Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer

Yanzhuang Jiang , Qian Yang , Lin Zhang , Liyan Yu , Na Song , Lina Sui , Qingli Wei , Lifeng Dong

Front. Mater. Sci. ›› 2024, Vol. 18 ›› Issue (3) : 240692

PDF (2240KB)
Front. Mater. Sci. ›› 2024, Vol. 18 ›› Issue (3) : 240692 DOI: 10.1007/s11706-024-0692-x
RESEARCH ARTICLE

Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer

Author information +
History +
PDF (2240KB)

Abstract

MIL-101(Cr) has a special pore cage structure that provides broad channels for the transport of water molecules in the reverse osmosis (RO) water separation and purification. Combining MIL-101(Cr) with Fe3O4 nanoparticles forms a water transport intermediate layer between the polyamide separation membrane and the polysulfone support base under an external magnetic field. MIL-101(Cr) is stable in both water and air while resistant to high temperature. With the introduction of 0.003 wt.% MIL-101(Cr)/Fe3O4, the water flux increased by 93.31% to 6.65 L·m−2·h−1·bar−1 without sacrificing the NaCl rejection of 95.88%. The MIL-101(Cr)/Fe3O4 multilayer membrane also demonstrated certain anti-pollution properties and excellent stability in a 72-h test. Therefore, the construction of a MIL-101(Cr)/Fe3O4 interlayer can effectively improve the permeability of RO composite membranes.

Graphical abstract

Keywords

reverse osmosis / thin film nanocomposite / MIL-101(Cr)/Fe 3O 4 / multi-layer

Cite this article

Download citation ▾
Yanzhuang Jiang, Qian Yang, Lin Zhang, Liyan Yu, Na Song, Lina Sui, Qingli Wei, Lifeng Dong. Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer. Front. Mater. Sci., 2024, 18(3): 240692 DOI:10.1007/s11706-024-0692-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeong B H, Hoek E M V, Yan Y, . Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes.Journal of Membrane Science, 2007, 294(1−2): 1–7

[2]

Yin J, Kim E S, Yang J, , . Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. Journal of Membrane Science, 2012, 423−424: 238−246

[3]

Song X X, Qi S R, Tang C Y Y, . Ultra-thin, multi-layered polyamide membranes: synthesis and characterization.Journal of Membrane Science, 2017, 540: 10–18

[4]

Ma W, Soroush A, Luong T V A, . Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance.Journal of Colloid and Interface Science, 2017, 501: 330–340

[5]

Goh P S, Wong K C, Wong T W, . Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes.Frontiers of Chemical Science and Engineering, 2021, 16(5): 564–591

[6]

Wu M Y, Yuan J Q, Wu H, . Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability.Journal of Membrane Science, 2019, 576: 131–141

[7]

Lee T H, Oh J Y, Hong S P, . ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: importance of particle deposition.Journal of Membrane Science, 2019, 570: 23–33

[8]

Wang Z Y, Wang Z X, Lin S H, . Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination.Nature Communications, 2018, 9: 2004

[9]

Pang R Z, Zhang K S . Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection.Journal of Colloid and Interface Science, 2018, 510: 127–132

[10]

Tawalbeh M, Aljaghoub H, Qasim M, . Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements and developments.Frontiers of Chemical Science and Engineering, 2023, 17(12): 1837–1865

[11]

Park S J, Ahn W G, Choi W, . A facile and scalable fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(14): 6648–6655

[12]

Yang Z, Huang X Y, Ma X H, . Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification.Journal of Membrane Science, 2019, 570: 314–321

[13]

Zhang R J, Yu S L, Shi W X, . Support membrane pore blockage (SMPB): an important phenomenon during the fabrication of thin film composite membrane via interfacial polymerization.Separation and Purification Technology, 2019, 215: 670–680

[14]

Wang J Q, Guo H, Shi X N, . Fast polydopamine coating on reverse osmosis membrane: process investigation and membrane performance study.Journal of Colloid and Interface Science, 2019, 535: 239–244

[15]

Yang Q, Zhang L, Xie X, . Self-healing polyamide reverse osmosis membranes with temperature-responsive intelligent nanocontainers for chlorine resistance.Frontiers of Chemical Science and Engineering, 2023, 17(9): 1183–1195

[16]

Zhao Y L, Dai L, Zhang Q F, . Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method.Journal of Colloid and Interface Science, 2019, 541: 434–443

[17]

Wu M B, Lv Y, Yang H C, . Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances.Journal of Membrane Science, 2016, 515: 238–244

[18]

Shi M Q, Wang Z, Zhao S, . A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support.Journal of Membrane Science, 2018, 555: 157–168

[19]

Al Amery N, Abid H R, Al-Saadi S, . Facile directions for synthesis, modification and activation of MOFs.Materials Today: Chemistry, 2020, 17: 100343

[20]

Duan H, Lu J, Li S, . Formation of conductive MOF@metal oxide micro-nano composites via facile self-assembly for high-performance supercapacitors.Materials Today: Chemistry, 2022, 26: 101024

[21]

Wang Q, Liu Y, Shu A L, , . Functionalized carbon nitride/copper-based MOF nanocomposites modified electrode for electrochemical detection of glyphosate. Journal of Liaocheng University (Natural Science Edition), 2024, 37(3): 22–33 (in Chinese)

[22]

Leng Z P, Lu X Q. Investigation on CO2 adsorption and separation over N2 in functionalized metal–organic framework. Journal of Liaocheng University (Natural Science Edition), 2022, 35(2): 27–33 (in Chinese)

[23]

Xu C W, Shao F F, Yi Z, . Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method.Separation and Purification Technology, 2019, 223: 178–185

[24]

Liu H H, Zhao B C, Zhang C J. Preparation and SERS properties of MOF/Au composite nanoparticles. Journal of Liaocheng University (Natural Science Edition), 2020, 33(1): 63–69, 91 (in Chinese)

[25]

Kou X Y, Sun W W . Metal–organic frameworks loaded ammonia borane: improvement on its dehydrogenation properties.Journal of Liaocheng University (Natural Science Edition), 2017, 30(1): 56–60

[26]

Wang F. Solvent-directed synthesis of two H-bonded metal–organic frameworks. Journal of Liaocheng University (Natural Science Edition), 2024, doi:10.19728/j.issn1672-6634.2024040014 (in Chinese)

[27]

Tirado-Guizar A, Gonzalez-Gomez W, Pina-Luis G, . Anthracene removal from water samples using a composite based on metal–organic-frameworks (MIL-101) and magnetic nanoparticles (Fe3O4).Nanotechnology, 2020, 31(19): 195707

[28]

Wang Z Y, Zheng Y Y, Li Y C, . Temperature-dependence polarization characteristics of graphene/Fe3O4/PVDF composite dielectric materials.Journal of Liaocheng University (Natural Science Edition), 2019, 32(5): 58–63

[29]

Bromberg L, Diao Y, Wu H M, . Chromium(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties.Chemistry of Materials, 2012, 24(9): 1664–1675

[30]

Jeazet H B T, Staudt C, Janiak C . A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone.Chemical Communications, 2012, 48(15): 2140–2142

[31]

Song N, Shan W, Xie X, . Design and construct alkali-responsive nanocontainers for self-healing thin-film composite reverse osmosis membranes.Desalination, 2022, 535: 115823

[32]

Xu X Y, Xu J G, Duan Q H, . Interaction of calcium folinate with bovine serum albumin.Journal of Liaocheng University (Natural Science Edition), 2010, 23(3): 44–49

[33]

Dhakshinamoorthy A, Santiago-Portillo A, Asiri A M, . Engineering UiO-66 metal organic framework for heterogeneous catalysis.ChemCatChem, 2019, 11(3): 899–923

[34]

Maksimchuk N V, Timofeeva M N, Melgunov M S, . Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates.Journal of Catalysis, 2008, 257(2): 315–323

[35]

Thanh H T M, Tu N T T, Hung N P, . Magnetic iron oxide modified MIL-101 composite as an efficient visible-light-driven photocatalyst for methylene blue degradation.Journal of Porous Materials, 2019, 26(6): 1699–1712

[36]

Mostafavi M M, Movahedi F . Fe3O4/MIL-101(Fe) nanocomposite as an efficient and recyclable catalyst for Strecker reaction.Applied Organometallic Chemistry, 2018, 32(4): e4217

[37]

Wang T, Zhao P, Lu N, . Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution.Chemical Engineering Journal, 2016, 295: 403–413

[38]

Dave P N, Chopda L V . Application of iron oxide nanomaterials for the removal of heavy metals.Journal of Nanotechnology, 2014, 2014: 398569

[39]

Lu Y K, Yue C L, Liu B X, . The encapsulation of POM clusters into MIL-101(Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization.Microporous and Mesoporous Materials, 2021, 311: 110694

[40]

Fernandez L, Sanchez M, Carmona F J, . Analysis of the grafting process of PVP on a silicon surface by AFM and contact angle.Langmuir, 2011, 27(18): 11636–11649

[41]

Zhu J Y, Hou J W, Yuan S S, . MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(27): 16313–16322

[42]

Akther N, Sanahuja-Embuena V, Gorecki R, . Employing the synergistic effect between aquaporin nanostructures and graphene oxide for enhanced separation performance of thin-film nanocomposite forward osmosis membranes.Desalination, 2021, 498: 114795

[43]

Luo Q Z, Li J J, Yun P F, . Thin-film composite membrane for desalination containing a sulfonated UiO-66 material.Journal of Materials Science, 2023, 58(7): 3134–3146

[44]

Bhoje R, Ghosh A K, Nemade P R . Development of performance-enhanced graphene oxide-based nanostructured thin-film composite seawater reverse osmosis membranes.ACS Applied Polymer Materials, 2022, 4(3): 2149–2159

[45]

Lee J, Jang J H, Chae H R, . A facile route to enhance the water flux of a thin-film composite reverse osmosis membrane: incorporating thickness-controlled graphene oxide into a highly porous support layer.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(44): 22053–22060

[46]

Qi H G, Peng Y, Lv X H, . Synergetic effects of COFs interlayer regulation and surface modification on thin-film nanocomposite reverse osmosis membrane with high performance.Desalination, 2023, 548: 116265

[47]

Huang H M, Wang X Y, Deng Y A, . Highly permeable and durable mixed-matrix reverse osmosis membranes filled with cellulose nanofibers-hybridized Ti3C2Tx.Desalination, 2023, 551: 116412

[48]

Aljundi I H . Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles.Desalination, 2017, 420: 12–20

[49]

Mehrabi M, Vatanpour V, Teber O O, . Enhanced negative charge of polyamide thin-film nanocomposite reverse osmosis membrane modified with MIL-101(Cr)-Pyz-SO3H.Journal of Membrane Science, 2022, 664: 121066

[50]

Bian S J, Wang Y Y, Xiao F K, . Fabrication of polyamide thin-film nanocomposite reverse osmosis membrane with improved permeability and antibacterial performances using silver immobilized hollow polymer nanospheres.Desalination, 2022, 539: 115953

[51]

Abedi F, Emadzadeh D, Dube M A, . Modifying cellulose nanocrystal dispersibility to address the permeability/selectivity trade-off of thin-film nanocomposite reverse osmosis membranes.Desalination, 2022, 538: 115900

[52]

Wang X, Ma H, Chu B, . Thin-film nanofibrous composite reverse osmosis membranes for desalination.Desalination, 2017, 420: 91–98

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2240KB)

507

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/