A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight
Jie Meng, Hongmei Liu, Sainan Zhang, Baogui Ye, Min Feng, Daoai Wang
A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight
The solar-to-hydrogen conversion using the photoelectrochemical (PEC) method is a practical approach to producing clean energy. However, it relies on the availability of photocatalyst materials. In this work, a novel photocatalyst comprising molybdenum telluride quantum dots (MoTe2 QDs)-modified titanium dioxide nanorods (TiO2 NRs) was prepared for the enhancement of the PEC water splitting performance after combination with a Al2O3 layer using the atomic layer deposition (ALD) technique. MoTe2 QDs were initially prepared, and then they were loaded onto TiO2 NRs using a warm water bath-based heating method. After a layer of Al2O3 was deposited onto resulted TiO2 NRs/MoTe2 QDs, the composite TiO2 NRs/MoTe2 QDs/Al2O3 was finally obtained. Under simulated sunlight (100 mW·cm−2), such a composite exhibited a maximum photocurrent density of 2.25 mA·cm−2 at 1.23 V (versus RHE) and an incident photon-to-electron conversion efficiency of 69.88% at 380 nm, which are 4.33 and 6.66 times those of pure TiO2 NRs, respectively. Therefore, the composite photocatalyst fabricated in this work may have promising application in the field of PEC water splitting, solar cells and other photocatalytic devices.
MoTe2 quantum dot / TiO2 nanorod / Al2O3 / atomic layer deposition / photoelectrochemistry
[1] |
Naldoni A, Altomare M, Zoppellaro G,
CrossRef
Google scholar
|
[2] |
Basavarajappa P S, Patil S B, Ganganagappa N,
CrossRef
Google scholar
|
[3] |
Kaewkam P, Kanchanapaetnukul A, Khamyan J,
CrossRef
Google scholar
|
[4] |
Wang B, Shen S, Mao S S . Black TiO2 for solar hydrogen conversion.Journal of Materiomics, 2017, 3(2): 96–111
CrossRef
Google scholar
|
[5] |
Jiao Z, Shang M, Liu J,
CrossRef
Google scholar
|
[6] |
Peng J, Zhang L, Liu Y,
CrossRef
Google scholar
|
[7] |
Kameya Y, Torii K, Hirai S,
CrossRef
Google scholar
|
[8] |
Kumari M L A, Devi L G, Maia G,
CrossRef
Google scholar
|
[9] |
Zhang X, Xiao Y, Cao S,
CrossRef
Google scholar
|
[10] |
Justh N, Mikula G J, Bakos L P,
CrossRef
Google scholar
|
[11] |
Yao L, Wei D, Ni Y,
CrossRef
Google scholar
|
[12] |
Maki Y, Ide Y, Okada T . Water-floatable organosilica particles for TiO2 photocatalysis.Chemical Engineering Journal, 2016, 299: 367–372
CrossRef
Google scholar
|
[13] |
Wang Y, Liu J, Ozaki Y,
CrossRef
Google scholar
|
[14] |
Wang Q, Huang J, Sun H,
CrossRef
Google scholar
|
[15] |
Lee M D, Lee G J, Nam I,
CrossRef
Google scholar
|
[16] |
Ahmad W, Khan A, Ali N,
CrossRef
Google scholar
|
[17] |
Cleary O, Purcell-Milton F, Vandekerckhove A,
CrossRef
Google scholar
|
[18] |
Yan J, Wu H, Chen H,
CrossRef
Google scholar
|
[19] |
Hirai T, Suzuki K, Komasawa I . Preparation and photocatalytic properties of composite CdS nanoparticles–titanium dioxide particles.Journal of Colloid and Interface Science, 2001, 244(2): 262–265
CrossRef
Google scholar
|
[20] |
Jeong I, Park Y H, Bae S,
CrossRef
Google scholar
|
[21] |
Palmolahti L, Ali-Löytty H, Hannula M,
CrossRef
Google scholar
|
[22] |
Chen W, Liang R, Wang J,
CrossRef
Google scholar
|
[23] |
Valero-Romero M J, Santaclara J G, Oar-Arteta L,
CrossRef
Google scholar
|
[24] |
Sung J H, Heo H, Si S,
CrossRef
Google scholar
|
[25] |
Konstantinova E, Minnekhanov A, Beltiukov A,
CrossRef
Google scholar
|
[26] |
Temperton R H, Gibson A, O’Shea J N . In situ XPS analysis of the atomic layer deposition of aluminium oxide on titanium dioxide.Physical Chemistry Chemical Physics, 2019, 21(3): 1393–1398
CrossRef
Google scholar
|
[27] |
Chen J, He J, Yin Z,
CrossRef
Google scholar
|
[28] |
Huo C, Wang T, Yin Z,
CrossRef
Google scholar
|
[29] |
Zhang B, Wang D, Jiao S,
CrossRef
Google scholar
|
[30] |
Han G H, Keum D H, Zhao J,
CrossRef
Google scholar
|
[31] |
Gao J, Lian X, Chen Z,
CrossRef
Google scholar
|
[32] |
Synowiec M, Micek-Ilnicka A, Szczepanowicz K,
CrossRef
Google scholar
|
[33] |
Lee Y, Ling N, Kim D,
CrossRef
Google scholar
|
[34] |
Leimkuhl D P, Donley C L, Jackson M N . Controlling nucleation sites for metal oxide film growth on glassy carbon via electrochemical preoxidation.ACS Applied Materials & Interfaces, 2024, 16(2): 2868–2876
CrossRef
Google scholar
|
[35] |
Chen L, Connell J G, Nie A,
CrossRef
Google scholar
|
[36] |
Nam Y, Lim J H, Ko K C,
CrossRef
Google scholar
|
[37] |
Vequizo J J M, Matsunaga H, Ishiku T,
CrossRef
Google scholar
|
[38] |
Guo Q, Ma Z, Zhou C,
CrossRef
Google scholar
|
[39] |
Huang Y, Shang Q, Wang D,
CrossRef
Google scholar
|
[40] |
Guo Q, Zhou C, Ma Z,
CrossRef
Google scholar
|
[41] |
Ma X, Wang C, Wu F,
CrossRef
Google scholar
|
[42] |
Jiao W, Zhu J, Ling Y,
CrossRef
Google scholar
|
[43] |
Motola M, Zazpe R, Hromadko L,
CrossRef
Google scholar
|
[44] |
Yin W J, Wen B, Zhou C,
CrossRef
Google scholar
|
[45] |
Yilleng M T, Gimba E C, Ndukwe G I,
CrossRef
Google scholar
|
[46] |
Cavalcante R P, Dantas R F, Bayarri B,
CrossRef
Google scholar
|
[47] |
Alcaide F, Genova R V, Álvarez G,
CrossRef
Google scholar
|
[48] |
Zhang X, Yan P, Zhao B,
CrossRef
Google scholar
|
[49] |
Li X, Tao J, Wang X,
CrossRef
Google scholar
|
[50] |
Xia X, Peng S, Bao Y,
CrossRef
Google scholar
|
[51] |
Zhu W, Xia Z, Shi B,
CrossRef
Google scholar
|
[52] |
Wang Y, Xiao J, Zhu H,
CrossRef
Google scholar
|
[53] |
Wu G, Wang X, Chen Y,
CrossRef
Google scholar
|
/
〈 | 〉 |