(aryleneoxindole). Advanced Functional Materials, 2017, 27(9): 1605068
CrossRef Google scholar
[39]
Joseph N, Ahmadiannamini P, Jishna P S, Volodin A, Vankelecom I F J. ‘Up-scaling’ potential for polyelectrolyte multilayer membranes. Journal of Membrane Science, 2015, 492: 271–280
CrossRef Google scholar
[40]
Scheepers D, Chatillon B, Borneman Z, Nijmeijer K. Influence of charge density and ionic strength on diallyldimethylammonium chloride (DADMAC)-based polyelectrolyte multilayer membrane formation. Journal of Membrane Science, 2021, 617: 118619
CrossRef Google scholar
[41]
Cheng W, Liu C, Tong T, Epsztein R, Sun M, Verduzco R, Ma J, Elimelech M. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. Journal of Membrane Science, 2018, 559: 98–106
CrossRef Google scholar
[42]
Önder T, Sacide A A. Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition. Journal of Colloid and Interface Science, 2019, 537: 215–227
CrossRef Google scholar
[43]
Shi X S, Wang R, Xiao A K, Jia T Z, Sun S P, Wang Y. Layer-by-layer synthesis of covalent organic frameworks on porous substrates for fast molecular separations. ACS Applied Nano Materials, 2018, 1(11): 6320–6326
CrossRef Google scholar
[44]
Ahmad N A, Goh P S, Wong K C, Zulhairun A K, Ismail A F. Enhancing desalination performance of thin film composite membrane through layer by layer assembly of oppositely charged titania nanosheet. Desalination, 2020, 476: 114167
CrossRef Google scholar
[45]
Cao Y, Zhang H R, Guo S W, Luo J Q, Wan Y H. A roust dually charged membrane prepared via catechol-amine chemistry for highly efficient dye/salt separation. Journal of Membrane Science, 2021, 629: 119287
CrossRef Google scholar
[46]
Wang N X, Ji S L, Zhang G J, Li J, Wang L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Journal of Membrane Science, 2012, 213: 318–329
[47]
Yang L B, Wang Z, Zhang J L. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 29(5): 15342–15355
CrossRef Google scholar
[48]
Tan L, Gong L, Wang S Y, Zhu Y Z, Zhang F, Zhang Y T, Jin J. Superhydrophilic sub-1-nm porous membrane with electroneutral surface for nonselective transport of small organic molecules. ACS Applied Materials & Interfaces, 2020, 12(34): 38778–38787
CrossRef Google scholar
[49]
Gong Y Q, Gao S J, Tian Y Y, Zhu Y Z, Fang W X, Wang Z G, Jin J. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination. Journal of Membrane Science, 2020, 600: 117874
CrossRef Google scholar
[50]
Epsztein R, Shaulsky E, Dizge N, Warsinger D M, Elimelech M. Role of ionic charge density in donnan exclusion of monovalent anions by nanofiltration. Environmental Science & Technology, 2018, 52(7): 4108–4116
CrossRef Google scholar

Acknowledgments

This work was financially supported by the National Key Research and Development Project (Grant Nos. 2019YFC1711300 and 2019YFA0705800), the National Natural Science Funds for Distinguished Young Scholar (Grant No. 51625306), the National Natural Science Foundation of China (Grant Nos. 21988102 and 51873230), the Social Development Program of Jiangsu Province (Grant No. BE2019678).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-021-2093-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1350 KB)

Accesses

Citations

Detail

Sections
Recommended

/