A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight

Jie Meng, Hongmei Liu, Sainan Zhang, Baogui Ye, Min Feng, Daoai Wang

PDF(6854 KB)
PDF(6854 KB)
Front. Mater. Sci. ›› 2024, Vol. 18 ›› Issue (2) : 240686. DOI: 10.1007/s11706-024-0686-8
RESEARCH ARTICLE

A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight

Author information +
History +

Abstract

The solar-to-hydrogen conversion using the photoelectrochemical (PEC) method is a practical approach to producing clean energy. However, it relies on the availability of photocatalyst materials. In this work, a novel photocatalyst comprising molybdenum telluride quantum dots (MoTe2 QDs)-modified titanium dioxide nanorods (TiO2 NRs) was prepared for the enhancement of the PEC water splitting performance after combination with a Al2O3 layer using the atomic layer deposition (ALD) technique. MoTe2 QDs were initially prepared, and then they were loaded onto TiO2 NRs using a warm water bath-based heating method. After a layer of Al2O3 was deposited onto resulted TiO2 NRs/MoTe2 QDs, the composite TiO2 NRs/MoTe2 QDs/Al2O3 was finally obtained. Under simulated sunlight (100 mW·cm−2), such a composite exhibited a maximum photocurrent density of 2.25 mA·cm−2 at 1.23 V (versus RHE) and an incident photon-to-electron conversion efficiency of 69.88% at 380 nm, which are 4.33 and 6.66 times those of pure TiO2 NRs, respectively. Therefore, the composite photocatalyst fabricated in this work may have promising application in the field of PEC water splitting, solar cells and other photocatalytic devices.

Keywords

MoTe2 quantum dot / TiO2 nanorod / Al2O3 / atomic layer deposition / photoelectrochemistry

Cite this article

Download citation ▾
Jie Meng, Hongmei Liu, Sainan Zhang, Baogui Ye, Min Feng, Daoai Wang. A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight. Front. Mater. Sci., 2024, 18(2): 240686 https://doi.org/10.1007/s11706-024-0686-8

References

[1]
Naldoni A, Altomare M, Zoppellaro G, . Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production.ACS Catalysis, 2019, 9(1): 345–364
CrossRef Google scholar
[2]
Basavarajappa P S, Patil S B, Ganganagappa N, . Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis.International Journal of Hydrogen Energy, 2020, 45(13): 7764–7778
CrossRef Google scholar
[3]
Kaewkam P, Kanchanapaetnukul A, Khamyan J, . UV-assisted TiO2 photocatalytic degradation of virgin LDPE films: effect of UV-A, UV-C, and TiO2.Journal of Environmental Chemical Engineering, 2022, 10(4): 108131
CrossRef Google scholar
[4]
Wang B, Shen S, Mao S S . Black TiO2 for solar hydrogen conversion.Journal of Materiomics, 2017, 3(2): 96–111
CrossRef Google scholar
[5]
Jiao Z, Shang M, Liu J, . The charge transfer mechanism of Bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”.Nano Energy, 2017, 31: 96–104
CrossRef Google scholar
[6]
Peng J, Zhang L, Liu Y, . New cambered-surface based drip generator: a drop of water generates 50 µA current without pre-charging.Nano Energy, 2022, 102: 107694
CrossRef Google scholar
[7]
Kameya Y, Torii K, Hirai S, . Photocatalytic soot oxidation on TiO2 microstructured substrate.Chemical Engineering Journal, 2017, 327: 831–837
CrossRef Google scholar
[8]
Kumari M L A, Devi L G, Maia G, . Mechanochemical synthesis of ternary heterojunctions TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 for effective charge separation in semiconductor photocatalysis: A comparative study.Environmental Research, 2022, 203: 111841
CrossRef Google scholar
[9]
Zhang X, Xiao Y, Cao S, . Ternary TiO2@Bi2O3@TiO2 hollow photocatalyst drives robust visible-light photocatalytic performance and excellent recyclability.Journal of Cleaner Production, 2022, 352: 131560
CrossRef Google scholar
[10]
Justh N, Mikula G J, Bakos L P, . Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition.Carbon, 2019, 147: 476–482
CrossRef Google scholar
[11]
Yao L, Wei D, Ni Y, . Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: highly efficient visible light-induced H2-generation.Nano Energy, 2016, 26: 248–256
CrossRef Google scholar
[12]
Maki Y, Ide Y, Okada T . Water-floatable organosilica particles for TiO2 photocatalysis.Chemical Engineering Journal, 2016, 299: 367–372
CrossRef Google scholar
[13]
Wang Y, Liu J, Ozaki Y, . Effect of TiO2 on altering direction of interfacial charge transfer in a TiO2‒Ag‒MPY‒FePc system by SERS.Angewandte Chemie International Edition, 2019, 58(24): 8172–8176
CrossRef Google scholar
[14]
Wang Q, Huang J, Sun H, . MoS2 quantum dots@TiO2 nanotube arrays: an extended-spectrum-driven photocatalyst for solar hydrogen evolution.ChemSusChem, 2018, 11(10): 1708–1721
CrossRef Google scholar
[15]
Lee M D, Lee G J, Nam I, . Exploring the effect of cation vacancies in TiO2: lithiation behavior of n-type and p-type TiO2.ACS Applied Materials & Interfaces, 2022, 14(5): 6560–6569
CrossRef Google scholar
[16]
Ahmad W, Khan A, Ali N, . Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres.Environmental Science and Pollution Research International, 2021, 28(7): 8074–8087
CrossRef Google scholar
[17]
Cleary O, Purcell-Milton F, Vandekerckhove A, . Chiral and luminescent TiO2 nanoparticles.Advanced Optical Materials, 2017, 5(16): 1601000
CrossRef Google scholar
[18]
Yan J, Wu H, Chen H, . Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting.Applied Catalysis B: Environmental, 2016, 191: 130–137
CrossRef Google scholar
[19]
Hirai T, Suzuki K, Komasawa I . Preparation and photocatalytic properties of composite CdS nanoparticles–titanium dioxide particles.Journal of Colloid and Interface Science, 2001, 244(2): 262–265
CrossRef Google scholar
[20]
Jeong I, Park Y H, Bae S, . Solution-processed ultrathin TiO2 compact layer hybridized with mesoporous TiO2 for high-performance perovskite solar cells.ACS Applied Materials & Interfaces, 2017, 9(42): 36865–36874
CrossRef Google scholar
[21]
Palmolahti L, Ali-Löytty H, Hannula M, . Pinhole-resistant nanocrystalline rutile TiO2 photoelectrode coatings.Acta Materialia, 2022, 239: 118257
CrossRef Google scholar
[22]
Chen W, Liang R, Wang J, . Enhanced photoresponsivity and hole mobility of MoTe2 phototransistors by using an Al2O3 high-κ gate dielectric.Science Bulletin, 2018, 63(15): 997–1005
CrossRef Google scholar
[23]
Valero-Romero M J, Santaclara J G, Oar-Arteta L, . Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis.Chemical Engineering Journal, 2019, 360: 75–88
CrossRef Google scholar
[24]
Sung J H, Heo H, Si S, . Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy.Nature Nanotechnology, 2017, 12(11): 1064–1070
CrossRef Google scholar
[25]
Konstantinova E, Minnekhanov A, Beltiukov A, . Unveiling point defects in titania mesocrystals: a combined EPR and XPS study.New Journal of Chemistry, 2018, 42(18): 15184–15189
CrossRef Google scholar
[26]
Temperton R H, Gibson A, O’Shea J N . In situ XPS analysis of the atomic layer deposition of aluminium oxide on titanium dioxide.Physical Chemistry Chemical Physics, 2019, 21(3): 1393–1398
CrossRef Google scholar
[27]
Chen J, He J, Yin Z, . One-pot synthesis of porous TiO2/BiOI adsorbent with high removal efficiency and excellent recyclability towards tetracyclines.Ceramics International, 2023, 49(13): 22139–22148
CrossRef Google scholar
[28]
Huo C, Wang T, Yin Z, . Tuning the thickness of 3D inverse opal ZnO/ZnS heterojunction promotes excellent photocatalytic hydrogen evolution.Ceramics International, 2023, 49(9): 14673–14680
CrossRef Google scholar
[29]
Zhang B, Wang D, Jiao S, . TiO2-X mesoporous nanospheres/BiOI nanosheets S-scheme heterostructure for high efficiency, stable and unbiased photocatalytic hydrogen production.Chemical Engineering Journal, 2022, 446: 137138
CrossRef Google scholar
[30]
Han G H, Keum D H, Zhao J, . Absorption dichroism of monolayer 1T′-MoTe2 in visible range.2D Materials, 2016, 3(3): 031010
CrossRef Google scholar
[31]
Gao J, Lian X, Chen Z, . Multifunctional MoTe2 Fe-FET enabled by ferroelectric polarization-assisted charge trapping.Advanced Functional Materials, 2022, 32(17): 2110415
CrossRef Google scholar
[32]
Synowiec M, Micek-Ilnicka A, Szczepanowicz K, . Functionalized structures based on shape-controlled TiO2.Applied Surface Science, 2019, 473: 603–613
CrossRef Google scholar
[33]
Lee Y, Ling N, Kim D, . Heterophase boundary for active hydrogen evolution in MoTe2.Advanced Functional Materials, 2022, 32(10): 2105675
CrossRef Google scholar
[34]
Leimkuhl D P, Donley C L, Jackson M N . Controlling nucleation sites for metal oxide film growth on glassy carbon via electrochemical preoxidation.ACS Applied Materials & Interfaces, 2024, 16(2): 2868–2876
CrossRef Google scholar
[35]
Chen L, Connell J G, Nie A, . Lithium metal protected by atomic layer deposition metal oxide for high performance anodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(24): 12297–12309
CrossRef Google scholar
[36]
Nam Y, Lim J H, Ko K C, . Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(23): 13833–13859
CrossRef Google scholar
[37]
Vequizo J J M, Matsunaga H, Ishiku T, . Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders.ACS Catalysis, 2017, 7(4): 2644–2651
CrossRef Google scholar
[38]
Guo Q, Ma Z, Zhou C, . Single molecule photocatalysis on TiO2 surfaces.Chemical Reviews, 2019, 119(20): 11020–11041
CrossRef Google scholar
[39]
Huang Y, Shang Q, Wang D, . Effects of electronic structure and interfacial interaction between metal-quinoline complexes and TiO2 on visible light photocatalytic activity of TiO2.Applied Catalysis B: Environmental, 2016, 187: 59–66
CrossRef Google scholar
[40]
Guo Q, Zhou C, Ma Z, . Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges.Advanced Materials, 2019, 31(50): 1901997
CrossRef Google scholar
[41]
Ma X, Wang C, Wu F, . TiO2 nanomaterials in photoelectrochemical and electrochemiluminescent biosensing.Topics in Current Chemistry, 2020, 378(2): 28
CrossRef Google scholar
[42]
Jiao W, Zhu J, Ling Y, . Photoelectrochemical properties of MOF-induced surface-modified TiO2 photoelectrode.Nanoscale, 2018, 10(43): 20339–20346
CrossRef Google scholar
[43]
Motola M, Zazpe R, Hromadko L, . Anodic TiO2 nanotube walls reconstructed: inner wall replaced by ALD TiO2 coating.Applied Surface Science, 2021, 549: 149306
CrossRef Google scholar
[44]
Yin W J, Wen B, Zhou C, . Excess electrons in reduced rutile and anatase TiO2.Surface Science Reports, 2018, 73(2): 58–82
CrossRef Google scholar
[45]
Yilleng M T, Gimba E C, Ndukwe G I, . Batch to continuous photocatalytic degradation of phenol using TiO2 and Au‒Pd nanoparticles supported on TiO2.Journal of Environmental Chemical Engineering, 2018, 6(5): 6382–6389
CrossRef Google scholar
[46]
Cavalcante R P, Dantas R F, Bayarri B, . Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5% B: primary active species and intermediates.Applied Catalysis B: Environmental, 2016, 194: 111–122
CrossRef Google scholar
[47]
Alcaide F, Genova R V, Álvarez G, . Platinum-catalyzed Nb-doped TiO2 and Nb-doped TiO2 nanotubes for hydrogen generation in proton exchange membrane water electrolyzers.International Journal of Hydrogen Energy, 2020, 45(40): 20605–20619
CrossRef Google scholar
[48]
Zhang X, Yan P, Zhao B, . Selective hydrodeoxygenation of guaiacol to phenolics by Ni/anatase TiO2 catalyst formed by cross-surface migration of Ni and TiO2.ACS Catalysis, 2019, 9(4): 3551–3563
CrossRef Google scholar
[49]
Li X, Tao J, Wang X, . Networks of high performance triboelectric nanogenerators based on liquid‒solid interface contact electrification for harvesting low-frequency blue energy.Advanced Energy Materials, 2018, 8(21): 1800705
CrossRef Google scholar
[50]
Xia X, Peng S, Bao Y, . Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation.Journal of Power Sources, 2018, 376: 11–17
CrossRef Google scholar
[51]
Zhu W, Xia Z, Shi B, . Water-triggered conversion of Cs4PbBr6@TiO2 into Cs4PbBr6/CsPbBr3@TiO2 three-phase heterojunction for enhanced visible-light-driven photocatalytic degradation of organic pollutants.Materials Today Chemistry, 2022, 24: 100880
CrossRef Google scholar
[52]
Wang Y, Xiao J, Zhu H, . Structural phase transition in monolayer MoTe2 driven by electrostatic doping.Nature, 2017, 550(7677): 487–491
CrossRef Google scholar
[53]
Wu G, Wang X, Chen Y, . MoTe2 p–n homojunctions defined by ferroelectric polarization.Advanced Materials, 2020, 32(16): 1907937
CrossRef Google scholar

Declaration of competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant Nos. 52205230 and U21A2046), the Key Research and Development Program in Shandong Province (No. SYS202203), the Program for Taishan Scholars of Shandong Province (No. TS20190965), the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDBS-ZRKJZ-TLC010), the Western Light Project of CAS (xbzg-zdsys-202118), the Major Science and Technology Projects in Gansu Province (No. 22ZD6GA002), and the Major Program of the Lanzhou Institute of Chemical Physics, CAS (No. ZYFZFX-5) for providing financial support.

Online appendix

Electronic supplementary material (ESM) can be found in the online version at https://doi.org/10.1007/s11706-024-0686-8 and https://journal.hep.com.cn/foms/EN/10.1007/s11706-024-0686-8 that includes Figs. S1–S5.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(6854 KB)

Accesses

Citations

Detail

Sections
Recommended

/