A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight

Jie Meng , Hongmei Liu , Sainan Zhang , Baogui Ye , Min Feng , Daoai Wang

Front. Mater. Sci. ›› 2024, Vol. 18 ›› Issue (2) : 240686

PDF (6854KB)
Front. Mater. Sci. ›› 2024, Vol. 18 ›› Issue (2) : 240686 DOI: 10.1007/s11706-024-0686-8
RESEARCH ARTICLE

A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight

Author information +
History +
PDF (6854KB)

Abstract

The solar-to-hydrogen conversion using the photoelectrochemical (PEC) method is a practical approach to producing clean energy. However, it relies on the availability of photocatalyst materials. In this work, a novel photocatalyst comprising molybdenum telluride quantum dots (MoTe2 QDs)-modified titanium dioxide nanorods (TiO2 NRs) was prepared for the enhancement of the PEC water splitting performance after combination with a Al2O3 layer using the atomic layer deposition (ALD) technique. MoTe2 QDs were initially prepared, and then they were loaded onto TiO2 NRs using a warm water bath-based heating method. After a layer of Al2O3 was deposited onto resulted TiO2 NRs/MoTe2 QDs, the composite TiO2 NRs/MoTe2 QDs/Al2O3 was finally obtained. Under simulated sunlight (100 mW·cm−2), such a composite exhibited a maximum photocurrent density of 2.25 mA·cm−2 at 1.23 V (versus RHE) and an incident photon-to-electron conversion efficiency of 69.88% at 380 nm, which are 4.33 and 6.66 times those of pure TiO2 NRs, respectively. Therefore, the composite photocatalyst fabricated in this work may have promising application in the field of PEC water splitting, solar cells and other photocatalytic devices.

Keywords

MoTe 2 quantum dot / TiO 2 nanorod / Al 2O 3 / atomic layer deposition / photoelectrochemistry

Cite this article

Download citation ▾
Jie Meng, Hongmei Liu, Sainan Zhang, Baogui Ye, Min Feng, Daoai Wang. A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight. Front. Mater. Sci., 2024, 18(2): 240686 DOI:10.1007/s11706-024-0686-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naldoni A, Altomare M, Zoppellaro G, . Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production.ACS Catalysis, 2019, 9(1): 345–364

[2]

Basavarajappa P S, Patil S B, Ganganagappa N, . Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis.International Journal of Hydrogen Energy, 2020, 45(13): 7764–7778

[3]

Kaewkam P, Kanchanapaetnukul A, Khamyan J, . UV-assisted TiO2 photocatalytic degradation of virgin LDPE films: effect of UV-A, UV-C, and TiO2.Journal of Environmental Chemical Engineering, 2022, 10(4): 108131

[4]

Wang B, Shen S, Mao S S . Black TiO2 for solar hydrogen conversion.Journal of Materiomics, 2017, 3(2): 96–111

[5]

Jiao Z, Shang M, Liu J, . The charge transfer mechanism of Bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”.Nano Energy, 2017, 31: 96–104

[6]

Peng J, Zhang L, Liu Y, . New cambered-surface based drip generator: a drop of water generates 50 µA current without pre-charging.Nano Energy, 2022, 102: 107694

[7]

Kameya Y, Torii K, Hirai S, . Photocatalytic soot oxidation on TiO2 microstructured substrate.Chemical Engineering Journal, 2017, 327: 831–837

[8]

Kumari M L A, Devi L G, Maia G, . Mechanochemical synthesis of ternary heterojunctions TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 for effective charge separation in semiconductor photocatalysis: A comparative study.Environmental Research, 2022, 203: 111841

[9]

Zhang X, Xiao Y, Cao S, . Ternary TiO2@Bi2O3@TiO2 hollow photocatalyst drives robust visible-light photocatalytic performance and excellent recyclability.Journal of Cleaner Production, 2022, 352: 131560

[10]

Justh N, Mikula G J, Bakos L P, . Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition.Carbon, 2019, 147: 476–482

[11]

Yao L, Wei D, Ni Y, . Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: highly efficient visible light-induced H2-generation.Nano Energy, 2016, 26: 248–256

[12]

Maki Y, Ide Y, Okada T . Water-floatable organosilica particles for TiO2 photocatalysis.Chemical Engineering Journal, 2016, 299: 367–372

[13]

Wang Y, Liu J, Ozaki Y, . Effect of TiO2 on altering direction of interfacial charge transfer in a TiO2‒Ag‒MPY‒FePc system by SERS.Angewandte Chemie International Edition, 2019, 58(24): 8172–8176

[14]

Wang Q, Huang J, Sun H, . MoS2 quantum dots@TiO2 nanotube arrays: an extended-spectrum-driven photocatalyst for solar hydrogen evolution.ChemSusChem, 2018, 11(10): 1708–1721

[15]

Lee M D, Lee G J, Nam I, . Exploring the effect of cation vacancies in TiO2: lithiation behavior of n-type and p-type TiO2.ACS Applied Materials & Interfaces, 2022, 14(5): 6560–6569

[16]

Ahmad W, Khan A, Ali N, . Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres.Environmental Science and Pollution Research International, 2021, 28(7): 8074–8087

[17]

Cleary O, Purcell-Milton F, Vandekerckhove A, . Chiral and luminescent TiO2 nanoparticles.Advanced Optical Materials, 2017, 5(16): 1601000

[18]

Yan J, Wu H, Chen H, . Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting.Applied Catalysis B: Environmental, 2016, 191: 130–137

[19]

Hirai T, Suzuki K, Komasawa I . Preparation and photocatalytic properties of composite CdS nanoparticles–titanium dioxide particles.Journal of Colloid and Interface Science, 2001, 244(2): 262–265

[20]

Jeong I, Park Y H, Bae S, . Solution-processed ultrathin TiO2 compact layer hybridized with mesoporous TiO2 for high-performance perovskite solar cells.ACS Applied Materials & Interfaces, 2017, 9(42): 36865–36874

[21]

Palmolahti L, Ali-Löytty H, Hannula M, . Pinhole-resistant nanocrystalline rutile TiO2 photoelectrode coatings.Acta Materialia, 2022, 239: 118257

[22]

Chen W, Liang R, Wang J, . Enhanced photoresponsivity and hole mobility of MoTe2 phototransistors by using an Al2O3 high-κ gate dielectric.Science Bulletin, 2018, 63(15): 997–1005

[23]

Valero-Romero M J, Santaclara J G, Oar-Arteta L, . Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis.Chemical Engineering Journal, 2019, 360: 75–88

[24]

Sung J H, Heo H, Si S, . Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy.Nature Nanotechnology, 2017, 12(11): 1064–1070

[25]

Konstantinova E, Minnekhanov A, Beltiukov A, . Unveiling point defects in titania mesocrystals: a combined EPR and XPS study.New Journal of Chemistry, 2018, 42(18): 15184–15189

[26]

Temperton R H, Gibson A, O’Shea J N . In situ XPS analysis of the atomic layer deposition of aluminium oxide on titanium dioxide.Physical Chemistry Chemical Physics, 2019, 21(3): 1393–1398

[27]

Chen J, He J, Yin Z, . One-pot synthesis of porous TiO2/BiOI adsorbent with high removal efficiency and excellent recyclability towards tetracyclines.Ceramics International, 2023, 49(13): 22139–22148

[28]

Huo C, Wang T, Yin Z, . Tuning the thickness of 3D inverse opal ZnO/ZnS heterojunction promotes excellent photocatalytic hydrogen evolution.Ceramics International, 2023, 49(9): 14673–14680

[29]

Zhang B, Wang D, Jiao S, . TiO2-X mesoporous nanospheres/BiOI nanosheets S-scheme heterostructure for high efficiency, stable and unbiased photocatalytic hydrogen production.Chemical Engineering Journal, 2022, 446: 137138

[30]

Han G H, Keum D H, Zhao J, . Absorption dichroism of monolayer 1T′-MoTe2 in visible range.2D Materials, 2016, 3(3): 031010

[31]

Gao J, Lian X, Chen Z, . Multifunctional MoTe2 Fe-FET enabled by ferroelectric polarization-assisted charge trapping.Advanced Functional Materials, 2022, 32(17): 2110415

[32]

Synowiec M, Micek-Ilnicka A, Szczepanowicz K, . Functionalized structures based on shape-controlled TiO2.Applied Surface Science, 2019, 473: 603–613

[33]

Lee Y, Ling N, Kim D, . Heterophase boundary for active hydrogen evolution in MoTe2.Advanced Functional Materials, 2022, 32(10): 2105675

[34]

Leimkuhl D P, Donley C L, Jackson M N . Controlling nucleation sites for metal oxide film growth on glassy carbon via electrochemical preoxidation.ACS Applied Materials & Interfaces, 2024, 16(2): 2868–2876

[35]

Chen L, Connell J G, Nie A, . Lithium metal protected by atomic layer deposition metal oxide for high performance anodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(24): 12297–12309

[36]

Nam Y, Lim J H, Ko K C, . Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(23): 13833–13859

[37]

Vequizo J J M, Matsunaga H, Ishiku T, . Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders.ACS Catalysis, 2017, 7(4): 2644–2651

[38]

Guo Q, Ma Z, Zhou C, . Single molecule photocatalysis on TiO2 surfaces.Chemical Reviews, 2019, 119(20): 11020–11041

[39]

Huang Y, Shang Q, Wang D, . Effects of electronic structure and interfacial interaction between metal-quinoline complexes and TiO2 on visible light photocatalytic activity of TiO2.Applied Catalysis B: Environmental, 2016, 187: 59–66

[40]

Guo Q, Zhou C, Ma Z, . Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges.Advanced Materials, 2019, 31(50): 1901997

[41]

Ma X, Wang C, Wu F, . TiO2 nanomaterials in photoelectrochemical and electrochemiluminescent biosensing.Topics in Current Chemistry, 2020, 378(2): 28

[42]

Jiao W, Zhu J, Ling Y, . Photoelectrochemical properties of MOF-induced surface-modified TiO2 photoelectrode.Nanoscale, 2018, 10(43): 20339–20346

[43]

Motola M, Zazpe R, Hromadko L, . Anodic TiO2 nanotube walls reconstructed: inner wall replaced by ALD TiO2 coating.Applied Surface Science, 2021, 549: 149306

[44]

Yin W J, Wen B, Zhou C, . Excess electrons in reduced rutile and anatase TiO2.Surface Science Reports, 2018, 73(2): 58–82

[45]

Yilleng M T, Gimba E C, Ndukwe G I, . Batch to continuous photocatalytic degradation of phenol using TiO2 and Au‒Pd nanoparticles supported on TiO2.Journal of Environmental Chemical Engineering, 2018, 6(5): 6382–6389

[46]

Cavalcante R P, Dantas R F, Bayarri B, . Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5% B: primary active species and intermediates.Applied Catalysis B: Environmental, 2016, 194: 111–122

[47]

Alcaide F, Genova R V, Álvarez G, . Platinum-catalyzed Nb-doped TiO2 and Nb-doped TiO2 nanotubes for hydrogen generation in proton exchange membrane water electrolyzers.International Journal of Hydrogen Energy, 2020, 45(40): 20605–20619

[48]

Zhang X, Yan P, Zhao B, . Selective hydrodeoxygenation of guaiacol to phenolics by Ni/anatase TiO2 catalyst formed by cross-surface migration of Ni and TiO2.ACS Catalysis, 2019, 9(4): 3551–3563

[49]

Li X, Tao J, Wang X, . Networks of high performance triboelectric nanogenerators based on liquid‒solid interface contact electrification for harvesting low-frequency blue energy.Advanced Energy Materials, 2018, 8(21): 1800705

[50]

Xia X, Peng S, Bao Y, . Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation.Journal of Power Sources, 2018, 376: 11–17

[51]

Zhu W, Xia Z, Shi B, . Water-triggered conversion of Cs4PbBr6@TiO2 into Cs4PbBr6/CsPbBr3@TiO2 three-phase heterojunction for enhanced visible-light-driven photocatalytic degradation of organic pollutants.Materials Today Chemistry, 2022, 24: 100880

[52]

Wang Y, Xiao J, Zhu H, . Structural phase transition in monolayer MoTe2 driven by electrostatic doping.Nature, 2017, 550(7677): 487–491

[53]

Wu G, Wang X, Chen Y, . MoTe2 p–n homojunctions defined by ferroelectric polarization.Advanced Materials, 2020, 32(16): 1907937

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6854KB)

Supplementary files

FMS-24686-OF-Mj_suppl_1

472

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/