Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing

Mingle Guan, Zheng Zhang, Weihua Zhu, Yuhang Gao, Sumei Wang, Xin Li

PDF(2008 KB)
PDF(2008 KB)
Front. Mater. Sci. ›› 2024, Vol. 18 ›› Issue (3) : 240696. DOI: 10.1007/s11706-024-0696-6
RESEARCH ARTICLE

Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing

Author information +
History +

Abstract

Flexible sensors with high sensitivity and stability are essential components of electronic skin, applicable to detecting human movement, monitoring physiological health, preventing diseases, and other domains. In this study, we utilized a straightforward and efficient femtosecond laser direct writing technique using phenolic resin (PR) as a carbon precursor to produce high-quality laser-induced graphene (LIG) characterized by high crystallinity and low defect density. The fabricated LIG underwent comprehensive characterization using SEM, Raman spectroscopy, XPS, and XRD. Subsequently, we developed strain sensors with a hexagonal honeycomb pattern and temperature sensors with a line pattern based on PR-derived LIG. The strain sensor exhibited an outstanding measurement factor of 4.16 × 104 with a rapid response time of 32 ms, which is applied to detect various movements like finger movements and human pulse. Meanwhile, the temperature sensor demonstrated a sensitivity of 1.49%/°C with a linear response range of 20–50 °C. The PR-derived LIG shows promising potential for applications in human physiological health monitoring and other advanced wearable technologies.

Graphical abstract

Keywords

femtosecond laser / laser-induced graphene / flexible sensor / high sensitivity

Cite this article

Download citation ▾
Mingle Guan, Zheng Zhang, Weihua Zhu, Yuhang Gao, Sumei Wang, Xin Li. Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing. Front. Mater. Sci., 2024, 18(3): 240696 https://doi.org/10.1007/s11706-024-0696-6

References

[1]
Ershad F, Thukral A, Yue J, . Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment.Nature Communications, 2020, 11(1): 3823
CrossRef Google scholar
[2]
Mao L, Pan T, Lin L, . Simultaneously enhancing sensitivity and operation range of flexible pressure sensor by constructing a magnetic-guided microstructure in laser-induced graphene composite.Chemical Engineering Journal, 2024, 481: 148639
CrossRef Google scholar
[3]
Kim D S, Lee Y H, Kim J W, . A stretchable array of high-performance electrochromic devices for displaying skin-attached multi-sensor signals.Chemical Engineering Journal, 2022, 429: 132289
CrossRef Google scholar
[4]
Salvatore G A, Sülzle J, Dalla Valle F, . Biodegradable and highly deformable temperature sensors for the internet of things.Advanced Functional Materials, 2017, 27(35): 1702390
CrossRef Google scholar
[5]
Kim D H, Lu N, Ma R, . Epidermal electronics.Science, 2011, 333(6044): 838–843
CrossRef Google scholar
[6]
Lee G, Son J H, Lee S, . Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition.Advanced Science, 2021, 8(9): 2002606
CrossRef Google scholar
[7]
Yu R H, Wang C X, Du X H, . In-situ forming ultra-mechanically sensitive materials for high-sensitivity stretchable fiber strain sensors.National Science Review, 2024, 11(6): nwae158
CrossRef Google scholar
[8]
Avinash K, Patolsky F . Laser-induced graphene structures: from synthesis and applications to future prospects.Materials Today, 2023, 70: 104–136
CrossRef Google scholar
[9]
Yao S, Ren P, Song R, . Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications.Advanced Materials, 2020, 32(15): 1902343
CrossRef Google scholar
[10]
Du Y, Zhang Q, Zhuo K, . Study on the performance of temperature-stabilised flexible strain sensors based on silver nanowires.Micro & Nano Letters, 2019, 14(2): 168–172
CrossRef Google scholar
[11]
Song R, Yao S, Liu Y, . Facile approach to fabricating stretchable organic transistors with laser-patterned Ag nanowire electrodes.ACS Applied Materials & Interfaces, 2020, 12(45): 50675–50683
CrossRef Google scholar
[12]
Miao Z Y, Yu R H, Bai X W, . Versatile graphene/polyelectrolyte aqueous dispersion for fiber-based wearable sensors and electroluminescent devices.Science China Materials, 2024, 67: 1915–1925
CrossRef Google scholar
[13]
Lynch P J, Ogilvie S P, Large M J, . Graphene-based printable conductors for cyclable strain sensors on elastomeric substrates.Carbon, 2020, 169: 25–31
CrossRef Google scholar
[14]
Li C, Yang S, Guo Y, . Flexible, multi-functional sensor based on all-carbon sensing medium with low coupling for ultrahigh-performance strain, temperature and humidity sensing.Chemical Engineering Journal, 2021, 426: 130364
CrossRef Google scholar
[15]
Huang H, Han L, Li J, . Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(20): 10291–10300
CrossRef Google scholar
[16]
Dauzon E, Lin Y, Faber H, . Stretchable and transparent conductive PEDOT: PSS-based electrodes for organic photovoltaics and strain sensors applications.Advanced Functional Materials, 2020, 30(28): 2001251
CrossRef Google scholar
[17]
Lin J, Peng Z W, Liu Y Y, . Laser-induced porous graphene films from commercial polymers.Nature Communications, 2014, 5: 5714
CrossRef Google scholar
[18]
Kulyk B, Silva B F R, Carvalho A F, . Laser-induced graphene from paper for mechanical sensing.ACS Applied Materials & Interfaces, 2021, 13(8): 10210–10221
CrossRef Google scholar
[19]
Behrent A, Griesche C, Sippel P, . Process‒property correlations in laser-induced graphene electrodes for electrochemical sensing.Mikrochimica Acta, 2021, 188: 159
CrossRef Google scholar
[20]
Zhu J, Liu S, Hu Z, . Laser-induced graphene non-enzymatic glucose sensors for on-body measurements.Biosensors & Bioelectronics, 2021, 193: 113606
CrossRef Google scholar
[21]
Li Y, Lei X, Guo D, . Laser-induced skin-like flexible pressure sensor for artificial intelligence speech recognition.ACS Applied Materials & Interfaces, 2024, 16(8): 10380–10388
CrossRef Google scholar
[22]
Thakur A K, Sengodu P, Jadhav A H, . Manganese carbonate/laser-induced graphene composite for glucose sensing.ACS Omega, 2024, 9(7): 7869–7880
CrossRef Google scholar
[23]
Liu H B, Xiang H C, Li Z J, . Flexible and degradable multimodal sensor fabricated by transferring laser-induced porous carbon on starch film.ACS Sustainable Chemistry & Engineering, 2020, 8(1): 527–533
CrossRef Google scholar
[24]
Le T S D, Park S, An J, . Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics.Advanced Functional Materials, 2019, 29(33): 1902771
CrossRef Google scholar
[25]
Hong Q, Zhu W H, Wang S M, . High-resolution femtosecond laser-induced carbon and Ag hybrid structure for bend sensing.ACS Omega, 2022, 7(46): 42256–42263
CrossRef Google scholar
[26]
Bai R J, Gao Y, Lu C, . Femtosecond laser micro-fabricated flexible sensor arrays for simultaneous mechanical and thermal stimuli detection.Measurement, 2021, 169: 108348
CrossRef Google scholar
[27]
Zhu W H, Wang M M, Zhang Z, . Controllable photoreduction of graphene oxide/gold composite using a shaped femtosecond laser for multifunctional sensors.ACS Applied Materials & Interfaces, 2023, 15(45): 52883–52892
CrossRef Google scholar
[28]
Jiang S, Park C S, Lee W B, . Photoreduction-insensitive GO/rGO patterning based on multistep femtosecond laser writing for implementing Fresnel zone plates.ACS Applied Nano Materials, 2021, 4(9): 9283–9292
CrossRef Google scholar
[29]
Claro P I C, Pinheiro T, Silvestre S L, . Sustainable carbon sources for green laser-induced graphene: a perspective on fundamental principles, applications, and challenges.Applied Physics Reviews, 2022, 9(4): 041305
CrossRef Google scholar
[30]
Ferrari A C, Meyer J C, Scardaci V, . Raman spectrum of graphene and graphene layers.Physical Review Letters, 2006, 97(18): 187401
CrossRef Google scholar
[31]
Zhu J, Huang X, Song W . Physical and chemical sensors on the basis of laser-induced graphene: mechanisms, applications, and perspectives.ACS Nano, 2021, 15(12): 18708–18741
CrossRef Google scholar
[32]
Zhang X W, Pan Y, Zheng Q, . Time dependence of piezoresistance for the conductor-filled polymer composites.Journal of Polymer Science Part B: Polymer Physics, 2000, 38(21): 2739–2749
CrossRef Google scholar
[33]
Chhetry A, Sharifuzzaman M, Yoon H, . MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor.ACS Applied Materials & Interfaces, 2019, 11(25): 22531–22542
CrossRef Google scholar
[34]
Chen X, Luo F, Yuan M, . A dual-functional graphene-based self-alarm health-monitoring e-skin.Advanced Functional Materials, 2019, 29(51): 1904706
CrossRef Google scholar
[35]
Liu Y, Li H, Zhang M . Wireless battery-free broad-band sensor for wearable multiple physiological measurement.ACS Applied Electronic Materials, 2021, 3(4): 1681–1690
CrossRef Google scholar
[36]
Li Q, Wu T, Zhao W, . Laser-induced corrugated graphene films for integrated multimodal sensors.ACS Applied Materials & Interfaces, 2021, 13(31): 37433–37444
CrossRef Google scholar
[37]
Liu W, Chen Q, Huang Y, . In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability.Carbon, 2022, 190: 245–254
CrossRef Google scholar
[38]
Liu W, Huang Y, Peng Y, . Stable wearable strain sensors on textiles by direct laser writing of graphene.ACS Applied Nano Materials, 2020, 3(1): 283–293
CrossRef Google scholar
[39]
Shirhatti V, Nuthalapati S, Kedambaimoole V, . Multifunctional graphene sensor ensemble as a smart biomonitoring fashion accessory.ACS Sensors, 2021, 6(12): 4325–4337
CrossRef Google scholar
[40]
Chhetry A, Sharma S, Barman S C, . Black phosphorus@laser-engraved graphene heterostructure-based temperature-strain hybridized sensor for electronic-skin applications.Advanced Functional Materials, 2021, 31(10): 2007661
CrossRef Google scholar
[41]
Chen X, Li R, Niu G, . Porous graphene foam composite-based dual-mode sensors for underwater temperature and subtle motion detection.Chemical Engineering Journal, 2022, 444: 136631
CrossRef Google scholar

Authors’ contributions

M.G. and Z.Z. performed writing of the manuscript, designing of figures, and preparation of the initial draft of the manuscript; W.Z. and Y.G. reviewed and edited the manuscript; S.W. and X.L. provided valuable guidance. All authors have read and agreed to the final version of this manuscript.

Declaration of competing interests

The authors declare that they have no competing interests relevant to the content of this article.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFB4600400) and the National Natural Science Foundation of China (Grant No. 52275401).

Online appendix

Electronic supplementary material (ESM) can be found in the online version at https://doi.org/10.1007/s11706-024-0696-6 and https://journal.hep.com.cn/foms/EN/10.1007/s11706-024-0696-6 that includes Figs. S1–S6.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2008 KB)

Accesses

Citations

Detail

Sections
Recommended

/