Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer
Yanzhuang Jiang, Qian Yang, Lin Zhang, Liyan Yu, Na Song, Lina Sui, Qingli Wei, Lifeng Dong
Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer
MIL-101(Cr) has a special pore cage structure that provides broad channels for the transport of water molecules in the reverse osmosis (RO) water separation and purification. Combining MIL-101(Cr) with Fe3O4 nanoparticles forms a water transport intermediate layer between the polyamide separation membrane and the polysulfone support base under an external magnetic field. MIL-101(Cr) is stable in both water and air while resistant to high temperature. With the introduction of 0.003 wt.% MIL-101(Cr)/Fe3O4, the water flux increased by 93.31% to 6.65 L·m−2·h−1·bar−1 without sacrificing the NaCl rejection of 95.88%. The MIL-101(Cr)/Fe3O4 multilayer membrane also demonstrated certain anti-pollution properties and excellent stability in a 72-h test. Therefore, the construction of a MIL-101(Cr)/Fe3O4 interlayer can effectively improve the permeability of RO composite membranes.
reverse osmosis / thin film nanocomposite / MIL-101(Cr)/Fe3O4 / multi-layer
[1] |
Jeong B H, Hoek E M V, Yan Y,
CrossRef
Google scholar
|
[2] |
Yin J, Kim E S, Yang J, ,
|
[3] |
Song X X, Qi S R, Tang C Y Y,
CrossRef
Google scholar
|
[4] |
Ma W, Soroush A, Luong T V A,
CrossRef
Google scholar
|
[5] |
Goh P S, Wong K C, Wong T W,
CrossRef
Google scholar
|
[6] |
Wu M Y, Yuan J Q, Wu H,
CrossRef
Google scholar
|
[7] |
Lee T H, Oh J Y, Hong S P,
CrossRef
Google scholar
|
[8] |
Wang Z Y, Wang Z X, Lin S H,
CrossRef
Google scholar
|
[9] |
Pang R Z, Zhang K S . Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection.Journal of Colloid and Interface Science, 2018, 510: 127–132
CrossRef
Google scholar
|
[10] |
Tawalbeh M, Aljaghoub H, Qasim M,
CrossRef
Google scholar
|
[11] |
Park S J, Ahn W G, Choi W,
CrossRef
Google scholar
|
[12] |
Yang Z, Huang X Y, Ma X H,
CrossRef
Google scholar
|
[13] |
Zhang R J, Yu S L, Shi W X,
CrossRef
Google scholar
|
[14] |
Wang J Q, Guo H, Shi X N,
CrossRef
Google scholar
|
[15] |
Yang Q, Zhang L, Xie X,
CrossRef
Google scholar
|
[16] |
Zhao Y L, Dai L, Zhang Q F,
CrossRef
Google scholar
|
[17] |
Wu M B, Lv Y, Yang H C,
CrossRef
Google scholar
|
[18] |
Shi M Q, Wang Z, Zhao S,
CrossRef
Google scholar
|
[19] |
Al Amery N, Abid H R, Al-Saadi S,
CrossRef
Google scholar
|
[20] |
Duan H, Lu J, Li S,
CrossRef
Google scholar
|
[21] |
Wang Q, Liu Y, Shu A L, ,
|
[22] |
Leng Z P, Lu X Q. Investigation on CO2 adsorption and separation over N2 in functionalized metal–organic framework. Journal of Liaocheng University (Natural Science Edition), 2022, 35(2): 27–33 (in Chinese)
|
[23] |
Xu C W, Shao F F, Yi Z,
CrossRef
Google scholar
|
[24] |
Liu H H, Zhao B C, Zhang C J. Preparation and SERS properties of MOF/Au composite nanoparticles. Journal of Liaocheng University (Natural Science Edition), 2020, 33(1): 63–69, 91 (in Chinese)
|
[25] |
Kou X Y, Sun W W . Metal–organic frameworks loaded ammonia borane: improvement on its dehydrogenation properties.Journal of Liaocheng University (Natural Science Edition), 2017, 30(1): 56–60
|
[26] |
Wang F. Solvent-directed synthesis of two H-bonded metal–organic frameworks. Journal of Liaocheng University (Natural Science Edition), 2024, doi:10.19728/j.issn1672-6634.2024040014 (in Chinese)
|
[27] |
Tirado-Guizar A, Gonzalez-Gomez W, Pina-Luis G,
CrossRef
Google scholar
|
[28] |
Wang Z Y, Zheng Y Y, Li Y C,
CrossRef
Google scholar
|
[29] |
Bromberg L, Diao Y, Wu H M,
CrossRef
Google scholar
|
[30] |
Jeazet H B T, Staudt C, Janiak C . A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone.Chemical Communications, 2012, 48(15): 2140–2142
CrossRef
Google scholar
|
[31] |
Song N, Shan W, Xie X,
CrossRef
Google scholar
|
[32] |
Xu X Y, Xu J G, Duan Q H,
|
[33] |
Dhakshinamoorthy A, Santiago-Portillo A, Asiri A M,
CrossRef
Google scholar
|
[34] |
Maksimchuk N V, Timofeeva M N, Melgunov M S,
CrossRef
Google scholar
|
[35] |
Thanh H T M, Tu N T T, Hung N P,
CrossRef
Google scholar
|
[36] |
Mostafavi M M, Movahedi F . Fe3O4/MIL-101(Fe) nanocomposite as an efficient and recyclable catalyst for Strecker reaction.Applied Organometallic Chemistry, 2018, 32(4): e4217
CrossRef
Google scholar
|
[37] |
Wang T, Zhao P, Lu N,
CrossRef
Google scholar
|
[38] |
Dave P N, Chopda L V . Application of iron oxide nanomaterials for the removal of heavy metals.Journal of Nanotechnology, 2014, 2014: 398569
CrossRef
Google scholar
|
[39] |
Lu Y K, Yue C L, Liu B X,
CrossRef
Google scholar
|
[40] |
Fernandez L, Sanchez M, Carmona F J,
CrossRef
Google scholar
|
[41] |
Zhu J Y, Hou J W, Yuan S S,
CrossRef
Google scholar
|
[42] |
Akther N, Sanahuja-Embuena V, Gorecki R,
CrossRef
Google scholar
|
[43] |
Luo Q Z, Li J J, Yun P F,
CrossRef
Google scholar
|
[44] |
Bhoje R, Ghosh A K, Nemade P R . Development of performance-enhanced graphene oxide-based nanostructured thin-film composite seawater reverse osmosis membranes.ACS Applied Polymer Materials, 2022, 4(3): 2149–2159
CrossRef
Google scholar
|
[45] |
Lee J, Jang J H, Chae H R,
CrossRef
Google scholar
|
[46] |
Qi H G, Peng Y, Lv X H,
CrossRef
Google scholar
|
[47] |
Huang H M, Wang X Y, Deng Y A,
CrossRef
Google scholar
|
[48] |
Aljundi I H . Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles.Desalination, 2017, 420: 12–20
CrossRef
Google scholar
|
[49] |
Mehrabi M, Vatanpour V, Teber O O,
CrossRef
Google scholar
|
[50] |
Bian S J, Wang Y Y, Xiao F K,
CrossRef
Google scholar
|
[51] |
Abedi F, Emadzadeh D, Dube M A,
CrossRef
Google scholar
|
[52] |
Wang X, Ma H, Chu B,
CrossRef
Google scholar
|
/
〈 | 〉 |