Journal home Browse Most Down Articles

Most Down Articles

  • Select all
  • REVIEW ARTICLE
    Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong
    Frontiers of Environmental Science & Engineering, 2019, 13(6): 88. https://doi.org/10.1007/s11783-019-1172-x

    The history of China’s municipal wastewater management is revisited.

    The remaining challenges in wastewater sector in China are identified.

    New concept municipal wastewater treatment plants are highlighted.

    An integrated plant of energy, water and fertilizer recovery is envisaged.

    China has the world’s largest and still growing wastewater sector and water market, thus its future development will have profound influence on the world. The high-speed development of China’s wastewater sector over the past 40 years has forged its global leading treatment capacity and innovation ability. However, many problems were left behind, including underdeveloped sewers and sludge disposal facilities, low sustainability of the treatment processes, questionable wastewater treatment plant (WWTP) effluent discharge standards, and lacking global thinking on harmonious development between wastewater management, human society and the nature. Addressing these challenges calls for fundamental changes in target design, policy and technologies. In this mini-review, we revisit the development history of China’s municipal wastewater management and identify the remaining challenges. Also, we highlight the future needs of sustainable development and exploring China’s own wastewater management path, and outlook the future from several aspects including targets of wastewater management, policies and technologies, especially the new concept WWTP. Furthermore, we envisage the establishment of new-generation WWTPs with the vision of turning WWTP from a site of pollutant removal into a plant of energy, water and fertilizer recovery and an integrated part urban ecology in China.

  • RESEARCH ARTICLE
    Gustaf OLSSON
    Frontiers of Environmental Science & Engineering, 2013, 7(5): 787-793. https://doi.org/10.1007/s11783-013-0526-z

    Water and energy are inextricably linked, and as a consequence both have to be addressed together. This is called the water-energy nexus. When access to either is limited, it becomes obvious that it is necessary to consider their interdependence. Population growth, climate change, urbanization, increasing living standards and food consumption will require an integrated approach where food, water and energy security are considered together. In this paper we examine water, energy and food security and their couplings. The nexus also creates conflicts between water use, energy extraction and generation as well as food production. Some of these conflicts are illustrated. It is argued that there is an urgent need for integrated planning and operation. Not only will better technology be needed, but also better integration of policies, organizations and political decisions.

  • Research article
    Xiaowen ZHANG, Weili DAI, Shuangfeng YIN, Shenglian LUO, Chak-Tong AU
    Frontiers of Environmental Science & Engineering, 2009, 3(1): 32-37. https://doi.org/10.1007/s11783-008-0068-y

    In order to achieve high-efficiency conversion of CO2 into valuable chemicals, and to exploit new applications of organobismuth compounds, cationic organobismuth complex with 5,6,7,12-tetrahydrodibenz[c,f]1,5 azabismocine framework was examined for the first time for the coupling of CO2 into cyclic carbonates, using terminal epoxides as substrates and tetrabutylammonium halide as co-catalyst in a solvent-free environment under mild conditions. It is shown that the catalyst exhibited high activity and selectivity for the coupling reaction of CO2 with a wide range of terminal epoxide. The selectivity of propylene carbonates could reach 100%, and the maximum turnover frequency was up to 10740 h-1 at 120°C and 3 MPa CO2 pressure when tetrabutylammonium iodide was used as co-catalyst. Moreover, the catalyst is environment friendly, resistant to air and water, and can be readily reused and recycled without any loss of activity, demonstrating a potential in industrial application.

  • RESEARCH ARTICLE
    Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu
    Frontiers of Environmental Science & Engineering, 2020, 14(6): 92. https://doi.org/10.1007/s11783-020-1271-8

    • Air masses from Zhejiang Province is the major source of O3 in suburban Shanghai.

    • O3 formation was in VOC-sensitive regime in rural Shanghai.

    • O3 formation was most sensitive to propylene in rural Shanghai.

    A high level of ozone (O3) is frequently observed in the suburbs of Shanghai, the reason for this high level remains unclear. To obtain a detailed insight on the high level of O3 during summer in Shanghai, O3 and its precursors were measured at a suburban site in Shanghai from July 1, 2016 to July 31, 2016. Using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and concentration weighted trajectories (CWT), we found that Zhejiang province was the main potential source of O3 in suburban Shanghai. When the sampling site was controlled by south-western winds exceeding 2 m/s, the O3-rich air masses from upwind regions (such as Zhejiang province) could be transported to the suburban Shanghai. The propylene-equivalent concentration (PEC) and ozone formation potential (OFP) were further calculated for each VOC species, and the results suggested that propylene, (m+p)-xylene, and toluene played dominant roles in O3 formation. The Ozone Isopleth Plotting Research (OZIPR) model was used to reveal the impact of O3 precursors on O3 formation, and 4 base-cases were selected to adjust the model simulation. An average disparity of 18.20% was achieved between the simulated and observed O3 concentrations. The O3 isopleth diagram illustrated that O3 formation in July 2016 was in VOC-sensitive regime, although the VOC/NOx ratio was greater than 20. By introducing sensitivity (S), a sensitivity analysis was performed for O3 formation. We found that O3 formation was sensitive to propylene, (m+p)-xylene, o-xylene and toluene. The results provide theoretical support for O3 pollution treatment in Shanghai.

  • RESEARCH ARTICLE
    Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang
    Frontiers of Environmental Science & Engineering, 2020, 14(1): 1. https://doi.org/10.1007/s11783-019-1180-x

    • Manure application increased the abundances of ARGs and MGEs in agricultural soils.

    • Five classes of ARGs and two MGEs were prevalent in manured and unfertilized soils.

    • Genera Pseudomonas and Bacteroidetes might be the dominant hosts of intI1 and ermF.

    • The abundances of ARGs positively correlated with TC, TN, OM, Cu, Zn, Pb and MGEs.

    Land application of manure tends to result in the dissemination of antibiotic resistance in the environment. In this study, the influence of long-term manure application on the enrichment of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in agricultural soils was investigated. All the analyzed eight ARGs (tetA, tetW, tetX, sulI, sulII, ermF, aac(6’)-Ib-cr and blaTEM) and two MGEs (intI1 and Tn916/1545) were detected in both the manured and control soils, with relative abundances ranging from 10-6 to 10-2. Compared with the control soil, the relative abundances of ARGs and MGEs in manured soils were enriched 1.0–18.1 fold and 0.6–69.1 fold, respectively. High-throughput sequencing analysis suggested that at the phylum level, the bacteria carrying intI1 and ermF might be mainly affiliated with Proteobacteria and Bacteroides, respectively. The dominant genera carrying intI1 and ermF could be Pseudomonas and Bacteroides, independent of manure application. Correlation analysis revealed that ARGs had strong links with soil physicochemical properties (TC, TN, and OM), heavy metals (Cu, Zn and Pb) and MGEs, indicating that the profile and spread of ARGs might be driven by the combined impacts of multiple factors. In contrast, soil pH and C/N exhibited no significant relationships with ARGs. Our findings provide evidence that long-term manure application could enhance the prevalence and stimulate the propagation of antibiotic resistance in agricultural soils.

  • RESEARCH ARTICLE
    Min ZHANG,Jian LU,Yiliang HE,P Chris WILSON
    Frontiers of Environmental Science & Engineering, 2016, 10(2): 229-235. https://doi.org/10.1007/s11783-014-0762-x

    Due to the low water solubility of polybrominated diphenyl ethers, organic solvent is usually added into the oxidation system to enhance the removal efficiency. In this study the photocatalytic degradation of decabromodiphenyl ether (BDE209), a type of polybrominated diphenyl ether used throughout the world, in pure water without the addition of organic solvent was investigated. In the pure water system, BDE209 was not dissolved but dispersed as nano-scale particles with a mean diameter of 166 nm. Most of BDE209 (>98%) were removed within 4 h and the final debromination ratio was greater than 80%. Although the addition of organic solvent (tetrahydrofuran, THF) could lead to a relatively high BDE209 degradation rate, the final debromination ratio (<50%) was much lower than that in pure water system. Major oxidation intermediates of tetrahydrofuran, including tetrahydro-2-furanol and γ-butyrolactone, were detected indicating the engagement of THF in the BDE209 degradation process. The photocatalytic degradation of BDE209 in the pure water system followed first-order kinetics. The BDE209 degradation rate constant increased from 0.0011 to 0.0023 min−1 as the pH increased from 3 to 9.

  • OVERVIEW
    Xiaotu Liu, Heidelore Fiedler, Wenwen Gong, Bin Wang, Gang Yu
    Frontiers of Environmental Science & Engineering, 2018, 12(6): 1. https://doi.org/10.1007/s11783-018-1036-9

    A preliminary analysis of potential sources for unintentionally produced PCB, HCB and PeCBz in China.

    Activity rates of sources for reference years from 2000 to 2015 provided.

    Emissions from a number of sources summarized and compared.

    Implications for future research and regulation discussed.

    Under the Stockholm Convention on Persistent Organic Pollutants (POPs), China is required not only to reduce polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF) but also unintentionally produced polychlorinated biphenyls (PCB), hexachlorobenzene (HCB) and pentachlorobenzene (PeCBz). A baseline of the sources in China that generate these unintentional POPs is needed for both research and regulation purposes. In this paper, we have compiled production data of potential sources in China and assessed them in five-year intervals from 2000 to 2015. Most of these activities experienced changes from rapid growth to slow growth. Measured data for PCB, HCB and PeCBz in samples collected from potential sources in China were reviewed. Most information was associated to thermal processes with high potential of emission, including waste incineration and ferrous and non-ferrous metal production. In addition, high levels of PCB, HCB and PeCBz were found as impurities in a few chlorinated products or as by-products in solvent production, which suggested organochlorine industry might be important sources. Finally, based on the studies reviewed, recommendations for future actions in research and policy as well as a few regulatory issues in China are discussed.

  • RESEARCH ARTICLE
    Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su
    Frontiers of Environmental Science & Engineering, 2018, 12(1): 4. https://doi.org/10.1007/s11783-017-0977-8

    Deposition Au nanoparticles on both TiO2 and RGO to fabricate Au/TiO2/RGO.

    Au/TiO2/RGO displayed a high H2O2 and •OH production in photocatalytic process.

    RGO is a good collector to transfer electrons from TiO2 to Au.

    A new type of Au/TiO2/reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO2 on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO2 and RGO. Au/TiO2/RGO had a better photocatalytic activity than Au/TiO2 for the degradation of phenol. Electrochemical measurements indicated that Au/TiO2/RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO2/RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO2/RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO2 to effectively reduce photogenerated charge recombination.

  • research-article
    Ling Li, Yu He, Xia Lu
    Frontiers of Environmental Science & Engineering, 2018, 12(2): 11. https://doi.org/10.1007/s11783-018-1007-1

    Hg0 is chemically adsorbed and fully oxidized by surface oxygen on CeO2.

    HCl promotes the desorption of oxidized Hg on CeO2.

    Surface oxygen is consumed by the H provided by HCl.

    Desorption of oxidized Hg is a rate-determining step.

    Maintenance of sufficient active surface oxygen is another rate-determining step.

    First-principles calculations were performed to investigate the mechanism of Hg0 adsorption and oxidation on CeO2(111). Surface oxygen activated by the reduction of Ce4+ to Ce3+ was vital to Hg0 adsorption and oxidation processes. Hg0 was fully oxidized by the surface lattice oxygen on CeO2(111), without using any other oxidizing agents. HCl could dissociate and react with the Hg adatom on CeO2(111) to form adsorbed Hg–Cl or Cl–Hg–Cl groups, which promoted the desorption of oxidized Hg and prevented CeO2 catalyst deactivation. In contrast, O–H and H–O–H groups formed during HCl adsorption consumed the active surface oxygen and prohibited Hg oxidation. The consumed surface oxygen was replenished by adding O2 into the flue gas. We proposed that oxidized Hg desorption and maintenance of sufficient active surface oxygen were the rate-determining steps of Hg0 removal on CeO2-based catalysts. We believe that our thorough understanding and new insights into the mechanism of the Hg0 removal process will help provide guidelines for developing novel CeO2-based catalysts and enhance the Hg0 removal efficiency.

  • RESEARCH ARTICLE
    Yilei Lu, Yunqing Huang, Siyu Zeng, Can Wang
    Frontiers of Environmental Science & Engineering, 2020, 14(2): 21. https://doi.org/10.1007/s11783-019-1200-x

    • Impact of urban development on water system is assessed with carrying capacity.

    • Impacts on both water resource quantity and environmental quality are involved.

    • Multi-objective optimization revealing system trade-off facilitate the regulation.

    • Efficiency, scale and structure of urban development are regulated in two stages.

    • A roadmap approaching more sustainable development is provided for the case city.

    Environmental impact assessments and subsequent regulation measures of urban development plans are critical to human progress toward sustainability, since these plans set the scale and structure targets of future socioeconomic development. A three-step methodology for assessing and optimizing an urban development plan focusing on its impacts on the water system was developed. The methodology first predicted the pressure on the water system caused by implementation of the plan under distinct scenarios, then compared the pressure with the carrying capacity threshold to verify the system status; finally, a multi-objective optimization method was used to propose regulation solutions. The methodology enabled evaluation of the water system carrying state, taking socioeconomic development uncertainties into account, and multiple sets of improvement measures under different decisionmaker preferences were generated. The methodology was applied in the case of Zhoushan city in South-east China. The assessment results showed that overloading problems occurred in 11 out of the 13 zones in Zhoushan, with the potential pressure varying from 1.1 to 18.3 times the carrying capacity. As a basic regulation measure, an environmental efficiency upgrade could relieve the overloading in 4 zones and reduce 9%‒63% of the pressure. The optimization of industrial development showed that the pressure could be controlled under the carrying capacity threshold if the planned scale was reduced by 24% and the industrial structure was transformed. Various regulation schemes including a more suitable scale and structure with necessary efficiency standards are provided for decisionmakers that can help the case city approach a more sustainable development pattern.

  • RESEARCH ARTICLE
    Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 55. https://doi.org/10.1007/s11783-020-1347-5

    • Bi2O3 cannot directly activate PMS.

    • Bi2O3 loading increased the specific surface area and conductivity of CoOOH.

    • Larger specific surface area provided more active sites for PMS activation.

    • Faster electron transfer rate promoted the generation of reactive oxygen species.

    1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system.

    Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.

  • RESEARCH ARTICLE
    Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 67. https://doi.org/10.1007/s11783-020-1359-1

    • An integrated method, called PHDVPSS, was proposed for treating DCS.

    • The PHDVPSS method showed superior performance compared to conventional method.

    • Using the method, water content (%) of DCS decreased from 300 to<150 in 3 days.

    • The 56-day UCS from this method is 12‒17 times higher than conventional method.

    • Relative to PC, GGBS-MgO binder yielded greater reduction in the leachability.

    To more efficiently treat the dredged contaminated sediment (DCS) with a high water content, this study proposes an integrated method (called PHDVPSS) that uses the solidifying/stabilizing (S/S) agents and prefabricated horizontal drain (PHD) assisted by vacuum pressure (VP). Using this method, dewatering and solidification/stabilization can be carried out simultaneously such that the treatment time can be significantly shortened and the treatment efficacy can be significantly improved. A series of model tests was conducted to investigate the effectiveness of the proposed method. Experimental results indicated that the proposed PHDVPSS method showed superior performance compared to the conventional S/S method that uses Portland cement (PC) directly without prior dewatering. The 56-day unconfined compressive strength of DCS treated by the proposed method with GGBS-MgO as the binder is 12‒17 times higher than that by the conventional S/S method. DCS treated by the PHDVPSS method exhibited continuous decrease in leaching concentration of Zn with increasing curing age. The reduction of Zn leachability is more obvious when using GGBS-MgO as the binder than when using PC, because GGBS-MgO increased the residual fraction and decreased the acid soluble fraction of Zn. The microstructure analysis reveals the formation of hydrotalcite in GGBS-MgO binder, which resulted in higher mechanical strength and higher Zn stabilization efficiency.

  • REVIEW ARTICLE
    Shuai Li, Zhiyao Yang, Da Hu, Liu Cao, Qiang He
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 65. https://doi.org/10.1007/s11783-020-1357-3

    • The built environment, occupants, and microbiomes constitute an integrated ecosystem.

    • This review summarizes research progress which has focused primarily on microbiomes.

    • Critical research needs include studying impacts of occupant behaviors on microbiomes.

    Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.

  • RESEARCH ARTICLE
    Fei LI,Suocheng DONG,Fujia LI,Libiao YANG
    Frontiers of Environmental Science & Engineering, 2016, 10(2): 276-287. https://doi.org/10.1007/s11783-014-0700-y

    As the largest contributor to water impairment, agriculture-related pollution has attracted the attention of scientists as well as policy makers, and quantitative information is being sought to focus and advance the policy debate. This study applies the panel unit root, heterogeneous panel cointegration, and panel-based dynamic ordinary least squares to investigate the Environmental Kuznets Curve on environmental issues resulting from use of agricultural synthetic fertilizer, pesticide, and film for 31 provincial economies in mainland China from 1989 to 2009. The empirical results indicate a positive long-run co-integrated relationship between the environmental index and real GDP per capita. This relationship takes on the inverted U-shaped Environmental Kuznets Curve, and the value of the turning point is approximately 10,000–13,000, 85,000–89,000 and over 160,000 CNY, for synthetic fertilizer nitrogen indicator, fertilizer phosphorus indicator and pesticide indicator, respectively. At present, China is subject to tremendous environmental pressure and should assign more importance to special agriculture-related environmental issues.

  • RESEARCH ARTICLE
    Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar
    Frontiers of Environmental Science & Engineering, 2020, 14(6): 113. https://doi.org/10.1007/s11783-020-1292-3

    A. sydowii strain bpo1 exhibited 99.8% anthracene degradation efficiency.

    • Four unique metabolic products were obtained after anthracene degradation.

    • Ligninolytic enzymes induction played vital roles in the removal of anthracene.

    • Laccase played a crucial role in comparison with other enzymes induced.

    The present study investigated the efficiency of Aspergillus sydowii strain bpo1 (GenBank Accession Number: MK373021) in the removal of anthracene (100 mg/L). Optimal degradation efficiency (98.7%) was observed at neutral pH, temperature (30℃), biomass weight (2 g) and salinity (0.2% w/v) within 72 h. The enzyme analyses revealed 131%, 107%, and 89% induction in laccase, lignin peroxidase, and manganese peroxidase respectively during anthracene degradation. Furthermore, the degradation efficiency (99.8%) and enzyme induction were significantly enhanced with the addition of 100 mg/L of citric acid and glucose to the culture. At varying anthracene concentrations (100–500 mg/L), the degradation rate constants (k1) peaked with increasing concentration of anthracene while the half-life (t1/2) decreases with increase in anthracene concentration. Goodness of fit (R2 = 0.976 and 0.982) was observed when the experimental data were subjected to Langmuir and Temkin models respectively which affirmed the monolayer and heterogeneous nature exhibited by A. sydwoii cells during degradation. Four distinct metabolites; anthracene-1,8,9 (2H,8aH,9aH)-trione, 2,4a-dihydronaphthalene-1,5-dione, 1,3,3a,7a-tetrahydro-2-benzofuran-4,7-dione and 2-hydroxybenzoic acid was obtained through Gas Chromatography-Mass spectrometry (GC-MS). A. sydowii exhibited promising potentials in the removal of PAHs.

  • RESEARCH ARTICLE
    Chong Liu, Jianzheng Li, Shuo Wang, Loring Nies
    Frontiers of Environmental Science & Engineering, 2016, 10(4): 13. https://doi.org/10.1007/s11783-016-0856-8

    Syntrophic propionate-oxidizing microflora B83 was enriched from anaerobic sludge.

    The bioaugmentation of microflora B83 were evaluated from wastewater treatment.

    Methane yield and COD removal were enhanced by bioaugmentation of microflora B83.

    Hydrogen-producing acetogensis was a rate-limiting step in methane fermentation.

    Methane fermentation process can be restricted and even destroyed by the accumulation of propionate because it is the most difficult to be anaerobically oxidized among the volatile fatty acids produced by acetogenesis. To enhance anaerobic wastewater treatment process for methane production and COD removal, a syntrophic propionate-oxidizing microflora B83 was obtained from an anaerobic activated sludge by enrichment with propionate. The inoculation of microflora B83, with a 1:9 ratio of bacteria number to that of the activated sludge, could enhance the methane production from glucose by 2.5 times. With the same inoculation dosage of the microflora B83, COD removal in organic wastewater treatment process was improved from 75.6% to 86.6%, while the specific methane production by COD removal was increased by 2.7 times. Hydrogen-producing acetogenesis appeared to be a rate-limiting step in methane fermentation, and the enhancement of hydrogen-producing acetogens in the anaerobic wastewater treatment process had improved not only the hydrogen-producing acetogenesis but also the acidogenesis and methanogenesis.

  • RESEARCH ARTICLE
    Xiaojie Shi, Zhuo Chen, Yun Lu, Qi Shi, Yinhu Wu, Hong-Ying Hu
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 68. https://doi.org/10.1007/s11783-020-1360-8

    • Annual AOCs in MBR effluents were stable with small increase in warmer seasons.

    • Significant increase in AOC levels of tertiary effluents were observed.

    • Coagulation in prior to ozonation can reduce AOC formation in tertiary treatment.

    • ∆UV254 and SUVA can be surrogates to predict the AOC changes during ozonation.

    As water reuse development has increased, biological stability issues associated with reclaimed water have gained attention. This study evaluated assimilable organic carbon (AOC) in effluents from a full-scale membrane biological reactor (MBR) plant and found that they were generally stable over one year (125–216 µg/L), with slight increases in warmer seasons. After additional tertiary treatments, the largest increases in absolute and specific AOCs were detected during ozonation, followed by coagulation-ozonation and coagulation. Moreover, UV254 absorbance is known to be an effective surrogate to predict the AOC changes during ozonation. Applying coagulation prior to ozonation of MBR effluents for removal of large molecules was found to reduce the AOC formation compared with ozonation treatment alone. Finally, the results revealed that attention should be paid to seasonal variations in influent and organic fraction changes during treatment to enable sustainable water reuse.

  • RESEARCH ARTICLE
    Supaporn Phanwilai, Naluporn Kangwannarakul, Pongsak (Lek) Noophan, Tamao Kasahara, Akihiko Terada, Junko Munakata-Marr, Linda Ann Figueroa
    Frontiers of Environmental Science & Engineering, 2020, 14(6): 115. https://doi.org/10.1007/s11783-020-1374-2

    • Two IFAS and two MBBR full-scale systems (high COD:N ratio 8:1) were characterized.

    • High specific surface area carriers grew and retained slow-growing nitrifiers.

    • High TN removal is related to high SRT and low DO concentration in anoxic tanks.

    The relative locations of AOB, NOB, and DNB were examined for three different kinds of carriers in two types of hybrid biofilm process configurations: integrated fixed-film activated sludge (IFAS) and moving bed biofilm reactor (MBBR) processes. IFAS water resource recovery facilities (WRRFs) used AnodkalnessTM K1 carriers (KC) at Broomfield, Colorado, USA and polypropylene resin carriers (RC) at Fukuoka, Japan, while MBBR WRRFs used KC carriers at South Adams County, Colorado, USA and sponge carriers (SC) at Saga, Japan. Influent COD to N ratios ranged from 8:1 to 15:1. The COD and BOD removal efficiencies were high (96%–98%); NH4+-N and TN removal efficiencies were more varied at 72%–98% and 64%–77%, respectively. The extent of TN removal was higher at high SRT, high COD:N ratio and low DO concentration in the anoxic tank. In IFAS, RC with high specific surface area (SSA) maintained higher AOB population than KC. Sponge carriers with high SSA maintained higher overall bacteria population than KC in MBBR systems. However, the DNB were not more abundant in high SSA carriers. The diversity of AOB, NOB, and DNB was fairly similar in different carriers. Nitrosomonas sp. dominated over Nitrosospira sp. while denitrifying bacteria included Rhodobacter sp., Sulfuritalea sp., Rubrivivax sp., Paracoccus sp., and Pseudomonas sp. The results from this work suggest that high SRT, high COD:N ratio, low DO concentration in anoxic tanks, and carriers with greater surface area may be recommended for high COD, BOD and TN removal in WRRFs with IFAS and MBBR systems.

  • REVIEW ARTICLE
    Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu
    Frontiers of Environmental Science & Engineering, 2021, 15(3): 38. https://doi.org/10.1007/s11783-020-1330-1

    • Bioaerosols are produced in the process of wastewater biological treatment.

    • The concentration of bioaerosol indoor is higher than outdoor.

    • Bioaerosols contain large amounts of potentially pathogenic biomass and chemicals.

    • Inhalation is the main route of exposure of bioaerosol.

    • Both the workers and the surrounding residents will be affected by the bioaerosol.

    Bioaerosols are defined as airborne particles (0.05–100 mm in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.

  • RESEARCH ARTICLE
    Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang
    Frontiers of Environmental Science & Engineering, 2020, 14(6): 114. https://doi.org/10.1007/s11783-020-1331-0

    • There was significant absorption of heavy metals by the pepper in contaminated soils.

    • The target hazard quotient (THQ) indices followed the order of Pb>Zn>>Cd » Ni.

    • Relationships exist between contaminated plants and electromagnetic wave.

    • PCA and random search can select the main spectra and predict THQ for each element.

    Given the tendency of heavy metals to accumulate in soil and plants, the purpose of this study was to determine the contamination levels of Cd, Ni, Pb, and Zn on peppers (leaves and fruit) grown in contaminated soils in industrial centers. For this purpose, we measured the uptake of the four heavy metals by peppers grown in the heavy metal contaminated soils throughout the four growth stages: two-leaf, growth, flowering, and fruiting, and calculated various vegetation indices to evaluate the heavy metal contamination potentials. Electromagnetic waves were also applied for analyzing the responses of the target plants to various heavy metals. Based on the relevant spectral bands identified by principal component analysis (PCA) and random search methods, a regression method was then employed to determine the most optimal spectral bands for estimating the target hazard quotient (THQ). The THQ was found to be the highest in the plants contaminated by Pb (THQ= 62) and Zn (THQ= 5.07). The results of PCA and random search indicated that the spectra at the bands of b570, b650, and b760 for Pb, b400 and b1030 for Ni, b400 and b880 for Cd, and b560, b910, and b1050 for Zn were the most optimal spectra for assessing THQ. Therefore, in future studies, instead of examining the amount of heavy metals in plants by chemical analysis in the laboratory, the responses of the plants to the electromagnetic waves in the identified bands can be readily investigated in the field based on the established correlations.

  • Research articles
    Wei SONG, Jianguo LIU, Yongfeng NIE,
    Frontiers of Environmental Science & Engineering, 2010, 4(1): 59-64. https://doi.org/10.1007/s11783-009-0152-y
    Pyrolysis is an alternative technology for oil sludge treatment. Thermogravimetric Analysis-Fourier Transform Infrared Spectroscopy and Pyrolysis-Gas Chromatography/Mass Spectrometry were employed to investigate the pyrolysis process and products of oil sludge. The pyrolysis process was divided into five stages: drying and gas desorption, oil volatilization, main pyrolysis, semi-coke charring, and mineral decomposition. The main reaction temperatures ranged from 497.6&#8201;K to 753.2&#8201;K. The products were mainly composed of pairs of alkane and alkene (carbon number ranges from 1 to 27). The mechanisms consisted of random chain scission followed by end chain scission at high temperatures with volatilization occurring during the whole process. This study is useful not only for the proper design of a pyrolysis system, but also for improving the utilization of liquid oil products.
  • FEATURE ARTICLE
    Nanqi Ren, Qian Wang, Qiuru Wang, Hong Huang, Xiuheng Wang
    Frontiers of Environmental Science & Engineering, 2017, 11(4): 9. https://doi.org/10.1007/s11783-017-0960-4

    Cities in China confront full-scale and serious water crises due to urbanization.

    System 2.0 with fragmented gray engineering measures showed inadaptability.

    A novel water-cycling system is developed to systematically solve water crises.

    Multi-purpose system 3.0 with integrated strategy shows powerful vitality.

    Urban water system 3.0 (Blue, gray, brown and yellow arrows represent water flow, wastewater flow, resource and energy respectively)

    Facing the pressure of excessive water consumption, high pollution load and rainstorm waterlogging, linear and centralized urban water system, system 2.0, as well as traditional governance measures gradually exposed characters of water-sensitivity, vulnerability and unsustainability, subsequently resulting in a full-blown crisis of water shortage, water pollution and waterlogging. To systematically relieve such crisis, we established healthy urban water-cycling system 3.0, in which decentralized sewerage systems, spongy infrastructures and ecological rivers play critical roles. Through unconventional water resource recycling, whole process control of pollutions and ecological restoration, system 3.0 with integrated management measures, is expected to fit for multiple purposes which involve environmental, ecological, economic and social benefits. With advantages of flexibility, resilience and sustainability, water system 3.0 will show an increasingly powerful vitality in the near future.

  • RESEARCH ARTICLE
    Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 57. https://doi.org/10.1007/s11783-020-1349-3

    Pseudomonas mendocina was first reported for aerobic nitrate removal.

    • It removed 90% of NO3-N in 24 h under aerobic conditions.

    • This strain converted NO3-N to bio-nitrogen (37.9%) and gaseous nitrogen (49.7%).

    • Inoculation of this strain increased sludge denitrification rate by 4.3 times.

    The problem of nitrate accumulation in aerobic tank and total nitrogen excessive discharge in effluent was very common in traditional livestock and poultry farming wastewater treatment systems owing to the lengthy process flow and low process control level. A strain LYX of aerobic bacterium was isolated from the activated sludge of a wastewater treatment system in a pig farm, which could remove nitrate effectively in aerobic tank and was identified Pseudomonas mendocina by 16S rRNA sequencing. Under the condition of nitrate as the sole nitrogen source, this strain removed over 90% of NO3-N with an initial concentration of 110 mg/L under aerobic conditions within 48 hours. Among them, 37.9% of NO3-N was assimilated into Bio-N, about 51.9% was reduced to gaseous nitrogen and less than 0.5% of nitrogen was replaced by NO2-N and NH4+-N, 9.7% NO3-N remained in the effluent at the end. At the same time, four key genes (napA, nirK, norB and nosZ) related to nitrate nitrogen removal were expressed during the denitrification process of P. mendocina LYX, in which the transcription level of the indicator genes of this aerobic denitrifying bacterium (napA) was the highest. In addition, it was found with the 15N tracer technique that inoculation of this strain on sludge increased the amount of nitrogen loss from 9.26 nmol N/(g·h) to 23.835 nmol N/(g·h). Therefore, P. medocina LYX is a potential bioagent for advanced nitrogen removal by assimilating and reducing nitrate simultaneously in aerobic tanks.

  • SHAN Qihua, YU Yuanchun, ZHANG Jinchi, YU Jian
    Frontiers of Environmental Science & Engineering, 2008, 2(2): 218-223. https://doi.org/10.1007/s11783-008-0037-5
    To reveal the biological characteristics of urban forest soil and the effects of soil enzyme on soil fertility as well as the correlation between physicochemical properties and enzyme activities, 44 urban forest soil profiles in Nanjing were investigated. Basic soil physicochemical properties and enzyme activities were analyzed in the laboratory. Hydrogen peroxidase, dehydrogenase, alkaline phosphatase, and cellulase were determined by potassium permanganate titration, TTC (C19H15N4·Cl) colorimetry, phenyl phosphate dinatrium colorimetry, and anthrone colorimetry, respectively. The result showed that soil pH, organic carbon (C), and total nitrogen (N) had great effects on hydrogen peroxidase, dehydrogenase, and alkaline phosphatase activities in 0–20 cm thick soil. However, pH only had great effect on hydrogen peroxidase, dehydrogenase, and alkaline phosphatase activities in 20–40 cm thick soil. Hydrogen peroxidase, dehydrogenase, and alkaline phosphatase were important biological indicators for the fertility of urban forest soil. Both in 0–20 cm and 20–40 cm soil, soil enzyme system (hydrogen peroxidase, dehydrogenase, alkaline phosphatase, and cellulase) had a close relationship with a combination of physicochemical indicators (pH, organic C, total N, available K, available P, cation exchange capacity (CEC), and microbial biomass carbon (Cmic)). The more soil enzyme activities there were, the higher the fertility of urban forest soil.
  • RESEARCH ARTICLE
    Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 61. https://doi.org/10.1007/s11783-020-1353-7

    • Separate reduction and sintering cannot be effective for Cr stabilization.

    • Combined treatment of reduction and sintering is effective for Cr stabilization.

    • Almost all the Cr in the reduced soil is residual form after sintering at 1000°C.

    This study explored the effectiveness and mechanisms of high temperature sintering following pre-reduction with ferric sulfate (FeSO4), sodium sulfide (Na2S), or citric acid (C6H8O7) in stabilizing hexavalent chromium (Cr(VI)) in highly contaminated soil. The soil samples had an initial total Cr leaching of 1768.83 mg/L, and Cr(VI) leaching of 1745.13 mg/L. When FeSO4 or C6H8O7 reduction was followed by sintering at 1000°C, the Cr leaching was reduced enough to meet the Safety Landfill Standards regarding general industrial solid waste. This combined treatment greatly improved the stabilization efficiency of chromium because the reduction of Cr(VI) into Cr(III) decreased the mobility of chromium and made it more easily encapsulated in minerals during sintering. SEM, XRD, TG-DSC, and speciation analysis indicated that when the sintering temperature reached 1000°C, almost all the chromium in soils that had the pre-reduction treatment was transformed into the residual form. At 1000°C, the soil melted and promoted the mineralization of Cr and the formation of new Cr-containing compounds, which significantly decreased subsequent leaching of chromium from the soil. However, without reduction treatment, chromium continued to leach from the soil even after being sintered at 1000°C, possibly because the soil did not fully fuse and because Cr(VI) does not bind with soil as easily as Cr(III).

  • RESEARCH ARTICLE
    Safaa M. Ezzat, Mohammed T. Mohammed T.
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 59. https://doi.org/10.1007/s11783-020-1351-9

    • Smart wetland was designed to treat wastewater according to zero waste principle.

    • The system included a dynamic roughing filter, Cyperus papyrus (L.) and zeolite.

    • It removed 98.8 and 99.8% of chemical and bacterial pollutants in 3 days.

    • The effluent reused to irrigate a landscape and the sludge recycled as fertilizer.

    • The plant biomass is a profitable resource for antibacterial and antioxidants.

    The present investigation demonstrates the synergistic action of using a sedimentation unit together with Cyperus papyrus (L.) wetland enriched with zeolite mineral in one-year round experiment for treating wastewater. The system was designed to support a horizontal surface flow pattern and showed satisfactory removal efficiencies for both physicochemical and bacteriological contaminants within 3 days of residence time. The removal efficiencies ranged between 76.3% and 98.8% for total suspended solids, turbidity, iron, biological oxygen demand, and ammonia. The bacterial indicators (total and fecal coliforms, as well as fecal streptococci) and the potential pathogens (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) showed removal efficiencies ranged between 96.9% and 99.8%. We expect the system to offer a smart management for every component according to zero waste principle. The treated effluent was reused to irrigate the landscape of pilot area, and the excess sludge was recycled as fertilizer and soil conditioner. The zeolite mineral did not require regeneration for almost 36 weeks of operation, and enhanced the density of shoots (14.11%) and the height of shoots (15.88%). The harvested plant biomass could be a profitable resource for potent antibacterial and antioxidant bioactive compounds. This could certainly offset part of the operation and maintenance costs and optimize the system implementation feasibility. Although the experiment was designed under local conditions, its results could provide insights to upgrade and optimize the performance of other analogous large-scale constructed wetlands.

  • RESEARCH ARTICLE
    Hua ZHANG, Zongguo WEN, Yixi CHEN
    Frontiers of Environmental Science & Engineering, 2016, 10(4): 10. https://doi.org/10.1007/s11783-016-0852-z

    The Green House program reduced the amount of waste by 34%.

    The Green House is now running with a monthly loss of 1982 CNY.

    Involve government, expand scale, use professional technology are main suggestions.

    Improved program can reduce the amount of waste by 37% (33.8 tons monthly).

    Improved program can flip the loss into a profit worth 35034 CNY monthly.

    Although Beijing has carried out municipal solid waste (MSW) source separation since 1996, it has largely been ineffective. In 2012, a “Green House” program was established as a new attempt for central sorting. In this study, the authors used material flow analysis (MFA) and cost benefit analysis (CBA) methods to investigate Green House’s environment and economic feasibility. Results showed that the program did have significant environmental benefits on waste reduction, which reduced the amount of waste by 34%. If the Green House program is implemented in a residential community with wet waste ratio of 66%, the proportion of waste reduction can reach 37%. However, the Green House is now running with a monthly loss of 1982 CNY. This is mainly because most of its benefits come from waste reduction (i.e., 5878 CNY per month), which does not turn a monetary benefit, but is instead distributed to the whole of society as positive environmental externalities. Lack of government involvement, small program scale, and technical/managerial deficiency are three main barriers of the Green House. We, thus, make three recommendations: involve government authority and financial support, expand the program scale to separate 91.4 tons of waste every month, and use more professional equipment/technologies. If the Green House program can successfully adopt these suggestions, 33.8 tons of waste can be reduced monthly, and it would be able to flip the loss into a profit worth 35034 CNY.

  • RESEARCH ARTICLE
    Zifeng WANG, Min SHAO, Liangfu CHEN, Minghui TAO, Liuju ZHONG, Duohong CHEN, Meng FAN, Yang WANG, Xinhui WANG
    Frontiers of Environmental Science & Engineering, 2016, 10(5): 9. https://doi.org/10.1007/s11783-016-0853-y

    Spatial and temporal trends of the typical pollutants in PRD viewed from space.

    Comparisons of the satellite retrievals with the collocated in situ data are given.

    Among different MCs, the control measures applied in PRD are the most effective.

    The unique HCHO trends imply significant contribution from the biogenic origins.

    The Pearl River Delta (PRD) is one of the most industrialized, urbanized and populated regions in China, and thus has been long suffering from severe air pollutions. Space data provide a unique perspective for investigating the atmospheric environment at a regional scale. By utilizing multiple satellite retrievals from 2005 to 2013, this study presented, for the first time, the spatial patterns and temporal trends of typical air pollutants over PRD and its vicinity. As viewed from space, aerosol optical depth (AOD), NO2 and SO2 all had their higher values at the central part of PRD, and showed clear descending gradients as moving to the outskirt of this region. As to the inter-annual variation, all these pollutants had decreasing trends in PRD during the study period, which generally agreed with the relevant in situ measurements. However, the satellite retrievals differed from ground measurements when addressing NO2 and SO2 in the vicinity of PRD. This work also provides the inter-comparison among PRD and three other metropolitan clusters in China: PRD had relatively high AOD, moderate NO2 and low SO2 levels, and it was the only region achieving the effective reduction of NO2 and SO2 during last decade. Unlike the previous three pollutants, HCHO observed by satellite showed very special patterns: it had a relatively homogeneous spatial distribution over both of PRD and its vicinity, and presented an opposite increasing trend from 2005 to 2010. Moreover, PRD had the highest HCHO level among all the metropolitan clusters, hinting a considerable contribution of biogenic origins of HCHO in PRD.

  • RESEARCH ARTICLE
    Ying Cui, Feng Tan, Yan Wang, Suyu Ren, Jingwen Chen
    Frontiers of Environmental Science & Engineering, 2020, 14(6): 111. https://doi.org/10.1007/s11783-020-1290-5

    • Selective molecularly imprinted polymer (MIP) binding gel was prepared.

    • MIP-DGT showed excellent uptake performance for antibiotics.

    • In situ measurement of antibiotics in wastewaters via MIP-DGT was developed.

    • The MIP-DGT method was robust, reliable, and highly sensitive.

    Urban wastewater is one of main sources for the introduction of antibiotics into the environment. Monitoring the concentrations of antibiotics in wastewater is necessary for estimating the amount of antibiotics discharged into the environment through urban wastewater treatment systems. In this study, we report a novel diffusive gradient in thin films (DGT) method based on molecularly imprinted polymers (MIPs) for in situ measurement of two typical antibiotics, fluoroquinolones (FQs) and sulfonamides (SAs) in urban wastewater. MIPs show specific adsorption toward their templates and their structural analogs, resulting in the selective uptake of the two target antibiotics during MIP-DGT deployment. The uptake performance of the MIP-DGTs was evaluated in the laboratory and was relatively independent of solution pH (4.0–9.0), ionic strength (1–750 mmol/L), and dissolved organic matter (DOM, 0–20 mg/L). MIP-DGT samplers were tested in the effluent of an urban wastewater treatment plant for field trials, where three SA (sulfamethoxazole, sulfapyridine, and trimethoprim) and one FQ (ofloxacin) antibiotics were detected, with concentrations ranging from 25.50 to 117.58 ng/L, which are consistent with the results measured by grab sampling. The total removal efficiency of the antibiotics was 80.1% by the treatment plant. This study demonstrates that MIP-DGT is an effective tool for in situ monitoring of trace antibiotics in complex urban wastewaters.

  • RESEARCH ARTICLE
    Gang Yi, Xinfei Fan, Xie Quan, Shuo Chen, Hongtao Yu
    Frontiers of Environmental Science & Engineering, 2019, 13(2): 23. https://doi.org/10.1007/s11783-019-1103-x

    CNT-PVA membrane was fabricated and compared with polymeric membranes.

    The separation performance was evaluated by homemade and cutting fluid emulsions.

    The three membranes show similar oil retention rates.

    CNT-PVA membranes have higher permeation fluxes compared with polymeric membranes.

    CNT-PVA membrane shows higher fouling resistance.

    Membrane separation is an attractive technique for removal of emulsified oily wastewater. However, polymeric membranes which dominate the current market usually suffer from severe membrane fouling. Therefore, membranes with high fouling resistance are imperative to treat emulsified oily wastewater. In this study, carbon nanotube-polyvinyl alcohol (CNT-PVA) membrane was fabricated. And its separation performance for emulsified oily wastewater was compared with two commercial polymeric membranes (PVDF membrane and PES membrane) by filtration of two homemade emulsions and one cutting fluid emulsion. The results show that these membranes have similar oil retention efficiencies for the three emulsions. Whereas, the permeation flux of CNT-PVA membrane is 1.60 to 3.09 times of PVDF membrane and 1.41 to 11.4 times of PES membrane, respectively. Moreover, after five consecutive operation circles of filtration process and back flush, CNT-PVA membrane can recover 62.3% to 72.9% of its initial pure water flux. However, the pure water flux recovery rates are only 24.1% to 35.3% for PVDF membrane and 6.0% to 26.3% for PES membrane, respectively. Therefore, CNT-PVA membrane are more resistant to oil fouling compared with the two polymeric membranes, showing superior potential in treatment of emulsified oily wastewater.