A review of inorganic particles synthesized through electrical discharge in different dielectric media: from devices, structures and components to applications
Yifan Liu, Guilu Qin, Liangjun Yin, Xian Jian, Xianglong Li
A review of inorganic particles synthesized through electrical discharge in different dielectric media: from devices, structures and components to applications
Size effects and compositions constitute new properties for inorganic particles in different application fields. The physical method has recently attracted more attention in the preparation of inorganic materials. Herein, a low-cost, eco-friendly, simple-operating, and time-saving technique, named electrical discharge, is reviewed in relation to developments from the nature of this technique in different dielectric media to the practical experience in controlling the main processing parameters, apparatuses, types of discharge, from the various structures and components to the wide applications. The development of the electrical discharge technique will play an important role in improving the technology to prepare superfine inorganic particles with high purity. Meanwhile, electrical discharge contributes to easily mixing solid materials from the atomic scale to several micrometers with different structures. Moreover, metal oxides or doping materials are accessible as the dielectric medium is changed. Considering some excellent advantages, new inorganic particles exploited through the electrical discharge method will promise to be the most rewarding in some potential applications.
electrical discharge / gas/liquid-phase dielectric medium / inorganic particle / size and composition / application
[1] |
Vaezi M, Seitz H, Yang S F . A review on 3D micro-additive manufacturing technologies.International Journal of Advanced Manufacturing Technology, 2013, 67(5–8): 1721–1754
CrossRef
Google scholar
|
[2] |
Wu M X, Yang G, Liu J,
CrossRef
Google scholar
|
[3] |
Zhang Y Y, Ma R, Feng S H,
CrossRef
Google scholar
|
[4] |
Ma J D, Qin M L, Wang X,
CrossRef
Google scholar
|
[5] |
Huang Q J, Zhu Y . Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications.Advanced Materials Technologies, 2019, 4(5): 1800546
CrossRef
Google scholar
|
[6] |
Zavanelli N, Yeo W H . Advances in screen printing of conductive nanomaterials for stretchable electronics.ACS Omega, 2021, 6(14): 9344–9351
CrossRef
Google scholar
|
[7] |
Sharma R, Thakur P, Sharma P,
CrossRef
Google scholar
|
[8] |
Gudovan D, Balaure P C, Mihaiescu D E,
CrossRef
Google scholar
|
[9] |
Chen Y Z, Xu Q, Yu S H,
CrossRef
Google scholar
|
[10] |
Shao H, Chen C, Liu T,
CrossRef
Google scholar
|
[11] |
Joo S J, Hwang H J, Kim H S . Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.Nanotechnology, 2014, 25(26): 265601
CrossRef
Google scholar
|
[12] |
Luo W H, Hu W Y, Xiao S F . Size effect on the thermodynamic properties of silver nanoparticles.The Journal of Physical Chemistry C, 2008, 112(7): 2359–2369
CrossRef
Google scholar
|
[13] |
Ivanova O, Williams C, Campbell T . Additive manufacturing (AM) and nanotechnology: promises and challenges.Rapid Prototyping Journal, 2013, 19(5): 353–364
CrossRef
Google scholar
|
[14] |
Dai Y Y, Ng M Z, Anantha P,
CrossRef
Google scholar
|
[15] |
Singh P K, Kumar P, Das A K . Unconventional physical methods for synthesis of metal and non-metal nanoparticles: a review.Proceedings of the National Academy of Sciences India. Section A: Physical Sciences, 2019, 89(2): 199–221
CrossRef
Google scholar
|
[16] |
Sano N. Synthesis of carbon nanotubes and related nanoparticles by submerged arc discharge. Chimica Oggi-Chemistry Today, 2004, 22(11‒12): 54–56
|
[17] |
Berkowitz A E, Walter J L . Spark erosion: a method for producing rapidly quenched fine powders.Journal of Materials Research, 1987, 2: 277–288
CrossRef
Google scholar
|
[18] |
Schwyn S, Garwin E, Schmidt-Ott A . Aerosol generation by spark discharge.Journal of Aerosol Science, 1988, 19(5): 639–642
CrossRef
Google scholar
|
[19] |
Zeng H, Zhu L, Hao G M,
CrossRef
Google scholar
|
[20] |
Nguyen P K, Jin S H, Berkowitz A E . MnBi particles with high energy density made by spark erosion.Journal of Applied Physics, 2014, 115(17): 17A756
CrossRef
Google scholar
|
[21] |
Hansen M F, Vecchio K S, Parker F T,
CrossRef
Google scholar
|
[22] |
Tabrizi N S, Ullmann M, Vons V A,
CrossRef
Google scholar
|
[23] |
Bau S, Witschger O, Gensdarmes F,
CrossRef
Google scholar
|
[24] |
Sun X C, Gutierrez A, Yacaman M J,
CrossRef
Google scholar
|
[25] |
Fu Q Q, Kokalj D, Stangier D,
CrossRef
Google scholar
|
[26] |
Fu Q, Stein M, Li W,
CrossRef
Google scholar
|
[27] |
Tseng K H, Chung M Y, Chang C Y . Parameters for fabricating nano-Au colloids through the electric spark discharge method with micro-electrical discharge machining.Nanomaterials, 2017, 7(6): 133
CrossRef
Google scholar
|
[28] |
Liu Y F, Li X L, Li Y,
CrossRef
Google scholar
|
[29] |
Förster H, Wolfrum C, Peukert W . Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process.Journal of Nanoparticle Research, 2012, 14(7): 926
CrossRef
Google scholar
|
[30] |
Borra J P, Goldman A, Goldman M,
CrossRef
Google scholar
|
[31] |
Buesser B, Pratsinis S E . Design of nanomaterial synthesis by aerosol processes.Annual Review of Chemical and Biomolecular Engineering, 2012, 3(1): 103–127
CrossRef
Google scholar
|
[32] |
Noh S R, Kim D S, Park S J,
CrossRef
Google scholar
|
[33] |
Ashkarran A A . Metal and metal oxide nanostructures prepared by electrical arc discharge method in liquids.Journal of Cluster Science, 2011, 22(2): 233–266
CrossRef
Google scholar
|
[34] |
Borra J P . Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration.Journal of Physics D: Applied Physics, 2006, 39(2): 19–54
CrossRef
Google scholar
|
[35] |
Albinski K, Musiol K, Miernikiewicz A,
CrossRef
Google scholar
|
[36] |
Reinmann R, Akram M . Temporal investigation of a fast spark discharge in chemically inert gases.Journal of Physics D: Applied Physics, 1997, 30(7): 1125–1134
CrossRef
Google scholar
|
[37] |
DiBitonto D D, Eubank P T, Patel M R,
CrossRef
Google scholar
|
[38] |
Eubank P T, Patel M R, Barrufet M A,
CrossRef
Google scholar
|
[39] |
Patel M R, Barrufet M A, Eubank P T,
CrossRef
Google scholar
|
[40] |
Borra J P, Jidenko N, Hou J,
CrossRef
Google scholar
|
[41] |
Hamdan A, Noël C, Ghanbaja J,
CrossRef
Google scholar
|
[42] |
Kruis F E, Fissan H, Peled A . Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications — a review.Journal of Aerosol Science, 1998, 29(5–6): 511–534
CrossRef
Google scholar
|
[43] |
Duten X, Packan D, Yu L,
CrossRef
Google scholar
|
[44] |
Tabrizi N S, Xu Q, van der Pers N M,
CrossRef
Google scholar
|
[45] |
Tseng K H, Huang J C . Pulsed spark-discharge assisted synthesis of colloidal gold nanoparticles in ethanol.Journal of Nanoparticle Research, 2011, 13(7): 2963–2972
CrossRef
Google scholar
|
[46] |
Nguyen P K, Lee K H, Moon J,
CrossRef
Google scholar
|
[47] |
Hontañón E, Palomares J M, Stein M,
CrossRef
Google scholar
|
[48] |
Belmonte T, Hamdan A, Kosior F,
CrossRef
Google scholar
|
[49] |
Han F Z, Wachi S, Kunieda M . Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control.Precision Engineering, 2004, 28(4): 378–385
CrossRef
Google scholar
|
[50] |
Han F Z, Chen L, Yu D W,
CrossRef
Google scholar
|
[51] |
Kiesler D, Bastuck T, Theissmann R,
CrossRef
Google scholar
|
[52] |
Stein M, Kiesler D, Kruis F E . Effect of carrier gas composition on transferred arc metal nanoparticle synthesis.Journal of Nanoparticle Research, 2013, 15(1): 1400
CrossRef
Google scholar
|
[53] |
Yu J Y, Gao J, Xue F H,
CrossRef
Google scholar
|
[54] |
Gao S, Huang H, Wu A M,
CrossRef
Google scholar
|
[55] |
Cole J J, Lin E C, Barry C R,
CrossRef
Google scholar
|
[56] |
Sano N . Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene.Materials Chemistry and Physics, 2004, 88(2–3): 235–238
CrossRef
Google scholar
|
[57] |
Stein M, Kruis F E . Optimization of a transferred arc reactor for metal nanoparticle synthesis.Journal of Nanoparticle Research, 2016, 18(9): 258
CrossRef
Google scholar
|
[58] |
Dong X L, Zhang Z D, Xiao Q F,
CrossRef
Google scholar
|
[59] |
Farajimotlagh M, Poursalehi R, Aliofkhazraei M . Synthesis mechanisms, optical and structural properties of η-Al2O3 based nanoparticles prepared by DC arc discharge in environmentally friendly liquids.Ceramics International, 2017, 43(10): 7717–7723
CrossRef
Google scholar
|
[60] |
Parkansky N, Goldstein O, Alterkop B,
CrossRef
Google scholar
|
[61] |
Jaworski J A, Fleury E . Sub-micrometer particles produced by a low-powered AC electric arc in liquids.Journal of Nanoscience and Nanotechnology, 2012, 12(1): 604–609
CrossRef
Google scholar
|
[62] |
Omurzak E, Jasnakunov J, Mairykova N,
CrossRef
Google scholar
|
[63] |
Mardanian M, Nevar A A, Nedel’ko M,
CrossRef
Google scholar
|
[64] |
Zaikovskii A, Yudin I, Kozlachkov D,
CrossRef
Google scholar
|
[65] |
Efimov A A, Ivanov V V, Bagazeev A V,
CrossRef
Google scholar
|
[66] |
Ivanov V V, Efimov A A, Mylnikov D A,
CrossRef
Google scholar
|
[67] |
Pfeiffer T V, Feng J, Schmidt-Ott A . New developments in spark production of nanoparticles.Advanced Powder Technology, 2014, 25(1): 56–70
CrossRef
Google scholar
|
[68] |
Kusters K A, Pratsinis S E, Thoma S G,
CrossRef
Google scholar
|
[69] |
Aoki M, Ring T A, Haggerty J S . Analysis and modeling of the ultrasonic dispersion technique.Advanced Ceramic Materials, 1987, 2(3A): 209–212
CrossRef
Google scholar
|
[70] |
Shahidi S, Jamali A, Sharifi S D,
CrossRef
Google scholar
|
[71] |
Ghomi H, Yousefi M, Shahabi N,
CrossRef
Google scholar
|
[72] |
Jamali A, Razavizadeh S, Aliahmadi A,
CrossRef
Google scholar
|
[73] |
Sergiienko R, Shibata E, Zentaro A,
CrossRef
Google scholar
|
[74] |
Liu Y F, Zhu K L, Li X L,
CrossRef
Google scholar
|
[75] |
Lin F M, Liu Y F, Hou Q L,
CrossRef
Google scholar
|
[76] |
Prozorov T, Prozorov R, Suslick K S . High velocity interparticle collisions driven by ultrasound.Journal of the American Chemical Society, 2004, 126(43): 13890–13891
CrossRef
Google scholar
|
[77] |
Nersessian N, Or S W, Carman G P,
CrossRef
Google scholar
|
[78] |
Berkowitz A E, Harper H, Smith D J,
CrossRef
Google scholar
|
[79] |
Boies A M, Lei P Y, Calder S,
CrossRef
Google scholar
|
[80] |
Maisser A, Barmpounis K, Holm S,
CrossRef
Google scholar
|
[81] |
Kohut A, Kéri A, Horváth V,
CrossRef
Google scholar
|
[82] |
Efimov A A, Arsenov P V, Borisov V I,
CrossRef
Google scholar
|
[83] |
Messing M E, Westerström R, Meuller B O,
CrossRef
Google scholar
|
[84] |
Monastyrsky G, Ochin P, Wang G Y,
CrossRef
Google scholar
|
[85] |
Malo D, Lizunova A A, Ramanenka A A,
CrossRef
Google scholar
|
[86] |
Lizunova A, Mazharenko A, Masnaviev B,
CrossRef
Google scholar
|
[87] |
Bi Q, Yuan X, Lu Y,
CrossRef
Google scholar
|
[88] |
Tien D C, Tseng K H, Liao C Y,
CrossRef
Google scholar
|
[89] |
Zhang H Q, Zou G S, Liu L,
CrossRef
Google scholar
|
[90] |
Lo C H, Tsung T T, Lin H M . Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS).Journal of Alloys and Compounds, 2007, 434–435: 659–662
CrossRef
Google scholar
|
[91] |
Tseng K H, Lee H L, Liao C Y,
CrossRef
Google scholar
|
[92] |
Tseng K H, Chung M Y, Chang C Y,
CrossRef
Google scholar
|
[93] |
Tseng K H, Liao C Y, Tien D C . Silver carbonate and stability in colloidal silver: a by-product of the electric spark discharge method.Journal of Alloys and Compounds, 2010, 493(1–2): 438–440
CrossRef
Google scholar
|
[94] |
Tseng K H, Ku H C, Tien D C,
CrossRef
Google scholar
|
[95] |
Tseng K H, Liao C Y, Huang J C,
CrossRef
Google scholar
|
[96] |
Tseng K H, Huang J C, Liao C Y,
CrossRef
Google scholar
|
[97] |
Peymani R, Poursalehi R, Yourdkhani A . DC arc discharge synthesized zirconia nanoparticles: shed light on arc current effects on size, crystal structure, optical properties and formation mechanism.Materials Research Express, 2019, 6(7): 075002
CrossRef
Google scholar
|
[98] |
Tseng K H, Ke H C, Ku H C . Parameters and properties for the preparation of Cu nanocolloids containing polyvinyl alcohol using the electrical spark discharge method.Nanomaterials and Nanotechnology, 2021, 11: 18479804211035190
CrossRef
Google scholar
|
[99] |
Haidar J . Synthesis of Al nanopowders in an anodic arc.Plasma Chemistry and Plasma Processing, 2009, 29(4): 307–319
CrossRef
Google scholar
|
[100] |
Kobayashi M, Liu S M, Sato S,
CrossRef
Google scholar
|
[101] |
Kassaee M Z, Buazar F, Motamedi E . Effects of current on arc fabrication of Cu nanoparticles.Journal of Nanomaterials, 2010, 2010: 403197
CrossRef
Google scholar
|
[102] |
Sahu R K, Hiremath S S, Manivannan P V,
CrossRef
Google scholar
|
[103] |
Ramos R, Valdez B, Nedev N,
CrossRef
Google scholar
|
[104] |
Vons V A, Anastasopol A, Legerstee W J,
CrossRef
Google scholar
|
[105] |
Sahu R K, Hiremath S S, Manivannan P V . Ultrasonic technique for concentration characterization of copper nanofluids synthesized using μ-EDM: a novel experimental approach.Powder Technology, 2015, 284: 429–436
CrossRef
Google scholar
|
[106] |
Kumar P, Singh P K, Kumar D,
CrossRef
Google scholar
|
[107] |
Yu X, Xue F, Huang H,
CrossRef
Google scholar
|
[108] |
Timerkaev B A, Shakirov B R, Timerkaeva D B . Creation of silicon nanostructures in electric arc discharge.High Energy Chemistry, 2019, 53(2): 162–166
CrossRef
Google scholar
|
[109] |
Zhang W, Hong J, Wang W . Preparation of silicon nanoparticles by pulse erosion and analysis with molecule dynamic simulation.Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9882–9888
CrossRef
Google scholar
|
[110] |
Zhang W, Farooq A, Wang W . Generating silicon nanoparticles using spark erosion by flushing high-pressure deionized water.Materials and Manufacturing Processes, 2016, 31(2): 113–118
CrossRef
Google scholar
|
[111] |
Liu S M, Kobayashi M, Sato S, ,
|
[112] |
Mardanian M, Tarasenko N V, Nevar A A . Influence of liquid medium on optical characteristics of the Si nanoparticles prepared by submerged electrical spark discharge.Brazilian Journal of Physics, 2014, 44(2–3): 240–246
CrossRef
Google scholar
|
[113] |
Barnard A S . Modelling of nanoparticles: approaches to morphology and evolution.Reports on Progress in Physics, 2010, 73(8): 086502
CrossRef
Google scholar
|
[114] |
Nagasawa S, Koishi T, Tokoi Y,
CrossRef
Google scholar
|
[115] |
Akbari M K, Derakhshan R, Mirzaee O . A case study in vapor phase synthesis of Mg‒Al alloy nanoparticles by plasma arc evaporation technique.Chemical Engineering Journal, 2015, 259: 918–926
CrossRef
Google scholar
|
[116] |
Lee J G, Li P, Choi C J,
CrossRef
Google scholar
|
[117] |
Safari A, Gheisari K, Farbod M . Structural, microstructural, magnetic and dielectric properties of Ni‒Zn ferrite powders synthesized by plasma arc discharge process followed by post-annealing.Journal of Magnetism and Magnetic Materials, 2019, 488: 165369
CrossRef
Google scholar
|
[118] |
Kim D S, Kim J H, Suematsu H,
CrossRef
Google scholar
|
[119] |
Hong J I, Solomon V C, Smith D J,
CrossRef
Google scholar
|
[120] |
Lei J P, Dong X L, Zhu X G,
CrossRef
Google scholar
|
[121] |
Kala S, Theissmann R, Kruis F E . Generation of AuGe nanocomposites by co-sparking technique and their photoluminescence properties.Journal of Nanoparticle Research, 2013, 15(9): 1963
CrossRef
Google scholar
|
[122] |
Tabrizi N S, Xu Q, van der Pers N M,
CrossRef
Google scholar
|
[123] |
Muntean A, Wagner M, Meyer J,
CrossRef
Google scholar
|
[124] |
Han Z, Li D, Tong M,
CrossRef
Google scholar
|
[125] |
Tseng K H, Chou C J, Liu T C,
CrossRef
Google scholar
|
[126] |
Panuthai N, Savanglaa R, Praserthdam P,
CrossRef
Google scholar
|
[127] |
Solomon V C, Hong J I, Tang Y,
CrossRef
Google scholar
|
[128] |
Tang Y J, Smith D J, Hu H,
CrossRef
Google scholar
|
[129] |
Tang Y J, Solomon V C, Smith D J,
CrossRef
Google scholar
|
[130] |
Solomon V C, Smith D J, Tang Y,
CrossRef
Google scholar
|
[131] |
Mao A Q, Xiang H Z, Ran X Q,
CrossRef
Google scholar
|
[132] |
Tang Y J, Parker F T, Harper H,
CrossRef
Google scholar
|
[133] |
Li Y, Liao Y, Ji L,
CrossRef
Google scholar
|
[134] |
Smovzh D V, Sakhapov S Z, Zaikovskii A V,
CrossRef
Google scholar
|
[135] |
Su Y J, Wei H, Zhou Z H,
CrossRef
Google scholar
|
[136] |
Su Y, Zhang J, Zhang L,
CrossRef
Google scholar
|
[137] |
Chen J H, Lu G H, Zhu L Y,
CrossRef
Google scholar
|
[138] |
Kreyling W G, Biswas P, Messing M E,
CrossRef
Google scholar
|
[139] |
Efimov A, Sukharev V, Ivanov V,
CrossRef
Google scholar
|
[140] |
Efimov A, Lizunova A, Sukharev V,
CrossRef
Google scholar
|
[141] |
Kim J T, Chang J S . Generation of metal oxide aerosol particles by a pulsed spark discharge technique.Journal of Electrostatics, 2005, 63(6–10): 911–916
CrossRef
Google scholar
|
[142] |
Hong M, Su Y J, Zhou C,
CrossRef
Google scholar
|
[143] |
Prakash T, Williams G V M, Kennedy J,
CrossRef
Google scholar
|
[144] |
Corbella C, Portal S, Saadi M A S R,
CrossRef
Google scholar
|
[145] |
Javid M, Zhou Y L, Zhou T H,
CrossRef
Google scholar
|
[146] |
Kabbara H, Ghanbaja J, Noël C,
CrossRef
Google scholar
|
[147] |
Merciris T, Valensi F, Hamdan A . Synthesis of nickel and cobalt oxide nanoparticles by pulsed underwater spark discharges.Journal of Applied Physics, 2021, 129(6): 063303
CrossRef
Google scholar
|
[148] |
Fan X L, Yao K F . Structural and magnetic properties of FeO nanoparticles prepared by arc-discharge in water.Chinese Science Bulletin, 2007, 52(20): 2866–2870
CrossRef
Google scholar
|
[149] |
Delaportas D, Svarnas P, Alexandrou I,
CrossRef
Google scholar
|
[150] |
Boruah P J, Khanikar R R, Bailung H . Synthesis and characterization of oxygen vacancy induced narrow bandgap tungsten oxide (WO3‒x) nanoparticles by plasma discharge in liquid and its photocatalytic activity.Plasma Chemistry and Plasma Processing, 2020, 40(4): 1019–1036
CrossRef
Google scholar
|
[151] |
Ashkarran A A, Iraji Zad A, Ahadian M M,
CrossRef
Google scholar
|
[152] |
Ashkarran A A, Afshar S A A, Aghigh S M,
CrossRef
Google scholar
|
[153] |
Ashkarran A A, Kavianipour M, Aghigh S M,
CrossRef
Google scholar
|
[154] |
Burakov V S, Nevar A A, Nedel’Ko M I,
CrossRef
Google scholar
|
[155] |
Ashkarran A A, Zad A I, Mahdavi S M,
CrossRef
Google scholar
|
[156] |
Tseng K H, Lin Y S, Ku H C,
CrossRef
Google scholar
|
[157] |
Tseng K H, Chang C Y, Chung M Y,
CrossRef
Google scholar
|
[158] |
Chang H, Liu M K . Fabrication and process analysis of anatase type TiO2 nanofluid by an arc spray nanofluid synthesis system.Journal of Crystal Growth, 2007, 304(1): 244–252
CrossRef
Google scholar
|
[159] |
Karahaliou P K, Svarnas P, Georga S N,
CrossRef
Google scholar
|
[160] |
Delaportas D, Svarnas P, Alexandrou I,
CrossRef
Google scholar
|
[161] |
Hashemi E, Poursalehi R, Delavari H . Formation mechanisms, structural and optical properties of Bi/Bi2O3 one dimensional nanostructures prepared via oriented aggregation of bismuth based nanoparticles synthesized by DC arc discharge in water.Materials Science in Semiconductor Processing, 2019, 89: 51–58
CrossRef
Google scholar
|
[162] |
Alexandrou I, Sano N, Burrows A,
CrossRef
Google scholar
|
[163] |
Tseng K H, Lin W J, Chung M Y,
CrossRef
Google scholar
|
[164] |
Kelgenbaeva Z, Omurzak E, Takebe S,
CrossRef
Google scholar
|
[165] |
Chang H, Tsung T T, Chen L C,
CrossRef
Google scholar
|
[166] |
Chiu C C, Lo J C, Teng M H . A novel high efficiency method for the synthesis of graphite encapsulated metal nanoparticles.Diamond and Related Materials, 2012, 24: 179–183
CrossRef
Google scholar
|
[167] |
Ruoff R S, Lorents D C, Chan B,
CrossRef
Google scholar
|
[168] |
Jiang M, Zhang X G, Liu Y,
CrossRef
Google scholar
|
[169] |
Liu Y, Ling J, Li W,
CrossRef
Google scholar
|
[170] |
Saito Y, Nishikubo K, Kawabata K,
CrossRef
Google scholar
|
[171] |
Ding J J, Yan X B, Tay B K,
CrossRef
Google scholar
|
[172] |
Hu R, Ciolan M A, Wang X K,
CrossRef
Google scholar
|
[173] |
Hu R, Furukawa T, Wang X,
CrossRef
Google scholar
|
[174] |
Hu R, Furukawa T, Wang X K,
CrossRef
Google scholar
|
[175] |
Hu R, Furukawa T, Gong Y,
CrossRef
Google scholar
|
[176] |
Hu R, Furukawa T, Wang X K,
CrossRef
Google scholar
|
[177] |
Wang T, Xiao J, Yang X,
CrossRef
Google scholar
|
[178] |
Dong X L, Zhang Z D, Jin S R,
CrossRef
Google scholar
|
[179] |
Qu X H, Zhou Y L, Li X Y,
CrossRef
Google scholar
|
[180] |
Zhang Z Y, Liang J S, Zhang X,
CrossRef
Google scholar
|
[181] |
Byeon J H, Kim J W . Ambient plasma synthesis of TiO2@graphite oxide nanocomposites for efficient photocatalytic hydrogenation.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(19): 6939–6944
CrossRef
Google scholar
|
[182] |
Teng M H, Lin H Y, Chiu C C,
CrossRef
Google scholar
|
[183] |
Sergiienko R, Shibata E, Akase Z,
CrossRef
Google scholar
|
[184] |
Hamdan A, Liu J L . Scenario of carbon-encapsulated particle synthesis by spark discharges in liquid hydrocarbons.Plasma Processes and Polymers, 2021, 18(7): e2100013
CrossRef
Google scholar
|
[185] |
Han D, Or S W, Dong X,
CrossRef
Google scholar
|
[186] |
Saito Y, Yoshikawa T . Bamboo-shaped carbon tube filled partially with nickel.Journal of Crystal Growth, 1993, 134(1–2): 154–156
CrossRef
Google scholar
|
[187] |
Smovzh D V, Sakhapov S Z, Zaikovskii A V,
CrossRef
Google scholar
|
[188] |
Pak A, Ivashutenko A, Zakharova A,
CrossRef
Google scholar
|
[189] |
Pak A Y, Larionov K B, Korchagina A P,
CrossRef
Google scholar
|
[190] |
Zaikovskii A V, Kardash T Y, Kolesov B A,
CrossRef
Google scholar
|
[191] |
Chiu S C, Huang C W, Li Y Y . Synthesis of high-purity silicon carbide nanowires by a catalyst-free arc-discharge method.The Journal of Physical Chemistry C, 2007, 111(28): 10294–10297
CrossRef
Google scholar
|
[192] |
Park Y S, Kodama S, Sekiguchi H . Preparation of metal nitride particles using arc discharge in liquid nitrogen.Nanomaterials, 2021, 11(9): 2214
CrossRef
Google scholar
|
[193] |
Wang Q S, Wu W Z, Zhang J,
CrossRef
Google scholar
|
[194] |
Haghighi N R, Poursalehi R . Effect of C/H and C/O ratios on the arc discharge synthesis of titanium carbide nanoparticles in organic liquids.Applied Nanoscience, 2019, 9(3): 411–421
CrossRef
Google scholar
|
[195] |
Zhang Z D, Yu J L, Zheng J G,
CrossRef
Google scholar
|
[196] |
Dvornik M I, Mikhailenko E A, Nikolenko S V . Development of a method for producing submicron cemented carbide from a powder obtained by electrical discharge erosion of scrap in oil.Powder Technology, 2021, 383: 175–182
CrossRef
Google scholar
|
[197] |
Shabgard M R, Kabirinia F . Effect of dielectric liquid on characteristics of WC‒Co powder synthesized using EDM process.Materials and Manufacturing Processes, 2014, 29(10): 1269–1276
CrossRef
Google scholar
|
[198] |
Shabgard M R, Najafabadi A F . The influence of dielectric media on nano-structured tungsten carbide (WC) powder synthesized by electro-discharge process.Advanced Powder Technology, 2014, 25(3): 937–945
CrossRef
Google scholar
|
[199] |
Liu X G, Geng D Y, Meng H,
CrossRef
Google scholar
|
[200] |
Zhang X F, Dong X L, Huang H,
CrossRef
Google scholar
|
[201] |
Zhang X F, Dong X L, Huang H,
CrossRef
Google scholar
|
[202] |
Liu X G, Or S W, Leung C M,
CrossRef
Google scholar
|
[203] |
Jiang J J, Li X J, Han Z,
CrossRef
Google scholar
|
[204] |
Liu X G, Geng D Y, Ma S,
CrossRef
Google scholar
|
[205] |
Zhou Y, Wang N, Muhammad J,
CrossRef
Google scholar
|
[206] |
Zhou Y, Wang N, Qu X,
CrossRef
Google scholar
|
[207] |
Tarascon J M, Armand M . Issues and challenges facing rechargeable lithium batteries.Nature, 2001, 414(6861): 359–367
CrossRef
Google scholar
|
[208] |
Zuo T T, Wu X W, Yang C P,
CrossRef
Google scholar
|
[209] |
Hang T, Nara H, Yokoshima T,
CrossRef
Google scholar
|
[210] |
Petnikota S, Marka S K, Banerjee A,
CrossRef
Google scholar
|
[211] |
Liu X G, Li X L, Sun Y P,
CrossRef
Google scholar
|
[212] |
Sun Y M, Liu N A, Cui Y . Promises and challenges of nanomaterials for lithium-based rechargeable batteries.Nature Energy, 2016, 1(7): 16071
CrossRef
Google scholar
|
[213] |
Liu C J, Huang H, Cao G Z,
CrossRef
Google scholar
|
[214] |
Wang X, Dong C L, Lou M H,
CrossRef
Google scholar
|
[215] |
Li M, Du H, Kuai L,
CrossRef
Google scholar
|
[216] |
Liu X G, Cui C Y, Wu N D,
CrossRef
Google scholar
|
[217] |
Han D, Hu H, Liu B,
CrossRef
Google scholar
|
[218] |
Yu J Y, Li X L, Sun Y P,
CrossRef
Google scholar
|
[219] |
Bera D, Kuiry S C, McCutchen M,
CrossRef
Google scholar
|
[220] |
Su F M, Qiu X C, Liang F,
CrossRef
Google scholar
|
[221] |
Lang X S, Zhang Y Y, Cai K D,
CrossRef
Google scholar
|
[222] |
Lang X S, Ge F, Cai K D,
CrossRef
Google scholar
|
[223] |
Kim S M, Cho A R, Lee S Y . Characterization and electrocatalytic activity of Pt‒M (M = Cu, Ag, and Pd) bimetallic nanoparticles synthesized by pulsed plasma discharge in water.Journal of Nanoparticle Research, 2015, 17(7): 284
CrossRef
Google scholar
|
[224] |
Khani Z, Schieppati D, Bianchi C L,
CrossRef
Google scholar
|
[225] |
Mo J H, Zhang Y P, Xu Q J,
CrossRef
Google scholar
|
[226] |
Perkgoz N K, Toru R S, Unal E,
CrossRef
Google scholar
|
[227] |
Ashkarran A A, Zad A I, Mahdavi S M,
CrossRef
Google scholar
|
[228] |
Avci A, Eskizeybek V, Gülce H,
CrossRef
Google scholar
|
[229] |
Sirotkin N A, Khlyustova A V, Titov V A,
CrossRef
Google scholar
|
[230] |
Chen X Y, Zhou Y, Liu Q,
CrossRef
Google scholar
|
[231] |
Cai J J, Chen H, Ding S L,
CrossRef
Google scholar
|
[232] |
Yang H, Liu Y, Shen Q H,
CrossRef
Google scholar
|
[233] |
Babitha N, Priya L S, Christy S R,
CrossRef
Google scholar
|
[234] |
Ashkarran A A . A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid.Current Applied Physics, 2010, 10(6): 1442–1447
CrossRef
Google scholar
|
[235] |
Ashkarran A A, Zad A I, Ahadian M M,
CrossRef
Google scholar
|
[236] |
Mobaraki M G, Shabgard M, Kafil H S . Quasi-amorphous colloidal ZnO nanoparticles: facile single-step synthesize, comprehensive characterization and superior antibacterial efficacy.Materials Research Express, 2019, 6(12): 125010
CrossRef
Google scholar
|
/
〈 | 〉 |