Cadmium removal mechanistic comparison of three Fe-based nanomaterials: Water-chemistry and roles of Fe dissolution

Xiaoge Huang , Lihao Chen , Ziqi Ma , Kenneth C. Carroll , Xiao Zhao , Zailin Huo

Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (12) : 151

PDF (17714KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (12) : 151 DOI: 10.1007/s11783-022-1586-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Cadmium removal mechanistic comparison of three Fe-based nanomaterials: Water-chemistry and roles of Fe dissolution

Author information +
History +
PDF (17714KB)

Abstract

● nZVI, S-nZVI, and nFeS were systematically compared for Cd(II) removal.

● Cd(II) removal by nZVI involved coprecipitation, complexation, and reduction.

● The predominant reaction for Cd(II) removal by S-nZVI and nFeS was replacement.

● A simple pseudo-second-order kinetic can adequately fit Fe(II) dissolution.

Cadmium (Cd) is a common toxic heavy metal in the environment. Taking Cd(II) as a target contaminant, we systematically compared the performances of three Fe-based nanomaterials (nano zero valent iron, nZVI; sulfidated nZVI, S-nZVI; and nano FeS, nFeS) for Cd immobilization under anaerobic conditions. Effects of nanomaterials doses, initial pH, co-existing ions, and humic acid (HA) were examined. Under identical conditions, at varied doses or initial pH, Cd(II) removal by three materials followed the order of S-nZVI > nFeS > nZVI. At pH 6, the Cd(II) removal within 24 hours for S-nZVI, nFeS, and nZVI (dose of 20 mg/L) were 93.50%, 89.12% and 4.10%, respectively. The fast initial reaction rate of nZVI did not lead to a high removal capacity. The Cd removal was slightly impacted or even improved with co-existing ions (at 50 mg/L or 200 mg/L) or HA (at 2 mg/L or 20 mg/L). Characterization results revealed that nZVI immobilized Cd through coprecipitation, surface complexation, and reduction, whereas the mechanisms for sulfidated materials involved replacement, coprecipitation, and surface complexation, with replacement as the predominant reaction. A strong linear correlation between Cd(II) removal and Fe(II) dissolution was observed, and we proposed a novel pseudo-second-order kinetic model to simulate Fe(II) dissolution.

Graphical abstract

Keywords

Nano zero valent iron / Sulfided zero valent iron / FeS / Cd(II) immobilization / Fe dissolution

Cite this article

Download citation ▾
Xiaoge Huang, Lihao Chen, Ziqi Ma, Kenneth C. Carroll, Xiao Zhao, Zailin Huo. Cadmium removal mechanistic comparison of three Fe-based nanomaterials: Water-chemistry and roles of Fe dissolution. Front. Environ. Sci. Eng., 2022, 16(12): 151 DOI:10.1007/s11783-022-1586-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel Salam M , Owija N Y , Kosa S . (2021). Removal of the toxic cadmium ions from aqueous solutions by zero-valent iron nanoparticles. International Journal of Environmental Science and Technology, 18( 8): 2391– 2404

[2]

Bi X , Pan X , Zhou S . (2013). Soil security is alarming in China’s main grain producing areas. Environmental Science & Technology, 47( 14): 7593– 7594

[3]

Boparai H K , Joseph M , O’Carroll D M . (2013). Cadmium (Cd2+) removal by nano zerovalent iron: Surface analysis, effects of solution chemistry and surface complexation modeling. Environmental Science and Pollution Research International, 20( 9): 6210– 6221

[4]

Brigante M Zanini G Avena M (2009). Effect of pH, anions and cations on the dissolution kinetics of humic acid particles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 347(1−3): 180− 186

[5]

Cai Z , Zhao X , Duan J , Zhao D , Dang Z , Lin Z . (2020). Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades. Frontiers of Environmental Science & Engineering, 14( 5): 84

[6]

Davis A P , Bhatnagar V . (1995). Adsorption of cadmium and humic acid onto hematite. Chemosphere, 30( 2): 243– 256

[7]

Dong D , Nelson Y M , Lion L W , Shuler M L , Ghiorse W C . (2000). Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: New evidence for the importance of Mn and Fe oxides. Water Research, 34( 2): 427– 436

[8]

Dong H , Zhang C , Deng J , Jiang Z , Zhang L , Cheng Y , Hou K , Tang L , Zeng G . (2018). Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Research, 135 : 1– 10

[9]

Du J , Bao J , Lu C , Werner D . (2016). Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Research, 102 : 73– 81

[10]

Duan J , Ji H , Zhao X , Tian S , Liu X , Liu W , Zhao D . (2020). Immobilization of U(VI) by stabilized iron sulfide nanoparticles: Water chemistry effects, mechanisms, and long-term stability. Chemical Engineering Journal, 393 : 124692

[11]

Fan D , Lan Y , Tratnyek P G , Johnson R L , Filip J , O’Carroll D M , Nunez Garcia A , Agrawal A . (2017). Sulfidation of iron-based materials: A review of processes and implications for water treatment and remediation. Environmental Science & Technology, 51( 22): 13070– 13085

[12]

Fu R , Mu N , Guo X , Xu Z , Bi D . (2015). Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron. Frontiers of Environmental Science & Engineering, 9( 5): 867– 878

[13]

Gong Y , Gai L , Tang J , Fu J , Wang Q , Zeng E Y . (2017). Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 595 : 743– 751

[14]

He F , Li Z , Shi S , Xu W , Sheng H , Gu Y , Jiang Y , Xi B . (2018). Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron. Environmental Science & Technology, 52( 15): 8627– 8637

[15]

He F , Zhao D . (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 41( 17): 6216– 6221

[16]

He F , Zhao D , Liu J , Roberts C B . (2007). Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 46( 1): 29– 34

[17]

Hou C , Zhao J , Zhang Y , Qian Y , Chen J , Yang M , Du J , Chen T , Huang B , Zhou X . (2022). Enhanced simultaneous removal of cadmium, lead, and acetochlor in hyporheic zones with calcium peroxide coupled with zero-valent iron: Mechanisms and application. Chemical Engineering Journal, 427 : 130900

[18]

Huang J , Yin W , Li P , Bu H , Lv S , Fang Z , Yan M , Wu J . (2020). Nitrate mediated biotic zero valent iron corrosion for enhanced Cd(II) removal. Science of the Total Environment, 744 : 140715

[19]

Huang P , Ye Z , Xie W , Chen Q , Li J , Xu Z , Yao M . (2013). Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Water Research, 47( 12): 4050– 4058

[20]

Hyun S P , Kim B A , Son S , Kwon K D , Kim E , Hayes K F . (2021). Cadmium(II) removal by mackinawite under anoxic conditions. ACS Earth & Space Chemistry, 5( 6): 1306– 1315

[21]

Jeong H Y , Han Y S , Park S W , Hayes K F . (2010). Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization. Geochimica et Cosmochimica Acta, 74( 11): 3182– 3198

[22]

Kim E J , Murugesan K , Kim J H , Tratnyek P G , Chang Y S . (2013). Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: Effects of water chemistry. Industrial & Engineering Chemistry Research, 52( 27): 9343– 9350

[23]

Lee H , Lee H J , Kim H E , Kweon J , Lee B D , Lee C . (2014). Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study. Journal of Hazardous Materials, 265 : 201– 207

[24]

Li J , Qin H , Guan X . (2015). Premagnetization for enhancing the reactivity of multiple zerovalent iron samples toward various contaminants. Environmental Science & Technology, 49( 24): 14401– 14408

[25]

Li X Q , Zhang W X . (2007). Sequestration of metal cations with zerovalent iron nanoparticles–A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111( 19): 6939– 6946

[26]

Li J , Zhang X , Sun Y , Liang L , Pan B , Zhang W , Guan X . (2017). Advances in sulfidation of zerovalent iron for water decontamination. Environmental Science & Technology, 51( 23): 13533– 13544

[27]

Li Y H , Wang S , Luan Z , Ding J , Xu C , Wu D . (2003). Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 41( 5): 1057– 1062

[28]

Liang L , Li W , Li Y , Zhou W , Chen J . (2021a). Removal of EDTA-chelated CdII by sulfidated nanoscale zero-valent iron: Removal mechanisms and influencing factors. Separation and Purification Technology, 276 : 119332

[29]

Liang L Li X Guo Y Lin Z Su X Liu B ( 2021b). The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur. Journal of Hazardous Materials, 404(Pt A): 124057

[30]

Liang L , Li X , Lin Z , Tian C , Guo Y . (2020). The removal of Cd by sulfidated nanoscale zero-valent iron: the structural, chemical bonding evolution and the reaction kinetics. Chemical Engineering Journal, 382 : 122933

[31]

Liang L , Yang W , Guan X , Li J , Xu Z , Wu J , Huang Y , Zhang X . (2013). Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Research, 47( 15): 5846– 5855

[32]

Ling L , Huang X , Li M , Zhang W X . (2017). Mapping the reactions in a single zero-valent iron nanoparticle. Environmental Science & Technology, 51( 24): 14293– 14300

[33]

Liu B , Hu K , Jiang Z , Qu F , Su X . (2011). A 50-year sedimentary record of heavy metals and their chemical speciations in the Shuangtaizi River estuary (China): implications for pollution and biodegradation. Frontiers of Environmental Science & Engineering in China, 5( 3): 435– 444

[34]

Lv D , Zhou X , Zhou J , Liu Y , Li Y , Yang K , Lou Z , Baig S A , Wu D , Xu X . (2018). Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions. Applied Surface Science, 442 : 114– 123

[35]

Ma D , Gao H . (2014). Reuse of heavy metal-accumulating Cynondon dactylon in remediation of water contaminated by heavy metals. Frontiers of Environmental Science & Engineering, 8( 6): 952– 959

[36]

Mielczarski J A , Atenas G M , Mielczarski E . (2005). Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions. Applied Catalysis B: Environmental, 56( 4): 289– 303

[37]

Min Y , Akbulut M , Kristiansen K , Golan Y , Israelachvili J . (2008). The role of interparticle and external forces in nanoparticle assembly. Nature Materials, 7( 7): 527– 538

[38]

Mustafa S , Misbahud D , Sammad Y H , Zaman M I , Sadullah K . (2010). Sorption mechanism of cadmium from aqueous solution on iron sulphide. Chinese Journal of Chemistry, 28( 7): 1153– 1158

[39]

Naushad M , Ahamad T , Alothman Z A , Shar M A , Alhokbany N S , Alshehri S M . (2015). Synthesis, characterization and application of curcumin formaldehyde resin for the removal of Cd2+ from wastewater: kinetics, isotherms and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 29 : 78– 86

[40]

Neumann A Sander M Hofstetter T B ( 2011). Chapter 17: Redox Properties of Structural Fe in Smectite Clay Minerals. In: Tratnyek P, Grundl T, Haderlein S, editors. Aquatic Redox Chemistry. San Francisco: American Chemical Society, 361– 379

[41]

Phenrat T , Saleh N , Sirk K , Tilton R D , Lowry G V . (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41( 1): 284– 290

[42]

Qiao J T , Liu T X , Wang X Q , Li F B , Lv Y H , Cui J H , Zeng X D , Yuan Y Z , Liu C P . (2018). Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere, 195 : 260– 271

[43]

Rajajayavel S R , Ghoshal S . (2015). Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Research, 78 : 144– 153

[44]

Reed B E , Matsumoto M R . (1993). Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Separation Science and Technology, 28( 13-14): 2179– 2195

[45]

Su Y , Adeleye A S , Huang Y , Sun X , Dai C , Zhou X , Zhang Y , Keller A A . (2014). Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Research, 63 : 102– 111

[46]

Su Y , Adeleye A S , Keller A A , Huang Y , Dai C , Zhou X , Zhang Y . (2015). Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Research, 74 : 47– 57

[47]

Sun Y , Li J , Huang T , Guan X . (2016). The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water Research, 100 : 277– 295

[48]

Sun Y , Lou Z , Yu J , Zhou X , Lv D , Zhou J , Baig S A , Xu X . (2017). Immobilization of mercury (II) from aqueous solution using Al2O3-supported nanoscale FeS. Chemical Engineering Journal, 323 : 483– 491

[49]

Thakur A K , Nisola G M , Limjuco L A , Parohinog K J , Torrejos R E C , Shahi V K , Chung W J . (2017). Polyethylenimine-modified mesoporous silica adsorbent for simultaneous removal of Cd(II) and Ni(II) from aqueous solution. Journal of Industrial and Engineering Chemistry, 49 : 133– 144

[50]

Tian S , Gong Y , Ji H , Duan J , Zhao D . (2020). Efficient removal and long-term sequestration of cadmium from aqueous solution using ferrous sulfide nanoparticles: Performance, mechanisms, and long-term stability. Science of the Total Environment, 704 : 135402

[51]

Touomo-Wouafo M , Donkeng-Dazie J , Btatkeu-K B D , Tchatchueng J B , Noubactep C , Ludvík J . (2018). Role of pre-corrosion of Fe0 on its efficiency in remediation systems: An electrochemical study. Chemosphere, 209 : 617– 622

[52]

Turcio-Ortega D , Fan D , Tratnyek P G , Kim E J , Chang Y S . (2012). Reactivity of Fe/FeS nanoparticles: electrolyte composition effects on corrosion electrochemistry. Environmental Science & Technology, 46( 22): 12484– 12492

[53]

Wang Q Wang S Liu M ( 2004). Safety evaluation on pollution of xiang river valley in hunan province. Zhongguo Jishui Paishui, 20: 104- 106 (in Chinese)

[54]

WHO ( 2004). Background document for development of WHO guidelines for drinking-water quality and guidelines for safe recreational water environments. Geneva: World Health Organisation

[55]

Wu L Yu J C Fu X Z ( 2006). Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation . Journal of Molecular Catalysis, A-Chemical, 244( 1– 2): 1– 2

[56]

Xie Y , Cwiertny D M . (2012). Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: Time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI). Environmental Science & Technology, 46( 15): 8365– 8373

[57]

Xu H , Sun Y , Li J , Li F , Guan X . (2016). Aging of zerovalent iron in synthetic groundwater: X-ray photoelectron spectroscopy depth profiling characterization and depassivation with uniform magnetic field. Environmental Science & Technology, 50( 15): 8214– 8222

[58]

Yamashita T , Hayes P . (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 254( 8): 2441– 2449

[59]

Zhang C , Li Y , Wang T J , Jiang Y , Wang H . (2016a). Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent. Applied Surface Science, 363 : 507– 515

[60]

Zhang Q , Guo W , Yue X , Liu Z , Li X . (2016b). Degradation of rhodamine B using FeS-coated zero-valent iron nanoparticles in the presence of dissolved oxygen. Environmental Progress & Sustainable Energy, 35( 6): 1673– 1678

[61]

Zhang Y , Li Y , Dai C , Zhou X , Zhang W . (2014). Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): Characterization and test in a two-stage system. Chemical Engineering Journal, 244 : 218– 226

[62]

Zhao X , Liu W , Cai Z , Han B , Qian T , Zhao D . (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100 : 245– 266

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (17714KB)

Supplementary files

FSE-22028-OF-HXG_suppl_1

7964

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/