Diabetic foot ulcer (DFU) often evolves into chronic wounds that resist healing over an extended period, sometimes necessitating amputation in severe cases. Traditional wound management approaches generally fail to control these chronic sores successfully. Thus, it arouses a huge demand in clinic for a novel wound dressing to treat DFU effectively. Hydrogel as an ideal delivery system exhibits excellent loading capacity and sustainable release behavior. It also boasts tunable physical and chemical properties adaptable to diverse biomedical scenarios, making it a suitable material for fabricating functional wound dressings to treat DFU. The hydrogel dressings are classified into hemostatic, antibacterial and anti-inflammatory, and healing-promoting hydrogel dressings by associating the pathogenesis of DFU in this paper. The design and fabrication strategies for the dressings, as well as their therapeutic effects in treating DFU, are extensively reviewed. Additionally, this paper highlights future perspectives of multifunctional hydrogel dressings in DFU treatment. This review aims to provide valuable references for material scientists to design and develop hydrogel wound dressings with enhanced capabilities for DFU treatment, and to further translate them into the clinic in the future.
Size effects and compositions constitute new properties for inorganic particles in different application fields. The physical method has recently attracted more attention in the preparation of inorganic materials. Herein, a low-cost, eco-friendly, simple-operating, and time-saving technique, named electrical discharge, is reviewed in relation to developments from the nature of this technique in different dielectric media to the practical experience in controlling the main processing parameters, apparatuses, types of discharge, from the various structures and components to the wide applications. The development of the electrical discharge technique will play an important role in improving the technology to prepare superfine inorganic particles with high purity. Meanwhile, electrical discharge contributes to easily mixing solid materials from the atomic scale to several micrometers with different structures. Moreover, metal oxides or doping materials are accessible as the dielectric medium is changed. Considering some excellent advantages, new inorganic particles exploited through the electrical discharge method will promise to be the most rewarding in some potential applications.
Flexible sensors with high sensitivity and stability are essential components of electronic skin, applicable to detecting human movement, monitoring physiological health, preventing diseases, and other domains. In this study, we utilized a straightforward and efficient femtosecond laser direct writing technique using phenolic resin (PR) as a carbon precursor to produce high-quality laser-induced graphene (LIG) characterized by high crystallinity and low defect density. The fabricated LIG underwent comprehensive characterization using SEM, Raman spectroscopy, XPS, and XRD. Subsequently, we developed strain sensors with a hexagonal honeycomb pattern and temperature sensors with a line pattern based on PR-derived LIG. The strain sensor exhibited an outstanding measurement factor of 4.16 × 104 with a rapid response time of 32 ms, which is applied to detect various movements like finger movements and human pulse. Meanwhile, the temperature sensor demonstrated a sensitivity of 1.49%/°C with a linear response range of 20–50 °C. The PR-derived LIG shows promising potential for applications in human physiological health monitoring and other advanced wearable technologies.
The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture in vitro through peptide hydrogel-supported microspheres (MSs). The peptides, with their gel-forming properties, microstructures, and mechanical strengths characterized, were found to have good support for the MSs and to be injectable. The internal structures of poly(L-lactic acid) microspheres (PLLA-MSs) and polystyrene microspheres (PS-MSs) made in the laboratory were observed and statistically analyzed in terms of particle size and pore size, following which the co-cultured MSs with cells were found to have good cell adhesion. In addition, three-dimensional (3D) culturing of cells was performed on the peptide and microcarrier composite scaffolds to measure cell viability and cell proliferation. The results showed that the peptides could be stimulated by the culture medium to self-assembly form a 3D fiber network structure. Under the peptide-MS composite scaffold-based cell culture system, further enhancement of the cell culture effect was measured. The peptide-MS composite scaffolds have great potential for the application in 3D cell culture and in vitro cell expansion.
The solar-to-hydrogen conversion using the photoelectrochemical (PEC) method is a practical approach to producing clean energy. However, it relies on the availability of photocatalyst materials. In this work, a novel photocatalyst comprising molybdenum telluride quantum dots (MoTe2 QDs)-modified titanium dioxide nanorods (TiO2 NRs) was prepared for the enhancement of the PEC water splitting performance after combination with a Al2O3 layer using the atomic layer deposition (ALD) technique. MoTe2 QDs were initially prepared, and then they were loaded onto TiO2 NRs using a warm water bath-based heating method. After a layer of Al2O3 was deposited onto resulted TiO2 NRs/MoTe2 QDs, the composite TiO2 NRs/MoTe2 QDs/Al2O3 was finally obtained. Under simulated sunlight (100 mW·cm−2), such a composite exhibited a maximum photocurrent density of 2.25 mA·cm−2 at 1.23 V (versus RHE) and an incident photon-to-electron conversion efficiency of 69.88% at 380 nm, which are 4.33 and 6.66 times those of pure TiO2 NRs, respectively. Therefore, the composite photocatalyst fabricated in this work may have promising application in the field of PEC water splitting, solar cells and other photocatalytic devices.
The absorption of high-viscosity oil by traditional oil absorbing materials has always been a challenge. So there is an urgent need to solve the problem of slow absorption of high-viscosity oil. In this work, an emulsion composed of polydimethylsiloxane (PDMS), carbon black (CB) and waterborne polyurethane (solid content 40%) was sprayed on the melamine foam (MF). After volatilization of organic solvents, the photothermal material CB was fixed on the MF framework, making it photothermal. By raising the temperature of the modified foam to accelerate the internal thermal movement of high-viscosity oil molecules around the foam, intermolecular forces are reduced, thereby accelerating the separation process. The absorption capacity of this modified MF towards organic solvents and oil is up to 79 times its own weight. In addition, the mechanical properties of the modified foam are improved to a certain extent, more conducive to the continuous oil–water separation. This photothermal absorption material provides ideas for the rapid removal of high-viscosity oil, heavy oil, etc.
Electrolyte interface resistance and low ionic conductivity are essential issues for commercializing solid-state lithium metal batteries (SSLMBs). This work details the fabrication of a double-layer solid composite electrolyte (DLSCE) for SSLMBs. The composite comprises poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF‒HFP) and poly(methyl methacrylate) (PMMA) combined with 10 wt.% of Li6.4La3Zr1.4Ta0.6O12 (LLZTO), synthesized through an ultraviolet curing process. The ionic conductivity of the DLSCE (2.6 × 10−4 S·cm−1) at room temperature is the high lithium-ion transference number (0.57), and the tensile strength is 17.8 MPa. When this DLSCE was assembled, the resulted LFP/DLSCE/Li battery exhibited excellent rate performance, with the discharge specific capacities of 162.4, 146.9, 93.6, and 64.0 mA·h·g−1 at 0.1, 0.2, 0.5, and 1 C, respectively. Furthermore, the DLSCE demonstrates remarkable stability with lithium metal batteries, facilitating the stable operation of a Li/Li symmetric battery for over 200 h at both 0.1 and 0.2 mA·cm−2. Notably, the formation of lithium dendrites is also effectively inhibited during cycling. This work provides a novel design strategy and preparation method for solid composite electrolytes.
Zinc-based composites represent promising materials for orthopedic implants owing to their adjustable degradation rates and excellent biocompatibility. In this study, a series of Zn–10Mg–xHA (x = 0–5 wt.%) composites with the core–shell structure were prepared through spark plasma sintering, and their microstructural, mechanical, and in vitro properties were systematically evaluated. Results showed that the doped hydroxyapatite (HA) is concentrated at the outer edge of the MgZn2 shell layer. The compression strength of the Zn‒10Mg‒HA composite gradually decreased with the increase of the HA content, while its corrosion rate decreased initially and then increased. The corrosion resistance of the composite with the addition of 1 wt.% HA was improved compared to that of Zn–10Mg–0HA. However, the further increase of the HA content beyond 1 wt.% resulted in a faster degradation of the composite. Moreover, the Zn–10Mg–1HA composite significantly enhanced the activity of MC3T3-E1 osteoblasts. Based on such findings, it is revealed that the composite containing 1 wt.% HA exhibits superior overall properties and is anticipated to serve as a promising candidate for bone implant materials.
In situ carbon-coated Co3Se4/CoSe2 (CoxSey) nanoparticles (NPs) attached on three-dimensional (3D) reduced graphene oxide (rGO) sheets were skillfully developed in this work, which involved the environment-friendly hydrothermal method, freeze drying, and selenide calcination. Within the structure, the glucose-derived carbon layer exhibited significantly homogeneous dispersion under an argon environment. This structure not only has enhanced stability, but also can effectively mitigate the volume swell of CoxSey particles. The resulted Co3Se4/CoSe2@C/rGO (CSe@C/rGO) exhibited a specific surface area (SSA) of 240.9 m2·g−1, offering more electrochemically active sites for the storage of energy related to lithium ions. The rGO matrix held exceptional flexibility and functional structural rigidity, facilitating the swift ion intercalation and ensuring the high conductivity and recyclability of the structure. When applied to anodes designed for lithium-ion batteries (LIBs), this material demonstrated distinguished rate and ultra-high reversible capacity (872.98 mA·h·g−1 at 0.5 A·g−1). Meanwhile, its capacity retention reached 119.5% after 500 cycles at 2 A·g−1, with a coulombic efficiency of 100%. This work potentially paves the way for generating fast and powerful metal selenide anodes and initiating LIBs with good performance.
There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO)2FeBO3 nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO)2FeBO3 can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g−1, the initial discharging and charging specific capacities of the (FeO)2FeBO3@NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g−1, respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g−1, displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO)2FeBO3 NPs is conducive to the performance improvement of Li–S batteries.
In this work, C@Fe3O4 composites were prepared through a typical template method with emulsified asphalt as carbon source, ammonium ferric citrate as transition metal oxide precursor, and NaCl as template. As an anode for lithium-ion batteries, the optimized C@Fe3O4-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g−1 after 100 cycles at 0.1 A·g−1 and a high capacity of 531.1 mA·h·g−1 after 300 cycles at 1 A·g−1, much better than those of bulk carbon/Fe3O4 prepared without NaCl. Such remarkable cycling performance mainly benefits from its well-designed structure: Fe3O4 nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt. The carbon nanocages not only improve the conductivity of Fe3O4, but also suppress the volume expansion of Fe3O4 effectively during the charge‒discharge cycle, thus delivering a robust electrochemical stability. This work realizes the high value-added utilization of low-cost petroleum asphalt, and can be extended to application of other transition-metal oxides-based anodes.
MIL-101(Cr) has a special pore cage structure that provides broad channels for the transport of water molecules in the reverse osmosis (RO) water separation and purification. Combining MIL-101(Cr) with Fe3O4 nanoparticles forms a water transport intermediate layer between the polyamide separation membrane and the polysulfone support base under an external magnetic field. MIL-101(Cr) is stable in both water and air while resistant to high temperature. With the introduction of 0.003 wt.% MIL-101(Cr)/Fe3O4, the water flux increased by 93.31% to 6.65 L·m−2·h−1·bar−1 without sacrificing the NaCl rejection of 95.88%. The MIL-101(Cr)/Fe3O4 multilayer membrane also demonstrated certain anti-pollution properties and excellent stability in a 72-h test. Therefore, the construction of a MIL-101(Cr)/Fe3O4 interlayer can effectively improve the permeability of RO composite membranes.
Aqueous Zn//MnO2 rechargeable zinc-ion batteries (ZIBs) possess potential applications in electrochemical energy storage due to their safety, low cost, and environmental friendliness. However, manganese dioxide as the cathode material has poor cycle stability and low conductivity. In this work, the SnO2@K-MnO2 (SMO) composite was prepared using the hydrothermal method followed by the treatment with SnCl2 sensitization, and its electrochemical characteristics were examined using SMO as the cathode material for ZIBs. The reversible specific capacity reaches 298.2 mA·h·g−1 at 0.5 A·g−1, and an excellent capacity retention of 86% is realized after 200 cycles, together with a high discharge capacity of 105 mA·h·g−1 at 10 A·g−1 and a long-term cycling life of over 8000 cycles with no apparent capacity fade. This cathode exhibits a long cycle life up to 2000 cycles at 2 A·g−1 with the mass loading of 5 mg·cm−2, and the battery maintains the capacity of 80%. The reversible co-embedding mechanism of H+/Zn2+ in such a Zn//SMO battery was confirmed by XRD and SEM during the charge/discharge process. This work can enlighten and promote the development of advanced cathode materials for ZIBs.
Black phosphorus (BP), a novel two-dimensional material, exhibits remarkable photoelectric characteristics, ultrahigh photothermal conversion efficiency, substantial specific surface area, high carrier mobility, and tunable band gap properties. These attributes have positioned it as a promising candidate in domains such as energy, medicine, and the environment. Nonetheless, its vulnerability to light, oxygen, and water can lead to rapid degradation and loss of crystallinity, thereby limiting its synthesis, preservation, and application. Moreover, BP has demonstrated cytotoxic tendencies, substantially constraining its viability in the realm of biomedicine. Consequently, the imperative for surface modification arises to bolster its stability and biocompatibility, while concurrently expanding its utility spectrum. Biological macromolecules, integral components of living organisms, proffer innate advantages over chemical agents and polymers for the purpose of the BP modifications. This review comprehensively surveys the advancements in utilizing biological macromolecules for the modifications of BP. In doing so, it aims to pave the way for enhanced stability, biocompatibility, and diversified applications of this material.
Combining molecular imprinting technique with titanium dioxide (TiO2) photocatalysis technique can improve the degradation ability and selectivity of TiO2 nanoparticles towards pollutants. In this work, methyl orange-imprinted polysiloxane particles (MIPs) were synthesized using TiO2 as matrix and silane as functional monomers. The adsorption capacity (Qe) of MIPs was 20.48 mg·g−1, while the imprinting efficiency (IE) was 3.4. Such MIPs exhibited stable imprinting efficiencies and adsorption efficiencies towards methyl orange (MO) in the multi-cycle stability test. Photocatalytic degradation performances of both MIPs and non-imprinted polysiloxane particles (NIPs) were investigated. Compared with NIPs, MIPs exhibited better photocatalytic degradation performance towards MO, with the degradation efficiency of 98.8% in 12 min and the apparent rate constant (Kobs) of 0.077 min−1. The interaction between silane and MO was also studied through molecular dynamics simulation. This work provides new insights into the use of silane for the synthesis of MIPs as well as the molecular imprinting technique for applications in the field of TiO2 photocatalysis.
Traditional lanthanide fluorides lack therapeutic efficacy against tumors, thus limiting their applications in biomedicine. In this study, we introduce a groundbreaking lanthanide-based nanomaterial known as ligand-free Ba1.4Mn0.6LuF7: Yb3+/Er3+/Ho3+ (abbreviated as BMLF). This innovative material allows for the simultaneous tuning of upconversion luminescence emissions and Fenton-like reactions through the controlled release of Mn ions within the tumor microenvironment. BMLF exhibits dual functionality through integrating ratiometric fluorescence imaging for diagnosis and nanozyme-based catalytic therapy. These capabilities are successfully harnessed for tumor theranostics in vivo. This research presents a novel approach to leveraging lanthanide fluoride nanomaterials, transforming them into fluorescent nanoenzymes with theranostic potential.
This study focuses on the synthesis and characterization of a thin film comprising of trimetallic sulphide, Cu2S:ZnS:NiS2. The fabrication process involved the utilization of diethyldithiocarbamate as a sulfur source, employing physical vapor deposition. A range of analytical techniques were employed to elucidate the material’s structure, morphology, and optical characteristics. The thin film exhibited a well-defined crystalline structure with an average crystallite size of 33 nm. X-ray photoelectron spectroscopy provided distinct core level peaks associated with Cu 2p, Zn 2p, Ni 2p, and S 2p. The electrochemical properties were assessed through voltammetry measurements, which demonstrated an impressive specific capacitive of 797 F·g−1. The thin film demonstrated remarkable stability over multiple cycles, establishing it as a highly promising candidate for diverse energy storage applications. In addition, comprehensive investigations were carried out to assess the photocatalytic performance of the fabricated material, particularly its efficacy in the degradation of diverse environmental pollutants. These notable findings emphasize the versatility of trimetal sulphide thin films, expanding their potential beyond energy storage and opening avenues for further research and technological advancements in fields including photocatalysis and beyond.
In metal-based additive manufacturing processes, such as laser powder bed fusion (LPBF), the powder utilization is often less than 50%. Considering the cost efficiency, powder reuse is needed for an economical and sustainable LPBF process. As intermetallic compounds, LPBF-fabricated NiTi alloys are characterized with phase transformation behaviors, mechanical properties and functions that are very sensitive to possible changes in powder characteristics caused through reuse, but the exact effects are still poorly understood. Here, the LPBF process has been repeated ten times using the virgin powder supplement method. Results show that the oxygen content of NiTi powders rises from 370 to 752.3 ppm with the enhancement of the reuse cycle number. Powder oxidation enhances the laser absorptivity of the powder bed, leading to an increase in surface roughness and porosity of NiTi parts. Compared to the specimens made from virgin powders, the mechanical property and shape memory function of specimens made from reused powders are degraded, mainly attributed to the oxygen impurity and deteriorated forming quality. This study allows making better decisions with regard to powder reuse in the development of performance-critical NiTi parts fabricated through LPBF.
In recent years, research on self-healing polymers for diverse biomedical applications has surged due to their resemblance to the native extracellular matrix. Here, we introduce a novel self-healing hydrogel scaffold made from collagen (Col) and nano-hydroxyapatite (nHA) via a one-pot-synthesis approach under the influence of heating in less than 10 min. Process parameters, including the quantities of Col, guar gum, solvent, nHA, borax, and glycerol in the system were optimized for the minimization of the self-healing time. The synthesized hydrogel and polymers underwent characterization via FTIR, SEM, EDS, TGA, and 13C-NMR. Additionally, the hydrogel showed hemocompatibility with only 6.76% hemolysis at 10 µg·mL−1, while the scaffold maintained cellular metabolic activity at all concentrations for 24 h, with the optimal viability at 1 and 2.5 µg·mL−1, sustaining 93.5% and 90% viability, respectively. Moreover, the hydrogel scaffold exhibited rapid self-healing within 30 s of damage, alongside a tough and flexible nature, as indicated by its swelling rate, biodegradation under various biological pH solutions, and tensile strength of 0.75 MPa. Hence, the innovative Col and nHA self-healing hydrogel scaffold emerges as an ideal, non-toxic, cost-effective, and easily synthesized material with promising potential in cartilage repair applications.
Cathodoluminescence (CL) characterization technology refers to a technical approach for evaluating the luminescent properties of samples by collecting photon signals generated under electron beam excitation. By detecting the intensity and wavelength of the emitted light, the energy band structure and forbidden bandwidth of a sample can be identified. After a CL spectrometer is mounted on a scanning electron microscope (SEM), functions are integrated, such as high spatial resolution, morphological observation, and energy-dispersive spectroscopy (EDS) to analyze samples, offering unique and irreplaceable advantages for the microstructural analysis of certain materials. This paper reviews the applications of SEM-CL systems in the characterization of material microstructures in recent years, illustrating the utility of the SEM-CL system in various materials including geological minerals, perovskite materials, semiconductor materials, non-metallic inclusions, and functional ceramics through typical case studies.
Ionized amine group (R-NH2) and carboxyl group (R-COOH) within the active layer of polyamide (PA) nanofiltration membranes result in the formation of positive (R-
Novel advanced nanocomposites formed by associating graphene oxide (GO) nanosheets with other nanomaterials such as titanium dioxide nanoparticles, cellulose nanofibers, cellulose nanocrystals, and carbon nanotubes were incorporated in nanofiltration (NF) and reverse osmosis (RO) membranes for wastewater treatment and desalination. GO-based nanocomposite has promising potential in membrane technology due to its high hydrophilicity, absorption capacity, good dispersibility in water and organic solvents, anti-biofouling properties, and negative charge. Moreover, additional properties can be obtained depending on the nanohybrid formed. This review paper highlights the recent breakthrough in membranes functionalized with GO-based nanohybrids, focusing on membrane performance in terms of permeability, selectivity, and antifouling properties. Although GO-based nanohybrids have made significant progress in membrane technology, improvements are still needed, especially regarding trade-off effects. Furthermore, the studies presented here are limited to laboratory scale, which leads to suggestions for new studies evaluating the possibility of commercial application and the potential environmental impact caused by nanocomposites.
TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challenges such as inadequate defect control, inconsistent part quality, and limited optimization of key processing parameters hinder the process reliability and scalability. In this study, computational fluid dynamics (CFD) was used to simulate the L-PBF process, while design of experiments (DoE) was applied to analyze the effect of process parameters and determine the optimal process settings. Laser power was found to have the greatest impact on porosity. The optimal process parameters are 170 W laser power, 1100 mm·s−1 scanning speed, and 0.1 mm hatch spacing. Stripe, line, and chessboard scanning strategies were implemented using the optimal process parameters. The stripe scanning strategy has ~33% (~400 MPa) greater tensile strength over the line scanning strategy and ~12% (~170 MPa) over the chessboard scanning strategy. This research provides technical support for obtaining high-performance TC11 blisks.
Copper has good electrical conductivity but poor mechanical and wear-resistant properties. To enhance the mechanical and wear-resistant properties of the copper matrix, a strategy of in-situ generation of graphene was adopted. Through ball-milling processes, a carbon source and submicron spherical copper were uniformly dispersed in a dendritic copper. Then, a uniform and continuous graphene network was generated in-situ in the copper matrix during the vacuum hot-pressing sintering process to improve the performance of composites. The graphene product exhibited lubrication effect and provided channels for electrons to move through the interface, improving the wear resistance and the electrical conductivity of composites. When the graphene content in the composite material was 0.100 wt.%, the friction coefficient and the wear rate were 0.36 and 6.36 × 10−6 mm3·N−1·m−1, diminished by 52% and reduced 5.11 times those of pure copper, respectively, while the electrical conductivity rose to 94.57% IACS and the hardness was enhanced by 47.8%. Therefore, this method provides a new approach for the preparation of highly conductive and wear-resistant copper matrix composite materials.
High solar evaporation efficiency combined with enhanced desalination and antifouling performance is key in the application of the solar-driven interfacial water evaporation (SIWE) technology. In this study, we have designed a dual-crosslinked and dual-networked hydrogel (CSH) for interfacial solar vapor generation (ISVG). Through adjusting the proportions of matrix components and balancing the degree of crosslinking between cellulose and epichlorohydrin, it is feasible to obtain the hybrid hydrogel with elastic behaviors. The resulted hydrogel has a porous structure enabling the transport of water molecules, while the doped component of iron-based metal–organic frameworks provides this hydrogel with strong light absorbance, achieving an evaporation rate of 2.52 kg·m−2·h−1 under 1 kW·m−2 solar irradiation and an evaporation efficiency of 89.32%. The porosity also creates salt resistance through capillary forces. Practical applications of such CSH hydrogels in the field of seawater desalination and wastewater purification are conducted under outdoor light conditions, and the concentrations of metal ions are revealed to be reduced by orders of magnitude below the WHO threshold ones, while pigments are found to be absent from the condensate contained in the treated wastewater.
The utilization of photocatalytic nitrogen fixation, a process celebrated for its environmental friendliness and sustainability, has emerged as a promising avenue for ammonia synthesis. The rational design of photocatalysts containing single atoms and heterojunctions has been a long-standing challenge for achieving efficient nitrogen fixation. This study innovatively constructs composite catalysts integrating single-atom copper within metal–organic frameworks (Fe-MOF, NH2-MIL-101) and carbon nitride nanosheet (CNNS). The nitrogen fixation efficiency of the Cu@MIL-CNNS heterojunction was 8 and 12 times those of the original MOF and CNNSs, respectively. Through detailed characterization, we unveil a unique charge transfer pathway facilitated by the synergy between single-atom copper and heterojunctions, highlighting the critical function of copper centers as potent active sites. Our findings underscore the transformative potential of single atomic sites in amplifying charge transfer efficiency, propelling advancements in the photocatalyst design.
Titanium dioxide (TiO2) whiskers modified with octadecyltrimethoxysilane were incorporated into the coating solution through a solution blending method. The superhydrophobic coating was designed and fabricated using polyvinylidene fluoride (PVDF) and polyperfluorinated ethylene propylene (FEP) as the main constituents, while silane-modified TiO2 whiskers as the fillers. The results demonstrated that after a 360-h scaling test, the mass of CaCO3 on the surface of the resulted silane-modified superhydrophobic TiO2‒PVDF‒FEP coating was only 1.90 mg·cm−2, decreased by 37.1% and 16.7% compared with those on the PVDF‒FEP coating and the TiO2‒PVDF‒FEP coating, respectively. The synergistic effects of the air film, silane-modified TiO2 whiskers, and superhydrophobicity ensure that this superhydrophobic TiO2‒PVDF‒FEP coating has excellent scale inhibition performance. This study presents a novel approach for advancing the development of superhydrophobic coatings, offering promising prospects for industrial-scale applications in preventive measures.
Due to high theoretical capacity and low lithium-storage potential, silicon (Si)-based anode materials are considered as one kind of the most promising options for lithium-ion batteries. However, their practical applications are still limited because of significant volume expansion and poor conductivity during cycling. In this study, we prepared a double core‒shell nanostructure through coating commercial Si nanoparticles with both amorphous titanium dioxide (a-TiO2) and amorphous carbon (a-C) via a facile sol‒gel method combined with chemical vapor deposition. Elastic behaviors of a-TiO2 shells allowed for the release of strain, maintaining the integrity of Si cores during charge‒discharge processes. Additionally, outer layers of a-C provided numerous pore channels facilitating the transport of both Li+ ions and electrons. Using the distribution of relaxation time analysis, we provided a precise kinetic explanation for the observed electrochemical behaviors. Furthermore, the structural evolution of the anode was explored during cycling processes. The Si@a-TiO2@a-C-6 anode was revealed to exhibit excellent electrochemical properties, achieving a capacity retention rate of 86.7% (877.1 mA·h·g−1 after 500 cycles at a 1 A·g−1). This result offers valuable insights for the design of high-performance and cyclically stable Si-based anode materials.
Although Prussian blue (PB) has been widely investigated as a biocompatible photothermal agent with significant potential in cancer treatment, its further application is still hindered by low photothermal conversion efficiency (PCE) and poor stability. In this study, a biomimetic mineralization approach is employed to improve properties of PB by binding it with manganese phosphate through manganese ions, resulting in the formation of nanocomposite manganese phosphate mineralized Prussian blue (MnP&PB). Compared to PB alone, MnP&PB can significantly enhance the PCE, increasing it to 44.46%, which is attributed to the manganese-induced redshift absorption and the bandgap narrowing in the near-infrared (NIR) region. Meanwhile, MnP&PB demonstrates a significant increase in temperature compared to that of either MnP or PB alone, further enhancing the inhibition effect against cancer under the NIR irradiation. It is revealed that the incorporation of manganese phosphate into PB via biomimetic mineralization lead to the enhancement of both PCE and therapeutic efficacy, thus presenting a promising alternative approach for the improvement of cancer photothermal therapy.
Electrospinning has been widely used in the field of biomedical materials characterized with high porosity and good breathability as well as similarity to the natural extracellular matrix. This study employs the microsol-electrospinning technology combined with the self-induced crystallization method to fabricate the functionalized bilayer poly(ε-caprolactone) (PCL) fibrous membrane with a shish-kebab (SK) structure. The outer layer consists of the antibacterial SK-structured fibrous membrane showing favorable mechanical properties and notable inhibitory effects on the growth of E. coli and S. aureus, while salvianic acid A sodium (SAS) is encapsulated in the inner core‒shell and SK-structured PCL fibrous membrane, achieving the controlled and sustained release of SAS. Moreover, good biocompatibility and enhanced cell adhesion of this membrane are also revealed. This antibacterial and drug-loaded bilayer PCL fibrous membrane with a SK structure demonstrates superior mechanical characteristics, exceptional antibacterial properties, and notable biocompatibility, suggesting its favorable outlook for future development in the area of tissue engineering.