Reducing environmental impacts through socioeconomic transitions: critical review and prospects

Sai Liang , Qiumeng Zhong

Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 24

PDF (14332KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 24 DOI: 10.1007/s11783-023-1624-1
REVIEW ARTICLE
REVIEW ARTICLE

Reducing environmental impacts through socioeconomic transitions: critical review and prospects

Author information +
History +
PDF (14332KB)

Abstract

● Reducing environmental impacts through socioeconomic structural transitions.

● Simulation of looping the dynamic material cycle should be concerned.

● Transboundary effects of socioeconomic transitions need to be analyzed.

● Facilitating interregional cooperation and synergetic control mechanisms.

Rapid socioeconomic development has caused numerous environmental impacts. Human production and consumption activities are the underlying drivers of resource uses, environmental emissions, and associated environmental impacts (e.g., ecosystem quality and human health). Reducing environmental impacts requires an understanding of the complex interactions between socioeconomic system and environmental system. Existing studies have explored the relationships among human society, economic system, and environmental system. However, it is unclear about the research progress in the effects of socioeconomic activities on environmental impacts and the potential directions of future research. This critical review finds that existing studies have identified critical regions, sectors, and transmission pathways for resource uses, environmental emissions, and environmental impacts from supply chain perspectives. Moreover, scholars have characterized the impacts of socioeconomic transitions on resource uses and environmental emissions. However, existing studies overlook the dynamic nature of the interconnections among human society, economic system, and environmental system. In addition, the effects of socioeconomic structural transitions on environmental impacts remain unknown. This review proposes four prospects and possible solutions that will contribute to a better understanding of the complex interactions among human society, economic system, and environmental system. They can help identify more effective solutions to reduce environmental impacts through socioeconomic transitions.

Graphical abstract

Keywords

Environmental pressures / Environmental impacts / Nexus / Supply chains / Trade / Coupled systems

Cite this article

Download citation ▾
Sai Liang, Qiumeng Zhong. Reducing environmental impacts through socioeconomic transitions: critical review and prospects. Front. Environ. Sci. Eng., 2023, 17(2): 24 DOI:10.1007/s11783-023-1624-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ackerman F, Decanio S J, Howarth R B, Sheeran K (2009). Limitations of integrated assessment models of climate change. Climatic Change, 95(3–4): 297–315

[2]

Acuña V, Bregoli F, Font C, Barceló D, Corominas L, Ginebreda A, Petrovic M, Rodríguez-Roda I, Sabater S, Marcé R. (2020). Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global change context. Environment International, 143: 105993

[3]

Albrecht T R, Crootof A, Scott C A. (2018). The water-energy-food nexus: a systematic review of methods for nexus assessment. Environmental Research Letters, 13(4): 043002

[4]

Barbier E B, Hochard J P. (2018). Land degradation and poverty. Nature Sustainability, 1(11): 623–631

[5]

Beckage B, Gross L J, Lacasse K, Carr E, Metcalf S S, Winter J M, Howe P D, Fefferman N, Franck T, Zia A, Kinzig A, Hoffman F M. (2018). Linking models of human behaviour and climate alters projected climate change. Nature Climate Change, 8(1): 79–84

[6]

Bleischwitz R, Spataru C, Vandeveer S D, Obersteiner M, Van Der Voet E, Johnson C, Andrews-Speed P, Boersma T, Hoff H, Van Vuuren D P. (2018). Resource nexus perspectives towards the United Nations sustainable development goals. Nature Sustainability, 1(12): 737–743

[7]

Bo X, Jia M, Xue X, Tang L, Mi Z, Wang S, Cui W, Chang X, Ruan J, Dong G, Zhou B, Davis S J. (2021). Effect of strengthened standards on Chinese ironmaking and steelmaking emissions. Nature Sustainability, 4(9): 811–820

[8]

Brauer M, Amann M, Burnett R T, Cohen A, Dentener F, Ezzati M, Henderson S B, Krzyzanowski M, Martin R V, Van Dingenen R, van Donkelaar A, Thurston G D. (2012). Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environmental Science & Technology, 46(2): 652–660

[9]

Bryan B A, Runting R K, Capon T, Perring M P, Cunningham S C, Kragt M E, Nolan M, Law E A, Renwick A R, Eber S, Christian R, Wilson K A. (2016). Designer policy for carbon and biodiversity co-benefits under global change. Nature Climate Change, 6(3): 301–305

[10]

Cai B, Hubacek K, Feng K, Zhang W, Wang F, Liu Y. (2020). Tension of agricultural land and water use in China’s trade: tele-connections, hidden drivers and potential solutions. Environmental Science & Technology, 54(9): 5365–5375

[11]

Chang J, Ciais P, Gasser T, Smith P, Herrero M, Havlík P, Obersteiner M, Guenet B, Goll D S, Li W, Naipal V, Peng S, Qiu C, Tian H, Viovy N, Yue C, Zhu D. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 12(1): 118

[12]

Chartres N, Bero L A, Norris S L. (2019). A review of methods used for hazard identification and risk assessment of environmental hazards. Environment International, 123: 231–239

[13]

Chen C, Jiang Z, Li N, Wang H, Wang P, Zhang Z, Zhang C, Ma F, Huang Y, Lu X, Wei J, Qi J, Chen W Q. (2022). Advancing UN Comtrade for physical trade flow analysis: review of data quality issues and solutions. Resources, Conservation and Recycling, 186: 106526

[14]

Chen J, Zhou C, Wang S, Li S. (2018). Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally. Applied Energy, 230: 94–105

[15]

Chen J M. (2021). Carbon neutrality: toward a sustainable future. The Innovation, 2(3): 100127

[16]

Chen L, Liang S, Liu M, Yi Y, Mi Z, Zhang Y, Li Y, Qi J, Meng J, Tang X, Zhang H, Tong Y, Zhang W, Wang X, Shu J, Yang Z. (2019). Trans-provincial health impacts of atmospheric mercury emissions in China. Nature Communications, 10(1): 1484

[17]

Chen L, Wang H H, Liu J F, Tong Y D, Ou L B, Zhang W, Hu D, Chen C, Wang X J. (2014). Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions. Atmospheric Chemistry and Physics, 14(18): 10163–10176

[18]

Chowdhury S, Pozzer A, Haines A, Klingmüller K, Münzel T, Paasonen P, Sharma A, Venkataraman C, Lelieveld J. (2022). Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols. Environment International, 159: 107020

[19]

Clayden M G, Kidd K A, Wyn B, Kirk J L, Muir D, O’Driscoll N J. (2013). Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environmental Science & Technology, 47(21): 12047–12053

[20]

Cohen A J, Brauer M, Burnett R, Anderson H R, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R. . (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389(10082): 1907–1918

[21]

D’Odorico P, Davis K F, Rosa L, Carr J A, Chiarelli D, Dell’angelo J, Gephart J, Macdonald G K, Seekell D A, Suweis S, Rulli M C. (2018). The global food-energy-water nexus. Reviews of Geophysics, 56(3): 456–531

[22]

Deng F, Lv Z, Qi L, Wang X, Shi M, Liu H. (2020). A big data approach to improving the vehicle emission inventory in China. Nature Communications, 11(1): 2801

[23]

Ding D, Xing J, Wang S, Liu K, Hao J. (2019a). Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environmental Health Perspectives, 127(6): 067009

[24]

Ding K J, Gunda T, Hornberger G M. (2019b). Prominent influence of socioeconomic and governance factors on the food-energy-water nexus in sub-Saharan Africa. Earth’s Future, 7(9): 1071–1087

[25]

Dong F, Yu B L, Pan Y L. (2019). Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: evidence from China. Journal of Cleaner Production, 223: 759–771

[26]

Dong H, Dai H, Dong L, Fujita T, Geng Y, Klimont Z, Inoue T, Bunya S, Fujii M, Masui T. (2015). Pursuing air pollutant co-benefits of CO2 mitigation in China: a provincial leveled analysis. Applied Energy, 144: 165–174

[27]

Du J, Zhang X, Huang T, Li M, Ga Z, Ge H, Wang Z, Gao H, Ma J. (2021). Trade-driven black carbon climate forcing and environmental equality under China’s west-east energy transmission. Journal of Cleaner Production, 313: 127896

[28]

Du Y, Ge Y, Ren Y, Fan X, Pan K, Lin L, Wu X, Min Y, Meyerson L A, Heino M, Chang S X, Liu X, Mao F, Yang G, Peng C, Qu Z, Chang J, Didham R K. (2018). A global strategy to mitigate the environmental impact of China’s ruminant consumption boom. Nature Communications, 9(1): 4133

[29]

Duan C, Chen B. (2020). Driving factors of water-energy nexus in China. Applied Energy, 257: 113984

[30]

Endo A, Tsurita I, Burnett K, Orencio P M. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11: 20–30

[31]

Eurostat . (2001). Economy-wide material-flow accounts and derived indicators: a methodological guide. European Commission, Luxembourg

[32]

F T Avelino A, Dall'erba S. (2020). What factors drive the changes in water withdrawals in the U.S. Agriculture and food manufacturing industries between 1995 and 2010? Environmental Science & Technology, 54(17): 10421–10434

[33]

Fan G, Liu Z, Liu X, Shi Y, Wu D, Guo J, Zhang S, Yang X, Zhang Y. (2022). Energy management strategies and multi-objective optimization of a near-zero energy community energy supply system combined with hybrid energy storage. Sustainable Cities and Society, 83: 103970

[34]

Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H, Fornasier F, Tao F, Guo A, Paoletti E. (2019). Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environment International, 131: 104966

[35]

Ferraro P J, Sanchirico J N, Smith M D. (2019). Causal inference in coupled human and natural systems. Proceedings of the National Academy of Sciences of the United States of America, 116(12): 5311–5318

[36]

Font Vivanco D, Sprecher B, Hertwich E. (2017). Scarcity-weighted global land and metal footprints. Ecological Indicators, 83: 323–327

[37]

Franzke C L E, Czupryna M. (2020). Probabilistic assessment and projections of US weather and climate risks and economic damages. Climatic Change, 158(3–4): 503–515

[38]

Fuso Nerini F, Tomei J, To L S, Bisaga I, Parikh P, Black M, Borrion A, Spataru C, Castán Broto V, Anandarajah G, Milligan B, Mulugetta Y. (2018). Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nature Energy, 3(1): 10–15

[39]

Gao J, Wang K, Wang Y, Liu S, Zhu C, Hao J, Liu H, Hua S, Tian H. (2018). Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environmental Pollution, 233: 714–724

[40]

Geng G, Zheng Y, Zhang Q, Xue T, Zhao H, Tong D, Zheng B, Li M, Liu F, Hong C, He K, Davis S J. (2021). Drivers of PM2.5 air pollution deaths in China 2002–2017. Nature Geoscience, 14(9): 645–650

[41]

Graedel T E. (2019). Material flow analysis from origin to evolution. Environmental Science & Technology, 53(21): 12188–12196

[42]

Guan D, Liu Z, Geng Y, Lindner S, Hubacek K. (2012). The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change, 2(9): 672–675

[43]

Guan S, Han M, Wu X, Guan C, Zhang B. (2019). Exploring energy-water-land nexus in national supply chains: China 2012. Energy, 185: 1225–1234

[44]

Guan W J, Zheng X Y, Chung K F, Zhong N S. (2016). Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet, 388(10054): 1939–1951

[45]

Guang F, He Y, Wen L, Sharp B. (2019). Energy intensity and its differences across China’s regions: combining econometric and decomposition analysis. Energy, 180: 989–1000

[46]

Guo Y, He P, Searchinger T D, Chen Y, Springmann M, Zhou M, Zhang X, Zhang L, Mauzerall D L. (2022). Environmental and human health trade-offs in potential Chinese dietary shifts. One Earth, 5(3): 268–282

[47]

He C, Liu Z, Wu J, Pan X, Fang Z, Li J, Bryan B A. (2021). Future global urban water scarcity and potential solutions. Nature Communications, 12(1): 4667

[48]

He Y, Weng Q (2018). High Spatial Resolution Remote Sensing: Data, Analysis, and Applications. Boston: CRC Press

[49]

Hemmativaghef E. (2020). Exposure to lead, mercury, styrene, and toluene and hearing impairment: evaluation of dose-response relationships, regulations, and controls. Journal of Occupational and Environmental Hygiene, 17(11–12): 574–597

[50]

Hill J, Goodkind A, Tessum C, Thakrar S, Tilman D, Polasky S, Smith T, Hunt N, Mullins K, Clark M, Marshall J. (2019). Air-quality-related health damages of maize. Nature Sustainability, 2(5): 397–403

[51]

Hong C, Zhang Q, He K, Guan D, Li M, Liu F, Zheng B. (2017). Variations of China’s emission estimates: response to uncertainties in energy statistics. Atmospheric Chemistry and Physics, 17(2): 1227–1239

[52]

Hong C, Zhang Q, Zhang Y, Davis S J, Tong D, Zheng Y, Liu Z, Guan D, He K, Schellnhuber H J. (2019). Impacts of climate change on future air quality and human health in China. Proceedings of the National Academy of Sciences of the United States of America, 116(35): 17193–17200

[53]

Hong C, Zhao H, Qin Y, Burney J A, Pongratz J, Hartung K, Liu Y, Moore F C, Jackson R B, Zhang Q, Davis S J. (2022). Land-use emissions embodied in international trade. Science, 376(6593): 597–603

[54]

Huijbregts M A J, Steinmann Z J N, Elshout P M F, Stam G, Verones F, Vieira M, Zijp M, Hollander A, Zelm R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2): 138–147

[55]

Huntington H P, Schmidt J I, Loring P A, Whitney E, Aggarwal S, Byrd A G, Dev S, Dotson A D, Huang D, Johnson B. . (2021). Applying the food–energy–water nexus concept at the local scale. Nature Sustainability, 4(8): 672–679

[56]

Jia J, Gong Z, Gu Z, Chen C, Xie D. (2018). Multi-perspective comparisons and mitigation implications of SO2 and NOx discharges from the industrial sector of China: a decomposition analysis. Environmental Science and Pollution Research International, 25(10): 9600–9614

[57]

Jia X, O’Connor D, Hou D, Jin Y, Li G, Zheng C, Ok Y S, Tsang D C W, Luo J. (2019). Groundwater depletion and contamination: spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 672: 551–562

[58]

Jiang Y, Xing J, Wang S, Chang X, Liu S, Shi A, Liu B, Sahu Shovan K. (2021). Understand the local and regional contributions on air pollution from the view of human health impacts. Frontiers of Environmental Science & Engineering, 15(5): 88

[59]

Jordan A, Patch H M, Grozinger C M, Khanna V. (2021). Economic dependence and vulnerability of United States agricultural sector on insect-mediated pollination service. Environmental Science & Technology, 55(4): 2243–2253

[60]

Kovanda J, Hak T. (2008). Changes in materials use in transition economies. Journal of Industrial Ecology, 12(5–6): 721–738

[61]

Kwon S Y, Selin N E, Giang A, Karplus V J, Zhang D. (2018). Present and future mercury concentrations in Chinese rice: insights from modeling. Global Biogeochemical Cycles, 32(3): 437–462

[62]

Landrigan P J, Fuller R, Acosta N J R, Adeyi O, Arnold R, Basu N N, Baldé A B, Bertollini R, Bose-O’Reilly S, Boufford J I. . (2018). The Lancet Commission on pollution and health. Lancet, 391(10119): 462–512

[63]

Lavoie R A, Jardine T D, Chumchal M M, Kidd K A, Campbell L M. (2013). Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environmental Science & Technology, 47(23): 13385–13394

[64]

Lee L C, Wang Y, Zuo J. (2021). The nexus of water-energy-food in China’s tourism industry. Resources, Conservation, and Recycling, 164: 105157

[65]

Lelieveld J, Evans J S, Fnais M, Giannadaki D, Pozzer A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569): 367–371

[66]

Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A. (2012). International trade drives biodiversity threats in developing nations. Nature, 486(7401): 109–112

[67]

Lenzen M, Murray J. (2010). Conceptualising environmental responsibility. Ecological Economics, 70(2): 261–270

[68]

Li B, Gasser T, Ciais P, Piao S, Tao S, Balkanski Y, Hauglustaine D, Boisier J P, Chen Z, Huang M. . (2016a). The contribution of China’s emissions to global climate forcing. Nature, 531(7594): 357–361

[69]

Li H, Zhao Y, Zheng L, Wang S, Kang J, Liu Y, Li H, Shi L, Shan Y. (2021a). Dynamic characteristics and drivers of the regional household energy-carbon-water nexus in China. Environmental Science and Pollution Research International, 28(39): 55220–55232

[70]

LiH, GengY , ShinwariR, Yangjie W, RjoubH (2021b). Does renewable energy electricity and economic complexity index help to achieve carbon neutrality target of top exporting countries? Journal of Environmental Management, 299: 113386

[71]

Li J, Zhou S, Wei W, Qi J, Li Y, Chen B, Zhang N, Guan D, Qian H, Wu X, Miao J, Chen L, Feng K, Liang S. (2020a). China’s retrofitting measures in coal-fired power plants bring significant mercury-related health benefits. One Earth, 3(6): 777–787

[72]

Li J, Zhou H, Meng J, Yang Q, Chen B, Zhang Y. (2018). Carbon emissions and their drivers for a typical urban economy from multiple perspectives: a case analysis for Beijing city. Applied Energy, 226: 1076–1086

[73]

Li L, Wang X, Miao J, Abulimiti A, Jing X, Ren N. (2022a). Carbon neutrality of wastewater treatment: a systematic concept beyond the plant boundary. Environmental Science and Ecotechnology, 11: 100180

[74]

Li Y, Chen L, Liang S, Qi J, Zhou H, Feng C, Yang X, Wu X, Mi Z, Yang Z. (2020b). Spatially explicit global hotspots driving China’s mercury related health impacts. Environmental Science & Technology, 54(22): 14547–14557

[75]

Li Y, Chen L, Liang S, Zhou H, Liu Y R, Zhong H, Yang Z. (2022b). Looping mercury cycle in global environmental-economic system modeling. Environmental Science & Technology, 56(5): 2861–2879

[76]

Li Y, Meng J, Liu J, Xu Y, Guan D, Tao W, Huang Y, Tao S. (2016b). Interprovincial reliance for improving air quality in China: a case study on black carbon aerosol. Environmental Science & Technology, 50(7): 4118–4126

[77]

Liang S, Chang W, Zhou H, Qi J, Li Y, Feng C, Wang S. (2021a). Global economic structure transition boosts atmospheric mercury emissions in China. Earth's Future, 9(6): e2021EF002076

[78]

Liang S, Liu Z, Crawford-Brown D, Wang Y, Xu M. (2014). Decoupling analysis and socioeconomic drivers of environmental pressure in China. Environmental Science & Technology, 48(2): 1103–1113

[79]

Liang S, Qu S, Xu M. (2016a). Betweenness-based method to identify critical transmission sectors for supply chain environmental pressure mitigation. Environmental Science & Technology, 50(3): 1330–1337

[80]

Liang S, Qu S, Zhao Q, Zhang X, Daigger G T, Newell J P, Miller S A, Johnson J X, Love N G, Zhang L. . (2019). Quantifying the urban food-energy-water nexus: the case of the Detroit metropolitan area. Environmental Science & Technology, 53(2): 779–788

[81]

Liang S, Qu S, Zhu Z, Guan D, Xu M. (2017). Income-based greenhouse gas emissions of nations. Environmental Science & Technology, 51(1): 346–355

[82]

Liang S, Wang H, Qu S, Feng T, Guan D, Fang H, Xu M. (2016b). Socioeconomic drivers of greenhouse gas emissions in the United States. Environmental Science & Technology, 50(14): 7535–7545

[83]

Liang S, Wang Y, Cinnirella S, Pirrone N. (2015). Atmospheric mercury footprints of nations. Environmental Science & Technology, 49(6): 3566–3574

[84]

Liang S, Xu M, Liu Z, Suh S, Zhang T. (2013a). Socioeconomic drivers of mercury emissions in China from 1992 to 2007. Environmental Science & Technology, 47(7): 3234–3240

[85]

Liang S, Xu M, Suh S, Tan R R. (2013b). Unintended environmental consequences and co-benefits of economic restructuring. Environmental Science & Technology, 47(22): 12894–12902

[86]

Liang Y, Li Y, Liang S, Feng C, Xu L, Qi J, Yang X, Wang Y, Zhang C, Li K, Li H, Yang Z. (2020). Quantifying direct and indirect spatial food-energy-water (few) nexus in China. Environmental Science & Technology, 54(16): 9791–9803

[87]

Liang Y, Liang S, Li K, Qi J, Feng C, Xu L, Yang Z. (2021b). Socioeconomic determinants for the changing food-related scarce water uses in Chinese regions. Journal of Cleaner Production, 316: 128190

[88]

Liao S, Wu Y, Wong S W, Shen L. (2020). Provincial perspective analysis on the coordination between urbanization growth and resource environment carrying capacity (RECC) in China. Science of the Total Environment, 730: 138964

[89]

Lin C, Qi J, Liang S, Feng C, Wiedmann T O, Liao Y, Yang X, Li Y, Mi Z, Yang Z. (2020). Saving less in China facilitates global CO2 mitigation. Nature Communications, 11(1): 1358

[90]

Lin J, Du M, Chen L, Feng K, Liu Y, Martin R V, Wang J, Ni R, Zhao Y, Kong H, Weng H, Liu M, Donkelaar A, Liu Q, Hubacek K. (2019). Carbon and health implications of trade restrictions. Nature Communications, 10(1): 4947

[91]

Lin J, Tong D, Davis S, Ni R, Tan X, Pan D, Zhao H, Lu Z, Streets D, Feng T. . (2016). Global climate forcing of aerosols embodied in international trade. Nature Geoscience, 9(10): 790–794

[92]

Liu J, Dietz T, Carpenter S R, Alberti M, Folke C, Moran E, Pell A N, Deadman P, Kratz T, Lubchenco J. . (2007). Complexity of coupled human and natural systems. Science, 317(5844): 1513–1516

[93]

Liu J, Hull V, Godfray H C J, Tilman D, Gleick P, Hoff H, Pahl-Wostl C, Xu Z, Chung M G, Sun J, Li S. (2018). Nexus approaches to global sustainable development. Nature Sustainability, 1(9): 466–476

[94]

Liu J, Mooney H, Hull V, Davis S J, Gaskell J, Hertel T, Lubchenco J, Seto K C, Gleick P, Kremen C, Li S. (2015). Systems integration for global sustainability. Science, 347(6225): 1258832

[95]

Liu J, Yin H, Tang X, Zhu T, Zhang Q, Liu Z, Tang X, Yi H. (2021a). Transition in air pollution, disease burden and health cost in China: a comparative study of long-term and short-term exposure. Environmental Pollution, 277: 116770

[96]

Liu M, Zhang Q, Yu C, Yuan L, He Y, Xiao W, Zhang H, Guo J, Zhang W, Li Y. . (2021b). Observation-based mercury export from rivers to coastal oceans in East Asia. Environmental Science & Technology, 55(20): 14269–14280

[97]

Liu X, Huang Y, Xu X, Li X, Ciais P, Lin P, Gong K, Ziegler A D, Chen A, Gong P. . (2020). High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 3(7): 564–570

[98]

Ma R, Li K, Guo Y, Zhang B, Zhao X, Linder S, Guan C, Chen G, Gan Y, Meng J. (2021). Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nature Communications, 12(1): 6308

[99]

Ma T, Sun S, Fu G, Hall J W, Ni Y, He L, Yi J, Zhao N, Du Y, Pei T, Cheng W, Song C, Fang C, Zhou C. (2020). Pollution exacerbates China’s water scarcity and its regional inequality. Nature Communications, 11(1): 650

[100]

Magazzino C, Mele M, Schneider N. (2021). A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions. Renewable Energy, 167: 99–115

[101]

Marques A, Martins I S, Kastner T, Plutzar C, Theurl M C, Eisenmenger N, Huijbregts M A J, Wood R, Stadler K, Bruckner M. . (2019). Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology & Evolution, 3(4): 628–637

[102]

Marques A, Rodrigues J, Lenzen M, Domingos T. (2012). Income-based environmental responsibility. Ecological Economics, 84: 57–65

[103]

Massányi P, Massányi M, Madeddu R, Stawarz R, Lukáč N. (2020). Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics, 8(4): 94

[104]

Mi Z, Zhang Y, Guan D, Shan Y, Liu Z, Cong R, Yuan X, Wei Y. (2016). Consumption-based emission accounting for Chinese cities. Applied Energy, 184: 1073–1081

[105]

Miller R E, Blair P D (2009). Input-output Analysis: Foundations and Extensions. Cambridge: Cambridge University Press

[106]

Moore F C, Lacasse K, Mach K J, Shin Y A, Gross L J, Beckage B. (2022). Determinants of emissions pathways in the coupled climate-social system. Nature, 603(7899): 103–111

[107]

Moss R H, Edmonds J A, Hibbard K A, Manning M R, Rose S K, van Vuuren D P, Carter T R, Emori S, Kainuma M, Kram T. . (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756

[108]

Moutinho V, Moreira A C, Silva P M. (2015). The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis. Renewable & Sustainable Energy Reviews, 50: 1485–1499

[109]

Nansai K, Tohno S, Chatani S, Kanemoto K, Kurogi M, Fujii Y, Kagawa S, Kondo Y, Nagashima F, Takayanagi W, Lenzen M. (2020). Affluent countries inflict inequitable mortality and economic loss on Asia via PM2.5 emissions. Environment International, 134: 105238

[110]

Nielsen K S, Nicholas K A, Creutzig F, Dietz T, Stern P C. (2021). The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nature Energy, 6(11): 1011–1016

[111]

O'Hara C C, Frazier M, Halpern B S. (2021). At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science, 372(6537): 84–87

[112]

Oswald Y, Owen A, Steinberger J K. (2020). Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nature Energy, 5(3): 231–239

[113]

Owen A, Scott K, Barrett J. (2018). Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus. Applied Energy, 210: 632–642

[114]

Pastor A V, Palazzo A, Havlik P, Biemans H, Wada Y, Obersteiner M, Kabat P, Ludwig F. (2019). The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2(6): 499–507

[115]

Peng L, Liu F, Zhou M, Li M, Zhang Q, Mauzerall D L. (2021a). Alternative-energy-vehicles deployment delivers climate, air quality, and health co-benefits when coupled with decarbonizing power generation in China. One Earth, 4(8): 1127–1140

[116]

Peng W, Iyer G, Bosetti V, Chaturvedi V, Edmonds J, Fawcett A A, Hallegatte S, Victor D G, van Vuuren D, Weyant J. (2021b). Climate policy models need to get real about people - Here’s how. Nature, 594(7862): 174–176

[117]

Peng W, Wagner F, Ramana M V, Zhai H, Small M J, Dalin C, Zhang X, Mauzerall D L. (2018). Managing China’s coal power plants to address multiple environmental objectives. Nature Sustainability, 1(11): 693–701

[118]

Peters G P. (2008). From production-based to consumption-based national emission inventories. Ecological Economics, 65(1): 13–23

[119]

Piao S, Yue C, Ding J, Guo Z. (2022). Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Science China Earth Sciences, 65(6): 1178–1186

[120]

Pichery C, Bellanger M, Zmirou-Navier D, Fréry N, Cordier S, Roue-Legall A, Hartemann P, Grandjean P. (2012). Economic evaluation of health consequences of prenatal methylmercury exposure in France. Environmental Health, 11(1): 53

[121]

Qi J, Wang Y, Liang S, Li Y, Li Y, Feng C, Xu L, Wang S, Chen L, Wang D, Yang Z. (2019). Primary suppliers driving atmospheric mercury emissions through global supply chains. One Earth, 1(2): 254–266

[122]

Qian H, Xu S, Cao J, Ren F, Wei W, Meng J, Wu L. (2021). Air pollution reduction and climate co-benefits in China’s industries. Nature Sustainability, 4(5): 417–425

[123]

Qu S, Liang S, Konar M, Zhu Z, Chiu A S F, Jia X, Xu M. (2018). Virtual water scarcity risk to the global trade system. Environmental Science & Technology, 52(2): 673–683

[124]

Ramanathan V, Xu Y, Versaci A. (2022). Modelling human–natural systems interactions with implications for twenty-first-century warming. Nature Sustainability, 5(3): 263–271

[125]

Rao N D, Kiesewetter G, Min J, Pachauri S, Wagner F. (2021). Household contributions to and impacts from air pollution in India. Nature Sustainability, 4(10): 859–867

[126]

Rodrigues J, Domingos T. (2008). Consumer and producer environmental responsibility: comparing two approaches. Ecological Economics, 66(2–3): 533–546

[127]

Samset B H, Fuglestvedt J S, Lund M T. (2020). Delayed emergence of a global temperature response after emission mitigation. Nature Communications, 11(1): 3261

[128]

Schuur E A G, Mcguire A D, Schadel C, Grosse G, Harden J W, Hayes D J, Hugelius G, Koven C D, Kuhry P, Lawrence D M, Natali S M, Olefeldt D, Romanovsky V E, Schaefer K, Turetsky M R, Treat C C, Vonk J E. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546): 171–179

[129]

Shah S M, Liu G Y, Yang Q, Wang X Q, Casazza M, Agostinho F, Lombardi G V, Giannetti B F. (2019). Emergy-based valuation of agriculture ecosystem services and dis-services. Journal of Cleaner Production, 239: 118019

[130]

Shan Y, Guan D, Zheng H, Ou J, Li Y, Meng J, Mi Z, Liu Z, Zhang Q. (2018). China CO2 emission accounts 1997-2015. Scientific Data, 5(1): 170201

[131]

Shao W, Li F, Cao X, Tang Z, Bai Y, Yang S. (2020). Reducing export-driven CO2 and PM emissions in China’s provinces: a structural decomposition and coordinated effects analysis. Journal of Cleaner Production, 274: 123101

[132]

Shi G, Lu X, Deng Y, Urpelainen J, Liu L C, Zhang Z, Wei W, Wang H. (2020). Air pollutant emissions induced by population migration in China. Environmental Science & Technology, 54(10): 6308–6318

[133]

Singh B, Strømman A H, Hertwich E G. (2012). Scenarios for the environmental impact of fossil fuel power: co-benefits and trade-offs of carbon capture and storage. Energy, 45(1): 762–770

[134]

Steininger K W, Lininger C, Meyer L H, Munoz P, Schinko T. (2016). Multiple carbon accounting to support just and effective climate policies. Nature Climate Change, 6(1): 35–41

[135]

Tessum C W, Apte J S, Goodkind A L, Muller N Z, Mullins K A, Paolella D A, Polasky S, Springer N P, Thakrar S K, Marshall J D, Hill J D. (2019). Inequity in consumption of goods and services adds to racial-ethnic disparities in air pollution exposure. Proceedings of the National Academy of Sciences of the United States of America, 116(13): 6001–6006

[136]

Trutnevyte E, Hirt L F, Bauer N, Cherp A, Hawkes A, Edelenbosch O Y, Pedde S, Van Vuuren D P. (2019). Societal transformations in models for energy and climate policy: the ambitious next step. One Earth, 1(4): 423–433

[137]

Wang F, Harindintwali J D, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L. . (2021a). Technologies and perspectives for achieving carbon neutrality. The Innovation, 2(4): 100180

[138]

Wang H, Ang B W, Su B. (2017). A multi-region structural decomposition analysis of global CO2 emission intensity. Ecological Economics, 142: 163–176

[139]

Wang H, Wang G, Qi J, Schandl H, Li Y, Feng C, Yang X, Wang Y, Wang X, Liang S. (2020). Scarcity-weighted fossil fuel footprint of China at the provincial level. Applied Energy, 258: 114081

[140]

Wang P, Zhao S, Dai T, Peng K, Zhang Q, Li J, Chen W Q. (2022). Regional disparities in steel production and restrictions to progress on global decarbonization: a cross-national analysis. Renewable & Sustainable Energy Reviews, 161: 112367

[141]

Wang R, Zimmerman J. (2016). Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world. Environmental Science & Technology, 50(10): 5143–5153

[142]

Wang S, Fu B, Zhao W, Liu Y, Wei F. (2018). Structure, function, and dynamic mechanisms of coupled human–natural systems. Current Opinion in Environmental Sustainability, 33: 87–91

[143]

Wang S, Song J, Li G, Wu Y, Zhang L, Wan Q, Streets D G, Chin C K, Hao J. (2010). Estimating mercury emissions from a zinc smelter in relation to China’s mercury control policies. Environmental Pollution, 158(10): 3347–3353

[144]

Wang Z, Lian L, Li J, He J, Ma H, Chen L, Mao X, Gao H, Ma J, Huang T. (2021b). The atmospheric lead emission, deposition, and environmental inequality driven by interprovincial trade in China. Science of the Total Environment, 797: 149113

[145]

Wei L, Li C, Wang J, Wang X, Wang Z, Cui C, Peng S, Liu Y, Yu S, Wang L, Shi Z. (2020). Rising middle and rich classes drove China’s carbon emissions. Resources, Conservation and Recycling, 159: 104839

[146]

Wei Y, Chen K, Kang J, Chen W, Wang X, Zhang X. (2022). Policy and management of carbon peaking and carbon neutrality: a literature review. Engineering, 14(7): 52–63

[147]

West P C, Gerber J S, Engstrom P M, Mueller N D, Brauman K A, Carlson K M, Cassidy E S, Johnston M, MacDonald G K, Ray D K, Siebert S. (2014). Leverage points for improving global food security and the environment. Science, 345(6194): 325–328

[148]

Wiedmann T, Lenzen M. (2018). Environmental and social footprints of international trade. Nature Geoscience, 11(5): 314–321

[149]

Wilting H C, Schipper A M, Bakkenes M, Meijer J R, Huijbregts M A. (2017). Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environmental Science & Technology, 51(6): 3298–3306

[150]

Wolf M J, Esty D C, Kim H, Bell M L, Brigham S, Nortonsmith Q, Zaharieva S, Wendling Z A, de Sherbinin A, Emerson J W. (2022). New insights for tracking global and local trends in exposure to air pollutants. Environmental Science & Technology, 56(7): 3984–3996

[151]

Wu Q, Wang S, Liu K, Li G, Hao J. (2018). Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the minamata convention. Environmental Science & Technology, 52(19): 11087–11093

[152]

WuT, QinB, BrookesJ D, Yan W, JiX, FengJ (2019). Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Science of the Total Environment, 650(Pt 1): 1554–1565

[153]

Wu Y, Wang S, Streets D G, Hao J, Chan M, Jiang J. (2006). Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science & Technology, 40(17): 5312–5318

[154]

Xue J, Ji X, Zhao L, Yang Y, Xie Y, Li D, Wang C, Sun W. (2019). Cooperative econometric model for regional air pollution control with the additional goal of promoting employment. Journal of Cleaner Production, 237: 117814

[155]

Yang H, Huang X J, Hu J L, Thompson J R, Flower R J (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111

[156]

Yang X, Teng F. (2018). Air quality benefit of China’s mitigation target to peak its emission by 2030. Climate Policy, 18(1): 99–110

[157]

Yang Y, Qu S, Cai B, Liang S, Wang Z, Wang J, Xu M. (2020). Mapping global carbon footprint in China. Nature Communications, 11(1): 2237

[158]

Zhang C, Zhong L, Wang J. (2018a). Decoupling between water use and thermoelectric power generation growth in China. Nature Energy, 3(9): 792–799

[159]

Zhang L, Wang S, Meng Y, Hao J. (2012). Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China. Environmental Science & Technology, 46(11): 6385–6392

[160]

Zhang Q, Jiang X, Tong D, Davis S J, Zhao H, Geng G, Feng T, Zheng B, Lu Z, Streets D G. . (2017). Transboundary health impacts of transported global air pollution and international trade. Nature, 543(7647): 705–709

[161]

Zhang Q, Zheng Y X, Tong D, Shao M, Wang S X, Zhang Y H, Xu X D, Wang J N, He H, Liu W Q. . (2019a). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463–24469

[162]

Zhang R, Hanaoka T. (2022a). Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality. Nature Communications, 13(1): 3629

[163]

Zhang S, Chen W. (2022b). Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nature Communications, 13(1): 87

[164]

Zhang S, Tian Y, Guo H, Liu R, He N, Li Z, Zhao W. (2022c). Study on the occurrence of typical heavy metals in drinking water and corrosion scales in a large community in northern China. Chemosphere, 290: 133145

[165]

Zhang Y, Jacob D J, Horowitz H M, Chen L, Amos H M, Krabbenhoft D P, Slemr F, St Louis V L, Sunderland E M. (2016). Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proceedings of the National Academy of Sciences of the United States of America, 113(3): 526–531

[166]

Zhang Y, Song Z, Huang S, Zhang P, Peng Y, Wu P, Gu J, Dutkiewicz S, Zhang H, Wu S. . (2021). Global health effects of future atmospheric mercury emissions. Nature Communications, 12(1): 3035

[167]

Zhang Z, Hao Y, Lu Z N. (2018b). Does environmental pollution affect labor supply? An empirical analysis based on 112 cities in China. Journal of Cleaner Production, 190: 378–387

[168]

Zhang Z, Shao C, Guan Y, Xue C. (2019b). Socioeconomic factors and regional differences of PM2.5 health risks in China. Journal of Environmental Management, 251: 109564

[169]

Zhao C, Chen B. (2014). Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environmental Science & Technology, 48(21): 12723–12731

[170]

Zhao H, Chang J F, Havlik P, Van Dijk M, Valin H, Janssens C, Ma L, Bai Z H, Herrero M, Smith P, Obersteiner M. (2021). China’s future food demand and its implications for trade and environment. Nature Sustainability, 4(12): 1042–1051

[171]

Zhao R, Liu Y, Tian M, Ding M, Cao L, Zhang Z, Chuai X, Xiao L, Yao L. (2018). Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy, 72: 480–492

[172]

Zhen W, Qin Q, Kuang Y, Huang N. (2017). Investigating low-carbon crop production in Guangdong Province, China (1993–2013): a decoupling and decomposition analysis. Journal of Cleaner Production, 146: 63–70

[173]

Zheng H, Long Y, Wood R, Moran D, Zhang Z, Meng J, Feng S, Hertwich E, Guan D. (2022). Ageing society in developed countries challenges carbon mitigation. Nature Climate Change, 12(3): 241–248

[174]

Zhong Q, Li H, Liang S, Jetashree X, Wu J, Qi S. (2022). Changes of production and consumption structures in coastal regions lead to mercury emission control in China. Journal of Industrial Ecology, 1–11

[175]

Zhu X, Lane R, Werner T T. (2017). Modelling in-use stocks and spatial distributions of household electronic devices and their contained metals based on household survey data. Resources, Conservation and Recycling, 120: 27–37

RIGHTS & PERMISSIONS

The Author(s) 2023. This article is published with open access at link.springer.com and journal.hep. com.cn

AI Summary AI Mindmap
PDF (14332KB)

7119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/