Design and fabrication of smart functional hydrogel wound dressing for diabetic foot ulcer
Yufei Wang, Dandan Hou, Hui Zhao, Xue Geng, Xin Wu, Gaobiao Li, Fei Sha, Zengguo Feng, Zongjian Liu, Lin Ye
Design and fabrication of smart functional hydrogel wound dressing for diabetic foot ulcer
Diabetic foot ulcer (DFU) often evolves into chronic wounds that resist healing over an extended period, sometimes necessitating amputation in severe cases. Traditional wound management approaches generally fail to control these chronic sores successfully. Thus, it arouses a huge demand in clinic for a novel wound dressing to treat DFU effectively. Hydrogel as an ideal delivery system exhibits excellent loading capacity and sustainable release behavior. It also boasts tunable physical and chemical properties adaptable to diverse biomedical scenarios, making it a suitable material for fabricating functional wound dressings to treat DFU. The hydrogel dressings are classified into hemostatic, antibacterial and anti-inflammatory, and healing-promoting hydrogel dressings by associating the pathogenesis of DFU in this paper. The design and fabrication strategies for the dressings, as well as their therapeutic effects in treating DFU, are extensively reviewed. Additionally, this paper highlights future perspectives of multifunctional hydrogel dressings in DFU treatment. This review aims to provide valuable references for material scientists to design and develop hydrogel wound dressings with enhanced capabilities for DFU treatment, and to further translate them into the clinic in the future.
hydrogel dressing / multifunction / design / fabrication / diabetic foot ulcer
[1] |
Narjis M, Noreen M, Safi S Z,
CrossRef
Google scholar
|
[2] |
Zhong V W, Yu D, Zhao L,
CrossRef
Google scholar
|
[3] |
Sumpio B J, Mezghani I, Wang E,
CrossRef
Google scholar
|
[4] |
Davis F M, Kimball A, Boniakowski A,
CrossRef
Google scholar
|
[5] |
Schmidt A M . Highlighting diabetes mellitus: the epidemic continues.Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38(1): e1–e8
CrossRef
Google scholar
|
[6] |
Güiza-Argüello V R, Solarte-David V A, Pinzón-Mora A V,
CrossRef
Google scholar
|
[7] |
Singer A J . Healing mechanisms in cutaneous wounds: tipping the balance.Tissue Engineering Part B: Reviews, 2022, 28(5): 1151–1167
CrossRef
Google scholar
|
[8] |
Li X Y, Jing X, Yu Z,
CrossRef
Google scholar
|
[9] |
Raghavan J V, Jhunjhunwala S . Role of innate immune cells in chronic diabetic wounds.Journal of the Indian Institute of Science, 2023, 103(1): 249–271
CrossRef
Google scholar
|
[10] |
Caturano A, D’Angelo M, Mormone A,
CrossRef
Google scholar
|
[11] |
Wang H, Xu Z, Zhao M,
CrossRef
Google scholar
|
[12] |
Yang J, Chu Z, Jiang Y,
CrossRef
Google scholar
|
[13] |
Gao S, Zhang W, Zhai X,
CrossRef
Google scholar
|
[14] |
Chang M, Nguyen T T . Strategy for treatment of infected diabetic foot ulcers.Accounts of Chemical Research, 2021, 54(5): 1080–1093
CrossRef
Google scholar
|
[15] |
Glover K, Stratakos A C, Varadi A,
CrossRef
Google scholar
|
[16] |
Gupta A, Kowalczuk M, Heaselgrave W,
CrossRef
Google scholar
|
[17] |
Winter G D . Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig.Nature, 1962, 193(4812): 293–294
CrossRef
Google scholar
|
[18] |
Kokabi M, Sirousazar M, Hassan Z M . PVA–clay nanocomposite hydrogels for wound dressing.European Polymer Journal, 2007, 43(3): 773–781
CrossRef
Google scholar
|
[19] |
Kim H . Wound dressing materials: the essentials.Journal of Wound Management and Research, 2018, 14(2): 141–142
CrossRef
Google scholar
|
[20] |
Bai H, Kyu-Cheol N, Wang Z,
CrossRef
Google scholar
|
[21] |
Cascone S, Lamberti G . Hydrogel-based commercial products for biomedical applications: a review.International Journal of Pharmaceutics, 2020, 573: 118803
CrossRef
Google scholar
|
[22] |
Ho T C, Chang C C, Chan H P,
CrossRef
Google scholar
|
[23] |
Meleties M, Katyal P, Lin B,
CrossRef
Google scholar
|
[24] |
Hiratani T, Kose O, Hamad W Y,
CrossRef
Google scholar
|
[25] |
Yang L, Liang F, Zhang X,
CrossRef
Google scholar
|
[26] |
Kumar A, Wang X, Nune K C,
CrossRef
Google scholar
|
[27] |
Zhang M, Qiao X, Han W,
CrossRef
Google scholar
|
[28] |
Liang Y, Li M, Yang Y,
CrossRef
Google scholar
|
[29] |
Huang Y, Mu L, Zhao X,
CrossRef
Google scholar
|
[30] |
Wang X, Guo Y, Li J,
CrossRef
Google scholar
|
[31] |
Fu Y, Ren P, Wang F,
CrossRef
Google scholar
|
[32] |
Shin W, Kim J S, Kim H,
CrossRef
Google scholar
|
[33] |
Wang M, Hu J, Ou Y,
CrossRef
Google scholar
|
[34] |
Sun D, Wang H, Liu J,
CrossRef
Google scholar
|
[35] |
Liang Y, He J, Guo B . Functional hydrogels as wound dressing to enhance wound healing.ACS Nano, 2021, 15(8): 12687–12722
CrossRef
Google scholar
|
[36] |
Zhao X, Liang Y, Guo B,
CrossRef
Google scholar
|
[37] |
Ávila-Quiroga J E, Pinzón-Mora A V, Solarte-David V A,
CrossRef
Google scholar
|
[38] |
Cui R W, Zhang L H, Ou R Y,
CrossRef
Google scholar
|
[39] |
Jain N, Singh Y, Nouri A,
CrossRef
Google scholar
|
[40] |
Li Y T, Leng Y X, Liu Y,
CrossRef
Google scholar
|
[41] |
Zhang J L, Liu C L, Li X J,
CrossRef
Google scholar
|
[42] |
Farokhi M, Mottaghitalab F, Fatahi Y,
CrossRef
Google scholar
|
[43] |
DiPersio C M, Zheng R, Kenney J,
CrossRef
Google scholar
|
[44] |
Butenko S, Miwa H, Liu Y,
CrossRef
Google scholar
|
[45] |
Gao Y, Kang Y, Wang T,
CrossRef
Google scholar
|
[46] |
Oliveira C, Sousa D, Teixeira J A,
CrossRef
Google scholar
|
[47] |
Goldberg S R, Diegelmann R F . Wound healing primer.Surgical Clinics of North America, 2010, 90(6): 1133–1146
CrossRef
Google scholar
|
[48] |
Guo B, Dong R, Liang Y,
CrossRef
Google scholar
|
[49] |
Wang J X, He J H, Yang Y T,
CrossRef
Google scholar
|
[50] |
Gurtner G C, Werner S, Barrandon Y,
CrossRef
Google scholar
|
[51] |
Hsu B B, Conway W, Tschabrunn C M,
CrossRef
Google scholar
|
[52] |
Hickman D A, Pawlowski C L, Sekhon U D S,
CrossRef
Google scholar
|
[53] |
Ayudhya C C N, Roy S, Thapaliya M,
CrossRef
Google scholar
|
[54] |
Jere S W, Abrahamse H, Houreld N N . Interaction of the AKT and β-catenin signalling pathways and the influence of photobiomodulation on cellular signalling proteins in diabetic wound healing.Journal of Biomedical Science, 2023, 30(1): 81
CrossRef
Google scholar
|
[55] |
Pan H, Fan D, Duan Z,
CrossRef
Google scholar
|
[56] |
Grice E A, Kong H H, Conlan S,
CrossRef
Google scholar
|
[57] |
Li S Q, Dong S J, Xu W G,
CrossRef
Google scholar
|
[58] |
Poplimont H, Georgantzoglou A, Boulch M,
CrossRef
Google scholar
|
[59] |
Liang Y, Liang Y, Zhang H,
CrossRef
Google scholar
|
[60] |
Musaie K, Abbaszadeh S, Nosrati-Siahmazgi V,
CrossRef
Google scholar
|
[61] |
Xu X, Zeng Y, Chen Z,
CrossRef
Google scholar
|
[62] |
Soliman A M, Das S, Abd Ghafar N,
CrossRef
Google scholar
|
[63] |
Stevens L J, Page-McCaw A . A secreted MMP is required for reepithelialization during wound healing.Molecular Biology of the Cell, 2012, 23(6): 1068–1079
CrossRef
Google scholar
|
[64] |
Zhang R, Tian Y, Pang L,
CrossRef
Google scholar
|
[65] |
Maione A G, Smith A, Kashpur O,
CrossRef
Google scholar
|
[66] |
Yang Y, Xia T, Zhi W,
CrossRef
Google scholar
|
[67] |
Martin P, Nunan R . Cellular and molecular mechanisms of repair in acute and chronic wound healing.British Journal of Dermatology, 2015, 173(2): 370–378
CrossRef
Google scholar
|
[68] |
Yadav J P . Based on clinical research matrix metalloprotease (MMP) inhibitors to promote diabetic wound healing.Hormone and Metabolic Research, 2023, 55(11): 752–757
CrossRef
Google scholar
|
[69] |
Berlanga-Acosta J A, Guillén-Nieto G E, Rodríguez-Rodríguez N,
CrossRef
Google scholar
|
[70] |
Liu D, Yang P, Gao M,
CrossRef
Google scholar
|
[71] |
Bannon P, Wood S, Restivo T,
CrossRef
Google scholar
|
[72] |
Teh H X, Phang S J, Looi M L,
CrossRef
Google scholar
|
[73] |
Yang Y T, Liang Y P, Chen J Y,
CrossRef
Google scholar
|
[74] |
Zhang L, Zhang Y, Ma F,
CrossRef
Google scholar
|
[75] |
Smithmyer M E, Sawicki L A, Kloxin A M . Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease.Biomaterials Science, 2014, 2(5): 634–650
CrossRef
Google scholar
|
[76] |
Thangavel P, Ramachandran B, Kannan R,
CrossRef
Google scholar
|
[77] |
Smithmyer M E, Sawicki L A, Kloxin A M . Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease.Biomaterials Science, 2014, 2(5): 634–650
CrossRef
Google scholar
|
[78] |
Malone-Povolny M J, Maloney S E, Schoenfisch M H . Nitric oxide therapy for diabetic wound healing.Advanced Healthcare Materials, 2019, 8(12): 1801210
CrossRef
Google scholar
|
[79] |
Wang N, Zhao S, Tian X,
CrossRef
Google scholar
|
[80] |
Xu J Y, Su M, Jin Z M,
CrossRef
Google scholar
|
[81] |
Cheng J, Liu J, Li M,
CrossRef
Google scholar
|
[82] |
Liu J, Li J, Yu F,
CrossRef
Google scholar
|
[83] |
Qiao L, Liang Y, Chen J,
CrossRef
Google scholar
|
[84] |
Ouyang Y, Zhao Y, Zheng X,
CrossRef
Google scholar
|
[85] |
Khan M A, Mujahid M . A review on recent advances in chitosan based composite for hemostatic dressings.International Journal of Biological Macromolecules, 2019, 124: 138–147
CrossRef
Google scholar
|
[86] |
Meldawati K P, Syafruddin I, Tamrin T,
CrossRef
Google scholar
|
[87] |
Chou T C, Fu E, Wu C J,
CrossRef
Google scholar
|
[88] |
Liu W S, Yang C F, Gao R,
CrossRef
Google scholar
|
[89] |
Song F, Kong Y, Shao C,
CrossRef
Google scholar
|
[90] |
Fan L, Yang H, Yang J,
CrossRef
Google scholar
|
[91] |
Ye H, Cheng J, Yu K . In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity.International Journal of Biological Macromolecules, 2019, 121: 633–642
CrossRef
Google scholar
|
[92] |
Yu X S, Cheng C, Peng X,
CrossRef
Google scholar
|
[93] |
Zheng Z, Bian S, Li Z,
CrossRef
Google scholar
|
[94] |
Dragostin O M, Samal S K, Dash M,
CrossRef
Google scholar
|
[95] |
Cheng C, Zhong H, Zhang Y,
CrossRef
Google scholar
|
[96] |
Qiao L, Liang Y, Chen J,
CrossRef
Google scholar
|
[97] |
Ren Y, Ma S, Zhang D,
CrossRef
Google scholar
|
[98] |
Jiang Y, Wang J, Zhang H,
CrossRef
Google scholar
|
[99] |
Silva V, Almeida F, Carvalho J A,
CrossRef
Google scholar
|
[100] |
Wang L, Li X, Sun T,
CrossRef
Google scholar
|
[101] |
Masood N, Ahmed R, Tariq M,
CrossRef
Google scholar
|
[102] |
Uppu D S S M, Haldar J . Lipopolysaccharide neutralization by cationic–amphiphilic polymers through pseudoaggregate formation.Biomacromolecules, 2016, 17(3): 862–873
CrossRef
Google scholar
|
[103] |
Wang X, Song R, Johnson M,
CrossRef
Google scholar
|
[104] |
Liu H, Li Z, Zhao Y,
CrossRef
Google scholar
|
[105] |
Xiong Y H, Zhang L J, Xiu Z P,
CrossRef
Google scholar
|
[106] |
Qi X L, Ge X X, Chen X J,
CrossRef
Google scholar
|
[107] |
Fujii J, Osaki T . Involvement of nitric oxide in protecting against radical species and autoregulation of M1-polarized macrophages through metabolic remodeling.Molecules, 2023, 28(2): 814
CrossRef
Google scholar
|
[108] |
Zhao H, Lou Z, Chen Y,
CrossRef
Google scholar
|
[109] |
Bi M, Qin Y, Wang L,
CrossRef
Google scholar
|
[110] |
Farhat F, Sohail S S, Siddiqui F,
CrossRef
Google scholar
|
[111] |
Tekin G G, Deveci B . Effects of gallic acid on gingival wounds.European Review for Medical and Pharmacological Sciences, 2023, 27(7): 2739–2744
CrossRef
Google scholar
|
[112] |
Liu Z J, Zhang S L, Ran Y Y,
CrossRef
Google scholar
|
[113] |
Liu Z J, Ye L, Xi J N,
CrossRef
Google scholar
|
[114] |
Zhu W, Dong Y, Xu P,
CrossRef
Google scholar
|
[115] |
Zhao B, Zhu S, Liu Y W,
CrossRef
Google scholar
|
[116] |
Cai X, He Y, Cai L,
CrossRef
Google scholar
|
[117] |
Zong Q, Zhou S, Ye J,
CrossRef
Google scholar
|
[118] |
Chen T, Guo X, Huang Y,
CrossRef
Google scholar
|
[119] |
Lu Y, Jia C, Gong C,
CrossRef
Google scholar
|
[120] |
Peng J, Zhao H, Tu C,
CrossRef
Google scholar
|
[121] |
Xiao Y, Zhao H, Ma X,
CrossRef
Google scholar
|
[122] |
Jing X D, Sun Y, Liu Y,
CrossRef
Google scholar
|
[123] |
Yang J, Zeng W N, Xu P,
CrossRef
Google scholar
|
[124] |
Zhang B, Lv Y J, Yu C G,
CrossRef
Google scholar
|
[125] |
Wang L, Zhou M, Xu T,
CrossRef
Google scholar
|
[126] |
Jiang Y, Trotsyuk A A, Niu S,
CrossRef
Google scholar
|
[127] |
Cardinal M, Eisenbud D E, Armstrong D G . Wound shape geometry measurements correlate to eventual wound healing.Wound Repair and Regeneration, 2009, 17(2): 173–178
CrossRef
Google scholar
|
[128] |
Li G C, Li S J, Zhang L L,
CrossRef
Google scholar
|
[129] |
Chen S Y, Zhao Y X, Yan X L,
CrossRef
Google scholar
|
[130] |
Zhao L, Niu L, Liang H,
CrossRef
Google scholar
|
[131] |
Lei X X, Hu J J, Zou C Y,
CrossRef
Google scholar
|
[132] |
Zhang J X, Dong H F, Jing X Z,
CrossRef
Google scholar
|
[133] |
Yayehrad A T, Siraj E A, Matsabisa M,
CrossRef
Google scholar
|
[134] |
Ma X, Gao F, Su W,
CrossRef
Google scholar
|
[135] |
Teoh J H, Tay S M, Fuh J,
CrossRef
Google scholar
|
[136] |
Alizadehgiashi M, Nemr C R, Chekini M,
CrossRef
Google scholar
|
/
〈 | 〉 |