Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration
Feng Zhang, Lu Tan, Li Gong, Shuqi Liu, Wangxi Fang, Zhenggong Wang, Shoujian Gao, Jian Jin
Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration
Layer-by-layer assembly is a versatile technique for fabricating nanofiltration membranes, where multiple layers of polyelectrolytes are usually required to achieve reasonable separation performance. In this work, an ionic strength directed self-assembly procedure is described for the preparation of nanofiltration membranes consisting of only a single bilayer of poly(diallyldimethylammoniumchloride) and poly(sodium-4-styrenesulfoate). The influence of background ionic strength as well as membrane substrate properties on the formation of single-bilayer membranes are systematically evaluated. Such a simplified polyelectrolyte deposition procedure results in membranes having outstanding separation performance with permeating flux of 14.2 ± 1.5 L∙m–2∙h–1∙bar–1 and Na2SO4 rejection of 97.1% ± 0.8% under a low applied pressure of 1 bar. These results surpass the ones for conventional multilayered polyelectrolyte membranes. This work encompasses an investigation of ionic strength induced coiling of the polyelectrolyte chains and emphasizes the interplay between-polyelectrolyte chain configuration and substrate pore profile. It thus introduces a new concept on the control of membrane fabrication process toward high performance nanofiltration.
layer-by-layer self-assembly / single bilayer / nanofiltration membrane / desalination
[1] |
Mi Y F, Zhao F Y, Guo Y S, Weng X D, Ye C C, An Q F. Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance. Journal of Membrane Science, 2017, 541: 29–38
CrossRef
Google scholar
|
[2] |
Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): 1–6
CrossRef
Google scholar
|
[3] |
Lively R P, Sholl D S. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
CrossRef
Google scholar
|
[4] |
Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018
CrossRef
Google scholar
|
[5] |
Paul M, Jons S D. Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer, 2016, 103: 417–456
CrossRef
Google scholar
|
[6] |
Santanu K, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science, 2015, 348(6241): 1347–1352
CrossRef
Google scholar
|
[7] |
Dizgea N, Epsztein R, Cheng W, Porter C J, Elimelech M. Biocatalytic and salt selective multilayer polyelectrolyte nanofiltration membrane. Journal of Membrane Science, 2018, 549: 357–365
CrossRef
Google scholar
|
[8] |
Tan Z, Chen S F, Peng X S, Zhang L, Gao C J. Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521
CrossRef
Google scholar
|
[9] |
Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: recent advances and future prospects. Desalination, 2015, 356: 2226–2254
CrossRef
Google scholar
|
[10] |
Wang Z, Wang Z X, Lin S H, Jin H L, Gao S J, Zhu Y Z, Jin J. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 2018, 9(1): 2004
CrossRef
Google scholar
|
[11] |
You X D, Wu H, Zhang R N, Su Y L, Cao L, Yu Q Q, Yuan J Q, Xiao K, He M R, Jiang Z Y. Metal-coordinated sub-10 nm membranes for water purification. Nature Communications, 2019, 10(1): 4160
CrossRef
Google scholar
|
[12] |
Lin Z, Zhang Q G, Qu Y, Chen M M, Soyekwo F, Lin C X, Zhu A, Liu Q L. LBL assembled polyelectrolyte nanofiltration membranes with tunable surface charges and high permeation by employing a nanosheet sacrificial layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(28): 14819–14827
CrossRef
Google scholar
|
[13] |
Zhang W H, Yin M, Zhao Q, Jin C G, Wang N, Ji S, Ritt C L, Elimelech M, An Q F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nature Nanotechnology, 2021, 16(3): 337–343
CrossRef
Google scholar
|
[14] |
Zhang Y Q, Cheng X Q, Urban J J, Lau C H, Liu S Q, Shao L. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 2020, 36: 40–47
CrossRef
Google scholar
|
[15] |
Liu J T, Han G, Zhao D L, Lu Ka J, Gao J, Chung T S. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Science Advances, 2020, 6(41): eabb1110
CrossRef
Google scholar
|
[16] |
Zhang Y Q, Guo J, Han G, Bai Y P, Ge Q C, Ma J, Lau C H, Shao L. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): eabe8706
CrossRef
Google scholar
|
[17] |
Wang J F, Liu Y Y, Fan Z M, Wang W, Wang B, Guo Z H. Ink-based 3D printing technologies for graphene-based materials: a review. Advanced Composites and Hybrid Materials, 2019, 2(1): 1–33
CrossRef
Google scholar
|
[18] |
Gu J E, Lee S, Stafford C M, Lee J S, Choi W, Kim B Y, Baek K Y, Chan E P, Chung J Y, Bang J, Lee J H. Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Advanced Materials, 2013, 25(34): 4778–4782
CrossRef
Google scholar
|
[19] |
Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348(6233): aaa2491
CrossRef
Google scholar
|
[20] |
Shubin V, Linse P. Self-consistent-field modeling of polyelectrolyte adsorption on charge-regulating surfaces. Macromolecules, 1997, 30(19): 5944–5952
CrossRef
Google scholar
|
[21] |
Ng L Y A, Mohammad W, Ng C Y, Leo C P, Rohani R. Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers. Desalination, 2014, 351: 19–26
CrossRef
Google scholar
|
[22] |
Klitzing R V. Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 2006, 8(43): 5012–5033
CrossRef
Google scholar
|
[23] |
Dubas S T, Schlenoff J B. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules, 1999, 32(24): 8153–8160
CrossRef
Google scholar
|
[24] |
Deng H Y, Xu Y Y, Zhu B K, Wei X Z, Liu F, Cui Z Y. Polyelectrolyte membranes prepared by dynamic self-assembly of poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). Journal of Membrane Science, 2008, 323(1): 125–133
CrossRef
Google scholar
|
[25] |
Shiratori S S, Rubner M F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 2000, 33(11): 4213–4219
CrossRef
Google scholar
|
[26] |
Bieker P, Schönhoff M. Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules, 2010, 43(11): 5052–5059
CrossRef
Google scholar
|
[27] |
Salomäki M, Vinokurov I A, Kankare J. Effect of temperature on the buildup of polyelectrolyte multilayers. Langmuir, 2005, 21(24): 11232–11240
CrossRef
Google scholar
|
[28] |
Tan H L, McMurdo M J, Pan G, Van Patten P G. Temperature dependence of polyelectrolyte multilayer assembly. Langmuir, 2003, 19(22): 9311–9314
CrossRef
Google scholar
|
[29] |
Bruening M L, Dotzauer D M, Jain P, Ouyang L, Baker G L. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir, 2008, 24(15): 7663–7673
CrossRef
Google scholar
|
[30] |
Richardson J J, Cui J, Björnmalm M, Braunger J A, Ejima H, Caruso F. Innovation in layer-by-layer assembly. Chemical Reviews, 2016, 116(23): 14828–14867
CrossRef
Google scholar
|
[31] |
Ng L Y, Mohammad A W, Ng C Y. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability. Advances in Colloid and Interface Science, 2013, 197–198: 85–107
CrossRef
Google scholar
|
[32] |
Cheng C, Yaroshchuk A, Bruening M L. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes. Langmuir, 2013, 29(6): 1885–1892
CrossRef
Google scholar
|
[33] |
Grooth J D, Oborný R, Potreck J, Nijmeijer K, de Vos W M. The role of ionic strength and odd-even effects on the properties of polyelectrolyte multilayer nanofiltration membranes. Journal of Membrane Science, 2015, 475: 311–319
CrossRef
Google scholar
|
[34] |
Joseph N, Ahmadiannamini P, Hoogenboom R, Vankelecom I F J. Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polymer Chemistry, 2014, 5(6): 1817–1831
CrossRef
Google scholar
|
[35] |
Schlenoff J B, Dubas S T. Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules, 2001, 34(3): 592–598
CrossRef
Google scholar
|
[36] |
Li X, Goyens W, Ahmadiannamini P, Vanderlinden W, Feyter S D, Vankelecom I. Morphology and performance of solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes: study of preparation conditions. Journal of Membrane Science, 2010, 358(1–2): 150–157
CrossRef
Google scholar
|
[37] |
DuChanois R M, Epsztein R, Trivedi J A, Elimelech M. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. Journal of Membrane Science, 2019, 581: 413–420
CrossRef
Google scholar
|
[38] |
Joseph N, Thomas J, Ahmadiannamini P, Gorp H V, Bernstein R, Feyter S D, Smet M, Dehaen W, Hoogenboom R, Vankelecom I F J. Ultrathin single bilayer separation membranes based on hyperbranched sulfonated poly(aryleneoxindole). Advanced Functional Materials, 2017, 27(9): 1605068
CrossRef
Google scholar
|
[39] |
Joseph N, Ahmadiannamini P, Jishna P S, Volodin A, Vankelecom I F J. ‘Up-scaling’ potential for polyelectrolyte multilayer membranes. Journal of Membrane Science, 2015, 492: 271–280
CrossRef
Google scholar
|
[40] |
Scheepers D, Chatillon B, Borneman Z, Nijmeijer K. Influence of charge density and ionic strength on diallyldimethylammonium chloride (DADMAC)-based polyelectrolyte multilayer membrane formation. Journal of Membrane Science, 2021, 617: 118619
CrossRef
Google scholar
|
[41] |
Cheng W, Liu C, Tong T, Epsztein R, Sun M, Verduzco R, Ma J, Elimelech M. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. Journal of Membrane Science, 2018, 559: 98–106
CrossRef
Google scholar
|
[42] |
Önder T, Sacide A A. Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition. Journal of Colloid and Interface Science, 2019, 537: 215–227
CrossRef
Google scholar
|
[43] |
Shi X S, Wang R, Xiao A K, Jia T Z, Sun S P, Wang Y. Layer-by-layer synthesis of covalent organic frameworks on porous substrates for fast molecular separations. ACS Applied Nano Materials, 2018, 1(11): 6320–6326
CrossRef
Google scholar
|
[44] |
Ahmad N A, Goh P S, Wong K C, Zulhairun A K, Ismail A F. Enhancing desalination performance of thin film composite membrane through layer by layer assembly of oppositely charged titania nanosheet. Desalination, 2020, 476: 114167
CrossRef
Google scholar
|
[45] |
Cao Y, Zhang H R, Guo S W, Luo J Q, Wan Y H. A roust dually charged membrane prepared via catechol-amine chemistry for highly efficient dye/salt separation. Journal of Membrane Science, 2021, 629: 119287
CrossRef
Google scholar
|
[46] |
Wang N X, Ji S L, Zhang G J, Li J, Wang L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Journal of Membrane Science, 2012, 213: 318–329
|
[47] |
Yang L B, Wang Z, Zhang J L. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 29(5): 15342–15355
CrossRef
Google scholar
|
[48] |
Tan L, Gong L, Wang S Y, Zhu Y Z, Zhang F, Zhang Y T, Jin J. Superhydrophilic sub-1-nm porous membrane with electroneutral surface for nonselective transport of small organic molecules. ACS Applied Materials & Interfaces, 2020, 12(34): 38778–38787
CrossRef
Google scholar
|
[49] |
Gong Y Q, Gao S J, Tian Y Y, Zhu Y Z, Fang W X, Wang Z G, Jin J. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination. Journal of Membrane Science, 2020, 600: 117874
CrossRef
Google scholar
|
[50] |
Epsztein R, Shaulsky E, Dizge N, Warsinger D M, Elimelech M. Role of ionic charge density in donnan exclusion of monovalent anions by nanofiltration. Environmental Science & Technology, 2018, 52(7): 4108–4116
CrossRef
Google scholar
|
/
〈 | 〉 |