Bioinspired and biomimetic membranes for water purification and chemical separation: A review

Elham Abaie , Limeimei Xu , Yue-xiao Shen

Front. Environ. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 124

PDF (4406KB)
Front. Environ. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 124 DOI: 10.1007/s11783-021-1412-8
REVIEW ARTICLE
REVIEW ARTICLE

Bioinspired and biomimetic membranes for water purification and chemical separation: A review

Author information +
History +
PDF (4406KB)

Abstract

•The history of biological and artificial water channels is reviewed.

•A comprehensive channel characterization platform is introduced.

•Rationale designs and fabrications of biomimetic membranes are summarized.

•The advantages, limitations, and challenges of biomimetic membranes are discussed.

•The prospect and scalable solutions of biomimetic membranes are discussed.

Bioinspired and biomimetic membranes that contain biological transport channels or attain their structural designs from biological systems have been through a remarkable development over the last two decades. They take advantage of the exceptional transport properties of those channels, thus possess both high permeability and selectivity, and have emerged as a promising solution to existing membranes. Since the discovery of biological water channel proteins aquaporins (AQPs), extensive efforts have been made to utilize them to make separation membranes–AQP-based membranes, which have been commercialized. The exploration of AQPs’ unique structures and transport properties has resulted in the evolution of biomimetic separation materials from protein-based to artificial channel-based membranes. However, large-scale, defect-free biomimetic membranes are not available yet. This paper reviews the state-of-the-art biomimetic membranes and summarizes the latest research progress, platform, and methodology. Then it critically discusses the potential routes of this emerging area toward scalable applications. We conclude that an appropriate combination of bioinspired concepts and molecular engineering with mature polymer industry may lead to scalable polymeric membranes with intrinsic selective channels, which will gain the merit of both desired selectivity and scalability.

Graphical abstract

Keywords

Aquaporins / Artificial water channels / Biomimetic membranes / Chemical separation and water purification

Cite this article

Download citation ▾
Elham Abaie, Limeimei Xu, Yue-xiao Shen. Bioinspired and biomimetic membranes for water purification and chemical separation: A review. Front. Environ. Sci. Eng., 2021, 15(6): 124 DOI:10.1007/s11783-021-1412-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdulsalam Ebrahim M, Karan S, Livingston A G (2020). On the influence of salt concentration on the transport properties of reverse osmosis membranes in high pressure and high recovery desalination. Journal of Membrane Science, 594: 117339

[2]

Adewole J K, Ahmad A L, Ismail S, Leo C P (2013). Current challenges in membrane separation of CO2 from natural gas: A review. International Journal of Greenhouse Gas Control, 17: 46–65

[3]

Agre P (2004). Aquaporin water channels (nobel lecture). Angewandte Chemie International Edition, 43(33): 4278–4290

[4]

Agre P, King L S, Yasui M, Guggino W B, Ottersen O P, Fujiyoshi Y, Engel A, Nielsen S (2002). Aquaporin water channels: From atomic structure to clinical medicine. Journal of Physiology, 542(1): 3–16

[5]

Aksimentiev A, Schulten K (2005). Imaging α-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map. Biophysical Journal, 88(6): 3745–3761

[6]

Aquaporin A/S.Available online at aquaporin.com

[7]

Balaram V (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4): 1285–1303

[8]

Barakat M A (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4): 361–377

[9]

Barboiu M (2012). Artificial water channels. Angewandte Chemie International Edition, 51(47): 11674–11676

[10]

Barboiu M (2016). Artificial water channels: Incipient innovative developments. Chemical Communications, 52(33): 5657–5665

[11]

Barboiu M, Gilles A (2013). From natural to bioassisted and biomimetic artificial water channel system. Accounts of Chemical Research, 46(12): 2814–2823

[12]

Belegrinou S, Dorn J, Kreiter M, Kita-Tokarczyk K, Sinner E K, Meier W (2010). Biomimetic supported membranes from amphiphilic block copolymers. Soft Matter, 6(1): 179–186

[13]

Belluati A, Mikhalevich V, Yorulmaz Avsar S, Daubian D, Craciun I, Chami M, Meier W P, Palivan C G (2020). How do the properties of amphiphilic polymer membranes influence the functional insertion of peptide pores? Biomacromolecules, 21(2): 701–715

[14]

Benrabah D, Baril D, Sanchez J Y, Armand M, Heres B P S, Gard G G (1993). Comparative electrochemical study of new poly(oxyethy1ene)-Li salt complexes. Journal of the Chemical Society, Faraday Transactions, 89(2): 355–359

[15]

Böckmann R A, De Groot B L, Kakorin S, Neumann E, Grubmüller H (2008). Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophysical Journal, 95(4): 1837–1850

[16]

Borgnia M, Nielsen S, Engel A, Agre P (1999b). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry, 68(1): 425–458

[17]

Borgnia M J, Kozono D, Calamita G, Maloney P C, Agre P, Ambientale G (1999a). Functional reconstitution and characterization of AqpZ, the E . coli water channel protein. 291(5): 1169–1179

[18]

Bornhorst J, Falke J J (2010). Purification of proteins using polyhistidine affinity tags. Methods in Enzymology, 2000(326): 245–254

[19]

Branton D, Deamer D W, Marziali A, Bayley H, Benner S A, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich S B, Krstic P S, Lindsay S, Ling X S, Mastrangelo C H, Meller A, Oliver J S, Pershin Y V, Ramsey J M, Riehn R, Soni G V, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss J A (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26(10): 1146–1153

[20]

Burger B, Maffettone P M, Gusev V V, Aitchison C M, Bai Y, Wang X, Li X, Alston B M, Li B, Clowes R, Rankin N, Harris B, Sprick R S, Cooper A I (2020). A mobile robotic chemist. Nature, 583(7815): 237–241

[21]

Calamita G, Bishai W R, Preston G M, Guggino W B, Agre P (1995). Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. Journal of Biological Chemistry, 270(49): 29063–29066

[22]

Carmichael V E, Dutton P J, Fyles T M, James T D, Swan J A, Zojaji M (1989). Biomimetic ion transport: A functional model of a unimolecular ion channel. Journal of the American Chemical Society, 111(2): 767–769

[23]

Cheisson T, Schelter E J (2019). Rare earth elements: Mendeleev’s bane, modern marvels. Science, 363(6426): 489–493

[24]

Chen L, Si W, Zhang L, Tang G, Li Z T, Hou J L (2013). Chiral selective transmembrane transport of amino acids through artificial channels. Journal of the American Chemical Society, 135(6): 2152–2155

[25]

Chen X, Zhang H, Tunuguntla R H, Noy A (2019). Silicon nanoribbon pH sensors protected by a barrier membrane with carbon nanotube porins. Nano Letters, 19(2): 629–634

[26]

Chowdhury M R, Steffes J, Huey B D, McCutcheon J R (2018a). 3D printed polyamide membranes for desalination. Science, 361(6403): 682–686

[27]

Chowdhury R, Ren T, Shankla M, Decker K, Grisewood M, Prabhakar J, Baker C, Golbeck J H, Aksimentiev A, Kumar M, Maranas C D (2018b). PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nature Communications, 9(1): 3661

[28]

Chrispeels M J, Agre P (1994). Aquaporins: water channel proteins of plant and animal cells. Trends in Biochemical Sciences, 19(10): 421–425

[29]

Chun Y, Qing L, Sun G, Bilad M R, Fane A G, Chong T H (2018). Prototype aquaporin-based forward osmosis membrane: Filtration properties and fouling resistance. Desalination, 445: 75–84

[30]

Cohen S M (2012). Postsynthetic methods for the functionalization of metal-organic frameworks. Chemical Reviews, 112(2): 970–1000

[31]

Compton O C, Nguyen S T (2010). Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small, 6(6): 711–723

[32]

Connolly D L, Shanahan C M, Weissberg P L (1998). The aquaporins. A family of water channel proteins. International Journal of Biochemistry & Cell Biology, 30(2): 169–172

[33]

Cragg P J, Sharma K (2012). Pillar[5]arenes: Fascinating cyclophanes with a bright future. Chemical Society Reviews, 41(2): 597–607

[34]

Dalane K, Dai Z, Mogseth G, Hillestad M, Deng L (2017). Potential applications of membrane separation for subsea natural gas processing: A review. Journal of Natural Gas Science and Engineering, 39: 101–117

[35]

Dhakshnamoorthy B, Rohaim A, Rui H, Blachowicz L, Roux B (2016). Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola. Nature Communications, 7(1): 12753

[36]

Di Vincenzo M, Tiraferri A, Musteata V, Chisca S, Sougrat R, Huang L (2020). Biomimetic artificial water channel membranes for enhanced desalination. Nature Nanotechnology, https://doi.org/10.1038/s41565-020-00796-x

[37]

Dorn J, Belegrinou S, Kreiter M, Sinner E K, Meier W (2011). Planar block copolymer membranes by vesicle spreading. Macromolecular Bioscience, 11(4): 514–525

[38]

Duong P H H, Chung T S, Jeyaseelan K, Armugam A, Chen Z, Yang J, Hong M (2012). Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. Journal of Membrane Science, 409–410: 34–43

[39]

Elimelech M, Phillip W A (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333(6043): 712–717

[40]

Epsztein R, DuChanois R M, Ritt C L, Noy A, Elimelech M (2020). Towards single-species selectivity of membranes with subnanometre pores. Nature Nanotechnology, 15(6): 426–436

[41]

Erbakan M, Shen Y X, Grzelakowski M, Butler P J, Kumar M, Curtis W R (2014). Molecular cloning, overexpression and characterization of a novel water channel protein from Rhodobacter sphaeroides. PLoS One, 9(1): e86830

[42]

Ersson B, Rydén L, Janson J C (2011). In: Janson J C, eds. Protein purification: Principles, high resolution methods, and applications. 3rd ed. Hoboken: Wiley

[43]

Falagán C, Grail B M, Johnson D B (2017). New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, 106: 71–78

[44]

Fei Z, Zhao D, Geldbach T J, Scopelliti R, Dyson P J, Antonijevic S, Bodenhausen G (2005). A synthetic zwitterionic water channel: Characterization in the solid state by X-ray crystallography and NMR spectroscopy. Angewandte Chemie International Edition, 44(35): 5720–5725

[45]

Feng H, Lu X, Wang W, Kang N G, Mays J W (2017). Block copolymers: Synthesis, self-assembly, and applications. Polymers, 9(10): 494

[46]

Flory P J, Krigbaum W R (1951). Thermodynamics of high polymer solutions. Annual Review of Physical Chemistry, 2(1): 383–402

[47]

Freeman B D (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 32(2): 375–380

[48]

Fujiyoshi Y (1998). The structural study of membrane proteins by electron crystallography. Advances in Biophysics, 35: 25–80

[49]

Fuwad A, Ryu H, Malmstadt N, Kim S M, Jeon T J (2019). Biomimetic membranes as potential tools for water purification: Preceding and future avenues. Desalination, 458: 97–115

[50]

Fyles T M (2007). Synthetic ion channels in bilayer membranes. Chemical Society Reviews, 36(2): 335–347

[51]

Garner L E, Park J, Dyar S M, Chworos A, Sumner J J, Bazan G C (2010). Modification of the optoelectronic properties of membranes via insertion of amphiphilic phenylenevinylene oligoelectrolytes. Journal of the American Chemical Society, 132(29): 10042–10052

[52]

Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli L R, Allen F I, Shnyrova A V, Cho K R, Munoz D, Wang Y M, Grigoropoulos C P, Ajo-Franklin C M, Frolov V A, Noy A (2014). Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature, 514(7524): 612–615

[53]

Gin D L, Noble R D, (2011). Designing the next generation of chemical separation membranes. Science, 332(6030): 674–676

[54]

Giwa A, Hasan S W, Yousuf A, Chakraborty S, Johnson D J, Hilal N (2017). Biomimetic membranes: A critical review of recent progress. Desalination, 420: 403–424

[55]

Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta- Biomembranes, 1788(6): 1213–1228

[56]

Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004). Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature, 429(6988): 193–197

[57]

Gonen T, Walz T (2006). The structure of aquaporins. Quarterly Reviews of Biophysics, 39(4): 361–396

[58]

Górecki R, Reurink D M, Khan M M, Sanahuja-Embuena V, Trzaskuś K, Hélix-Nielsen C (2020). Improved reverse osmosis thin film composite biomimetic membranes by incorporation of polymersomes. Journal of Membrane Science, 593: 117392

[59]

Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P (2009). Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research, 43(9): 2317–2348

[60]

Grzelakowski M, Cherenet M F, Shen Y X, Kumar M (2015). A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes. Journal of Membrane Science, 479: 223–231

[61]

Guo S, Dong S (2011). Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 40(5): 2644–2672

[62]

Guo W, Ngo H H, Li J (2012). A mini-review on membrane fouling. Bioresource Technology, 122: 27–34

[63]

Habel J, Hansen M, Kynde S, Larsen N, Midtgaard S R, Jensen G V, Bomholt J, Ogbonna A, Almdal K, Schulz A, Hélix-Nielsen C (2015). Aquaporin-based biomimetic polymeric membranes: Approaches and challenges. Membranes, 5(3): 307–351

[64]

Hancock R E W, Carey A M (1979). Outer membrane of Pseudomonas aeruginosa: Heat- and 2-mercaptoethanol-modifiable proteins. Journal of Bacteriology, 140(3): 902–910

[65]

Harrison R G, Todd P, Rudge S R, Petrides D P (2015). In: Harrison R G, eds. Bioseparations Science and Engineering. 1st ed. New York: Oxford University Press

[66]

Hasell T, Cooper A I (2016). Porous organic cages: Soluble, modular and molecular pores. Nature Reviews. Materials, 1(9): 16053

[67]

Hasler L, Heymann J B, Engel A, Kistler J, Walz T (1998). 2D crystallization of membrane proteins: Rationales and examples. Journal of Structural Biology, 121(2): 162–171

[68]

Hélix-Nielsen C (2009). Biomimetic membranes for sensor and separation applications. Analytical and Bioanalytical Chemistry, 395(3): 697–718

[69]

Hélix-Nielsen C (2018). Biomimetic membranes as a technology platform: Challenges and opportunities. Membranes, 8(3): 44

[70]

Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L G (2004). Aligned multiwalled carbon nanotube membranes. Science, 303(5654): 62–65

[71]

Hodnik N, Baldizzone C, Polymeros G, Geiger S, Grote J P, Cherevko S, Mingers A, Zeradjanin A, Mayrhofer K J J (2016). Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution. Nature Communications, 7(1): 13164

[72]

Holme J P, Hansen J S, Vissing T, Perry M. E, Hélix-Nielsen C (2015). Biomimetic membranes and uses thereof. US20150360183A1

[73]

Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776): 1034–1037

[74]

Hong H, Tamm L K (2004). Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proceedings of the National Academy of Sciences of the United States of America, 101(12): 4065–4070

[75]

Hoomann T, Jahnke N, Horner A, Keller S, Pohl P (2013). Filter gate closure inhibits ion but not water transport through potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 110(26): 10842–10847

[76]

Horner A, Pohl P (2018). Single-file transport of water through membrane channels. Faraday Discussions, 209: 9–33

[77]

Horner A, Zocher F, Preiner J, Ollinger N, Siligan C, Akimov S A, Pohl P (2015). The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Science Advances, 1(2): e1400083

[78]

Hovijitra N T, Wuu J J, Peaker B, Swartz J R (2009). Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnology and Bioengineering, 104(1): 40–49

[79]

Hu X B, Chen Z, Tang G, Hou J L, Li Z T (2012). Single-molecular artificial transmembrane water channels. Journal of the American Chemical Society, 134(20): 8384–8387

[80]

Hub J S, Grubmüller H, de Groot B L (2009). In: Beitz E, ed. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? BT–Aquaporins. Berlin: Springer, 57–76

[81]

Huggins M L (1942). Some properties of solutions of long-chain compounds. Journal of Physical Chemistry, 46(1): 151–158

[82]

Humphrey W, Dalke A, Schulten K (1996). VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14(1): 33–38

[83]

Huo Y, Zeng H (2016). “Sticky”-Ends-Guided creation of functional hollow nanopores for guest encapsulation and water transport. Accounts of Chemical Research, 49(5): 922–930

[84]

Israelachvili J N, Mitchell D J, Ninham B W (1977). Theory of self-assembly of lipid bilayers and vesicles. BBA- Biomembranes, 470(2): 185–201

[85]

Jap B K, Walian P J, Gehring K (1991). Structural architecture of an outer membrane channel as determined by electron crystallography. Nature, 350(6314): 167–170

[86]

Jörg V, Groth Jesper S, Hoier N K, Oliver G (2015). Membranes, Hollow fiber module having tfc-aquaporin modified. US20151445-53A1

[87]

Kalaj M, Bentz K C, Ayala S Jr, Palomba J M, Barcus K S, Katayama Y, Cohen S M (2020). MOF-Polymer Hybrid Materials: From simple composites to tailored architectures. Chemical Reviews, 120(16): 8267–8302

[88]

Kaler E W, Murthy A K, Rodriguez B E, Zasadzinski J A N (1989). Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 245(4924): 1371–1374

[89]

Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K. (1999). NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151(1): 283–312

[90]

Kaucher M S, Peterca M, Dulcey A E, Kim A J, Vinogradov S A, Hammer D A, Heiney P A, Percec V (2007). Selective transport of water mediated by porous dendritic dipeptides. Journal of the American Chemical Society, 129(38): 11698–11699

[91]

Kaufman Y, Berman A, Freger V (2010). Supported lipid bilayer membranes for water purification by reverse osmosis. Langmuir, 26(10): 7388–7395

[92]

Kaufman Y, Grinberg S, Linder C, Heldman E, Gilron J, Shen Y X, Kumar M, Lammertink R G H, Freger V (2014). Towards supported bolaamphiphile membranes for water filtration: Roles of lipid and substrate. Journal of Membrane Science, 457: 50–61

[93]

Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W (2005). Block copolymer vesicles: Using concepts from polymer chemistry to mimic biomembranes. Polymer, 46(11): 3540–3563

[94]

Klaerke D A, Tejada M L A, Christensen V G, Lassen M, Pedersen P A, Calloe K (2018). Reconstitution and electrophysiological characterization of ion channels in lipid bilayers. Current Protocols in Pharmacology, 81(1): e37

[95]

Klara S S, Saboe P O, Sines I T, Babaei M, Chiu P L, Dezorzi R, Dayal K, Walz T, Kumar M, Mauter M S (2016). Magnetically directed two-dimensional crystallization of OmpF membrane proteins in block copolymers. Journal of the American Chemical Society, 138(1): 28–31

[96]

Kocsis I, Sorci M, Vanselous H, Murail S, Sanders S E, Licsandru E (2018a). Oriented chiral water wires in artificial transmembrane channels. Science Advances, 4(3): eaao5603

[97]

Kocsis I, Sun Z, Legrand Y M, Barboiu M (2018b). Artificial water channels—deconvolution of natural aquaporins through synthetic design. NPJ Clean Water, 1(1): 13

[98]

Köper I (2007). Insulating tethered bilayer lipid membranes to study membrane proteins. Molecular BioSystems, 3(10): 651–657

[99]

Koros W J, Zhang C (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3): 289–297

[100]

Kruse E, Uehlein N, Kaldenhoff R (2006). The aquaporins. Genome Biology, 7(2): 206

[101]

Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W (2007). Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proceedings of the National Academy of Sciences of the United States of America, 104(52): 20719–20724

[102]

Kumar M, Habel J E O, Shen Y X, Meier W P, Walz T (2012). High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes. Journal of the American Chemical Society, 134(45): 18631–18637

[103]

Kumar M, Shen Y X, Saboe P O (2013). Biological and biomimetic membranes. In: Hoek E M V, ed. Encyclopedia of Membrane Science and Technology. 1st ed. Hoboken: Wiley, 1–37

[104]

Kumar Y P, Das R N, Schütte O M, Steinem C, Dash J (2016). Bis-triazolyl diguanosine derivatives as synthetic transmembrane ion channels. Nature Protocols, 11(6): 1039–1056

[105]

Kutzner C, Grubmüller H, De Groot B L, Zachariae U (2011). Computational electrophysiology: The molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophysical Journal, 101(4): 809–817

[106]

Lang C, Shen Y X, LaNasa J A, Ye D, Song W, Zimudzi T J, Hickner M A, Gomez E D, Gomez E W, Kumar M, Hickey R J (2018). Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes. Faraday Discussions, 209: 179–191

[107]

Lang C, Ye D, Song W, Yao C, Tu Y M, Capparelli C, LaNasa J A, Hickner M A, Gomez E W, Gomez E D, Hickey R J, Kumar M (2019). Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes. ACS Nano, 13(7): 8292–8302

[108]

Latimer P, Pyle B E (1972). Light scattering at various angles. Biophysical Journal, 12(7): 764–773

[109]

Le Duc Y, Michau M, Gilles A, Gence V, Legrand Y M, Vanderlee A, Tingry S, Barboiu M (2011). Imidazole-quartet water and proton dipolar channels. Angewandte Chemie International Edition, 50(48): 11366–11372

[110]

Lehn B J (1990). Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angewandte Chemie International Edition, 29(11): 1304–1319

[111]

Lehn J M (1988). Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angewandte Chemie International Edition, 27(1): 89–112

[112]

Lei J C, Zhang X, Zhou Z (2015). Recent advances in MXene: Preparation, properties, and applications. Frontiers in Physics, 10(3): 276–286

[113]

Li M, Xiong Y, Qing G (2020). Smart bio-separation materials. Trends in Analytical Chemistry, 124: 115585

[114]

Li Q, Li X, Ning L, Tan C H, Mu Y, Wang R (2019a). Hyperfast water transport through biomimetic nanochannels from peptide-attached (pR)-pillar[5]arene. Small, 15(6): 1804678

[115]

Li X, Chou S, Wang R, Shi L, Fang W, Chaitra G, Tang C Y, Torres J, Hu X, Fane A G (2015). Nature gives the best solution for desalination: Aquaporin-based hollow fiber composite membrane with superior performance. Journal of Membrane Science, 494: 68–77

[116]

Li X, Loh C H, Wang R, Widjajanti W, Torres J (2017a). Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. Journal of Membrane Science, 525: 257–268

[117]

Li X, Wang R, Tang C, Vararattanavech A, Zhao Y, Torres J, Fane T (2012). Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids and Surfaces. B, Biointerfaces, 94: 333–340

[118]

Li X, Wang R, Wicaksana F, Tang C, Torres J, Fane A G (2014). Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. Journal of Membrane Science, 450: 181–188

[119]

Li Y, Qi S, Tian M, Widjajanti W, Wang R (2019b). Fabrication of aquaporin-based biomimetic membrane for seawater desalination. Desalination, 467: 103–112

[120]

Li Z, Valladares Linares R, Bucs S, Fortunato L, Hélix-Nielsen C, Vrouwenvelder J S, Ghaffour N, Leiknes T O, Amy G (2017b). Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation. Desalination, 420: 208–215

[121]

Liang Y, Zhu Y, Liu C, Lee K R, Hung W S, Wang Z, Li Y, Elimelech M, Jin J, Lin S (2020). Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nature Communications, 11(1): 2015

[122]

Licsandru E, Kocsis I, Shen Y X, Murail S, Legrand Y M, Van Der Lee A, Tsai D, Baaden M, Kumar M, Barboiu M (2016). Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. Journal of the American Chemical Society, 138(16): 5403–5409

[123]

Liu G, Jin W, Xu N (2016). Two-dimensional-material membranes: A new family of high-performance separation membranes. Angewandte Chemie International Edition, 55(43): 13384–13397

[124]

Liu G, Zhao Z, Ghahreman A (2019a). Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy, 187: 81–100

[125]

Liu K, Tian Y, Jiang L (2013). Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science, 58(4): 503–564

[126]

Liu M, Wang S, Jiang L (2017). Nature-inspired superwettability systems. Nature Reviews. Materials, 2(7): 17036

[127]

Liu M, Zhang L, Little M A, Kapil V, Ceriotti M, Yang S, Ding L, Holden D L, Balderas-Xicohténcatl R, He D, Clowes R, Chong S Y, Schütz G, Chen L, Hirscher M, Cooper A I (2019b). Barely porous organic cages for hydrogen isotope separation. Science, 366(6465): 613–620

[128]

Luo W, Xie M, Song X, Guo W, Ngo H H, Zhou J L, Nghiem L D (2018). Biomimetic aquaporin membranes for osmotic membrane bioreactors: Membrane performance and contaminant removal. Bioresource Technology, 249: 62–68

[129]

MacKerell A D Jr, Bashford D, Bellott M, Dunbrack R L Jr, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher W E, Roux B, Schlenkrich M, Smith J C, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18): 3586–3616

[130]

Madsen H T, Bajraktari N, Hélix-Nielsen C, Van der Bruggen B, Søgaard E G (2015). Use of biomimetic forward osmosis membrane for trace organics removal. Journal of Membrane Science, 476: 469–474

[131]

Mai Y, Eisenberg A (2012). Self-assembly of block copolymers. Chemical Society Reviews, 41(18): 5969–5985

[132]

Malinova V, Belegrinou S, de Bruyn Ouboter D, Meier W P (2010). In: Meier W P, Knoll W, eds. Biomimetic Block Copolymer Membranes. Berlin: Springer, 87–111

[133]

Masi M, Pagès J M (2013). Structure, function and regulation of outer membrane proteins involved in drugt transport in enterobactericeae: the OmpF/C–TolC Case. Open Microbiology Journal, 7(1): 22–33

[134]

Matile S, Vargas Jentzsch A, Montenegro J, Fin A (2011). Recent synthetic transport systems. Chemical Society Reviews, 40(5): 2453–2474

[135]

McCutcheon J R (2019). Avoiding the hype in developing commercially viable desalination Technologies. Joule, 3(5): 1168–1171

[136]

Meinild A K, Klaerke D A, Zeuthen T (1998). Bidirectional water fluxes and specificity for small hydrophilic molecules in aquaporins 0–5. Journal of Biological Chemistry, 273(49): 32446–32451

[137]

Mentzel S, Perry M E, Vogel J, Braekevelt S, Geschke O, Larsen M E S (2014). Systems for water extraction. WO2014128293Al

[138]

Miao Y, Johnson N W, Phan T, Heck K, Gedalanga P B, Zheng X, Adamson D, Newell C, Wong M S, Mahendra S (2020). Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants. Water Research, 173: 115540

[139]

Mohammad M M, Howard K R, Movileanu L (2011). Redesign of a plugged β-barrel membrane protein. Journal of Biological Chemistry, 286(10): 8000–8013

[140]

Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B (2000). Structural determinants of water permeation through aquaporin-. Nature, 407(6804): 599–605

[141]

Nagai A, Guo Z, Feng X, Jin S, Chen X, Ding X, Jiang D (2011). Pore surface engineering in covalent organic frameworks. Nature Communications, 2(1): 536

[142]

Nassrullah H, Anis S F, Hashaikeh R, Hilal N (2020). Energy for desalination: A state-of-the-art review. Desalination, 491: 114569

[143]

Nath A, Atkins W M, Sligar S G (2007). Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry, 46(8): 2059–2069

[144]

Nephrol S (1998). Decreased membrane hypercalcemic aquaporin-2 delivery rats expression in kidney and collecting apical ducts plasma of polyuric. Journal of the American Society of Nephrology, 9(2): 2181–2193

[145]

Ogoshi T, Kanai S, Fujinami S, Yamagishi T A, Nakamoto Y (2008). Para-bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host-guest property. Journal of the American Chemical Society, 130(15): 5022–5023

[146]

Ogoshi T, Yamagishi T A, Nakamoto Y (2016). Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. Chemical Reviews, 116(14): 7937–8002

[147]

Okamoto Y, Lienhard J H (2019). How RO membrane permeability and other performance factors affect process cost and energy use: A review. Desalination, 470: 114064

[148]

Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D (2017). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530

[149]

Peng B, Tang J, Luo J, Wang P, Ding B, Tam K C (2018). Applications of nanotechnology in oil and gas industry: Progress and perspective. Canadian Journal of Chemical Engineering, 96(1): 91–100

[150]

Plançon L, Chami M, Letellier L (1997). Reconstitution of FhuA, an Escherichia coli outer membrane protein, into liposomes: Binding of phage T5 to FhuA triggers the transfer of DNA into the proteoliposomes. Journal of Biological Chemistry, 272(27): 16868–16872

[151]

Pollmann K, Kutschke S, Matys S, Kostudis S, Hopfe S, Raff J (2016). Novel biotechnological approaches for the recovery of metals from primary and secondary resources. Minerals (Basel), 6(2): 54

[152]

Porter C J, Werber J R, Zhong M, Wilson C J, Elimelech M (2020). Pathways and challenges for biomimetic desalination membranes with sub-nanometer channels. ACS Nano, 14(9): 10894–10916

[153]

Preston G M, Carroll T P, Guggino W B, Agre P (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 256(5055): 385–387

[154]

Qi S, Wang R, Chaitra G K M, Torres J, Hu X, Fane A G (2016). Aquaporin-based biomimetic reverse osmosis membranes: Stability and long term performance. Journal of Membrane Science, 508: 94–103

[155]

Qiu S, Xue M, Zhu G (2014). Metal-organic framework membranes: From synthesis to separation application. Chemical Society Reviews, 43(16): 6116–6140

[156]

Rajesh S, Yan Y, Chang H C, Gao H, Phillip W A (2014). Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations. ACS Nano, 8(12): 12338–12345

[157]

Rathee V S, Qu S, Phillip W A, Whitmer J K (2016). A coarse-grained thermodynamic model for the predictive engineering of valence-selective membranes. Molecular Systems Design & Engineering, 1(3): 301–312

[158]

Ren T, Erbakan M, Shen Y X, Barbieri E, Saboe P, Feroz H, Yan H, McCuskey S, Hall J F, Schantz A B, Bazan G C, Butler P J, Grzelakowski M, Kumar M (2017). Membrane protein insertion into and compatibility with biomimetic membranes. Advanced Biosystems, 1(7): 1700053

[159]

Rhoden V, Goldin S M (1979). Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis. Biochemistry, 18(19): 4173–4176

[160]

Robeson L M (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62(2): 165–185

[161]

Robeson L M (2008). The upper bound revisited. Journal of Membrane Science, 320(1–2): 390–400

[162]

Saboe P O, Rapisarda C, Kaptan S, Hsiao Y S, Summers S R, de Zorzi R, Dukovski D, Yu J, de Groot B L, Kumar M, Walz T (2017). Role of pore-lining residues in defining the rate of water conduction by aquaporin-0. Biophysical Journal, 112(5): 953–965

[163]

Sabolic I, Valenti G, Verbavatz J M, Van Hoek A N, Verkman A S, Ausiello D A, Brown D (1992). Localization of the CHIP28 water channel in rat kidney. American Journal of Physiology. Cell Physiology, 263(6): C1225–C1233

[164]

Sakai N, Matile S (2013). Synthetic ion channels. Langmuir, 29(29): 9031–9040

[165]

Sakipov S, Sobolevsky A I, Kurnikova M G (2018). Ion permeation mechanism in epithelial calcium channel TRVP6. Scientific Reports, 8(1): 5715

[166]

Sanborn J R, Chen X, Yao Y, Hammons J A, Tunuguntla R H, Zhang Y, Newcomb C C, Soltis J A, de Yoreo J J, Van Buuren A, Parikh A N, Noy A (2018). Membranes: Carbon nanotube porins in amphiphilic block copolymers as fully synthetic mimics of biological membranes. Advanced Materials, 30(51): 1803355

[167]

Sanchez C, Arribart H, Giraud Guille M M(2005). Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 4(4): 277–288

[168]

Sanders C R II, Landis G C (1995). Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry, 34(12): 4030–4040

[169]

Sanders D F, Smith Z P, Guo R, Robeson L M, McGrath J E, Paul D R, Freeman B D (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 54(18): 4729–4761

[170]

Schneider S, Licsandru E D, Kocsis I, Gilles A, Dumitru F, Moulin E, Tan J, Lehn J M, Giuseppone N, Barboiu M (2017). Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. Journal of the American Chemical Society, 139(10): 3721–3727

[171]

Scopes R K (1982). In: Scopes R K, eds. Protein purification: Principles and practice. 1st ed. Berlin: Springer

[172]

Seddon A M, Curnow P, Booth P J (2004). Membrane proteins, lipids and detergents: Not just a soap opera. Biochimica et Biophysica Acta- Biomembranes, 1666(1–2): 105–117

[173]

Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M (2008). Science and technology for water purification in the coming decades. Nature, 452(7185): 301–310

[174]

Shen J, Fan J, Ye R, Li N, Mu Y, Zeng H (2020a). Polypyridine-based helical amide foldamer channels: Rapid transport of water and protons with high ion rejection. Angewandte Chemie International Edition, 59(32): 13328–13334

[175]

Shen J, Ye R, Romanies A, Roy A, Chen F, Ren C, Liu Z, Zeng H (2020b). Aquafoldmer-based aquaporin-like synthetic water channel. Journal of the American Chemical Society, 142(22): 10050–10058

[176]

Shen Y X, Saboe P O, Sines I T, Erbakan M, Kumar M (2014). Biomimetic membranes: A review. Journal of Membrane Science, 454: 359–381

[177]

Shen Y X, Si W, Erbakan M, Decker K, de Zorzi R, Saboe P O, Kang Y J, Majd S, Butler P J, Walz T, Aksimentiev A, Hou J, Kumar M (2015). Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proceedings of the National Academy of Sciences of the United States of America, 112(32): 9810–9815

[178]

Shen Y X, Song W C, Barden D R, Ren T, Lang C, Feroz H (2018). Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nature Communications, 9(1): 2294

[179]

Shi B, Marchetti P, Peshev D, Zhang S, Livingston A G (2017). Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. Journal of Membrane Science, 525: 35–47

[180]

Sholl D S, Lively R P (2016). Seven chemical separations to change the world. Nature, 532(7600): 435–437

[181]

Si W, Xin P, Li Z T, Hou J L (2015). Tubular unimolecular transmembrane channels: Construction strategy and transport activities. Accounts of Chemical Research, 48(6): 1612–1619

[182]

Sianipar M, Kim S H, Khoiruddin K, Iskandar F, Wenten I G (2017). Functionalized carbon nanotube (CNT) membrane: Progress and challenges. RSC Advances, 7(81): 51175–51198

[183]

Sisson A L, Shah M R, Bhosale S, Matile S (2006). Synthetic ion channels and pores (2004–2005). Chemical Society Reviews, 35(12): 1269–1286

[184]

Song W, Joshi H, Chowdhury R, Najem J S, Shen Y X, Lang C, Henderson C B, Tu Y M, Farell M, Pitz M E, Maranas C D, Cremer P S, Hickey R J, Sarles S A, Hou J, Aksimentiev A, Kumar M (2020). Artificial water channels enable fast and selective water permeation through water-wire networks. Nature Nanotechnology, 15(1): 73–79

[185]

Song W, Kumar M (2019). Artificial water channels: toward and beyond desalination. Current Opinion in Chemical Engineering, 25: 9–17

[186]

Song W, Lang C, Shen Y, Kumar M (2018). Design considerations for artificial water channel–based membranes. Annual Review of Materials Research, 48(1): 57–82

[187]

Song W, Tu Y M, Oh H, Samineni L, Kumar M (2019). Hierarchical optimization of high-performance biomimetic and bioinspired membranes. Langmuir, 35(3): 589–607

[188]

Spulber M, Gerstandt K (2018). Diblock copolymer vesicles and separation membranes comprising aquaporin water channels and methods of making and using them. WO2018141985A1

[189]

Sullivan K, Zhang Y, Lopez J, Lowe M, Noy A (2020). Carbon nanotube porin diffusion in mixed composition supported lipid bilayers. Scientific Reports, 10(1): 11908

[190]

Sun G, Chung T S, Chen N, Lu X, Zhao Q (2013a). Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach. RSC Advances, 3(24): 9178–9184

[191]

Sun G, Chung T S, Jeyaseelan K, Armugam A (2013b). A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Advances, 3(2): 473–481

[192]

Sun G, Chung T S, Jeyaseelan K, Armugam A (2013c). Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Colloids and Surfaces. B, Biointerfaces, 102: 466–471

[193]

Tabushi I, Kuroda Y, Yokota K (1982). A,B,D,F-tetrasubstituted β-cyclodextrin as artificial channel compound. Tetrahedron Letters, 23(44): 4601–4604

[194]

Tan Z, Chen S, Peng X, Zhang L, Gao C (2018). Polyamide membranes with nanoscale Turing structures for water purification. Science, 360(6388): 518–521

[195]

Tang C, Qiu C, Zhao Y, Shen W, Vararattanavech A, Wang R (2014). Aquaporin based thin film composite membranes. US2014332468

[196]

Tang C, Wang Z, Petrinić I, Fane A G, Hélix-Nielsen C (2015). Biomimetic aquaporin membranes coming of age. Desalination, 368: 89–105

[197]

Tang C Y, Zhao Y, Wang R, Hélix-Nielsen C, Fane A G (2013). Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 308: 34–40

[198]

Tu Y M, Song W, Ren T, Shen Y X, Chowdhury R, Rajapaksha P, Culp T E, Samineni L, Lang C, Thokkadam A, Carson D, Dai Y, Mukthar A, Zhang M, Parshin A, Sloand J N, Medina S H, Grzelakowski M, Bhattacharya D, Phillip W A, Gomez E D, Hickey R J, Wei Y, Kumar M (2020). Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nature Materials, 19(3): 347–354

[199]

Tunuguntla R H, Allen F I, Kim K, Belliveau A, Noy A (2016a). Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nature Nanotechnology, 11(7): 639–644

[200]

Tunuguntla R H, Escalada A, Frolov V A, Noy A (2016b). Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nature Protocols, 11(10): 2029–2047

[201]

Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A (2017). Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science, 357(6353): 792–796

[202]

Venkata Subbaiah Y P, Saji K J, Tiwari A (2016). Atomically Thin MoS2 : A Versatile nongraphene 2D material. Advanced Functional Materials, 26(13): 2046–2069

[203]

Verkman A S, Mitra A K (2000). Structure and function of aquaporin water channels. American Journal of Physiology. Renal Physiology, 278(1): F13–F28

[204]

Virkki L V, Cooper G J, Boron W F (2001). Cloning and functional expression of an MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281(6): R1994–R2003

[205]

Voyer N, Robitaille M (1995). A novel functional artificial ion channel. Journal of the American Chemical Society, 117(24): 6599–6600

[206]

Wagh P, Escobar I C (2019). Biomimetic and bioinspired membranes for water purification: A critical review and future directions. Environmental Progress & Sustainable Energy, 38(3): e13215

[207]

Wagh P, Parungao G, Viola R E, Escobar I C (2015). A new technique to fabricate high-performance biologically inspired membranes for water treatment. Separation and Purification Technology, 156: 754–765

[208]

Wagner S, Bader M L, Drew D, de Gier J W (2006). Rationalizing membrane protein overexpression. Trends in Biotechnology, 24(8): 364–371

[209]

Walz T, Hirai T, Murata K, Heymann J B, Mitsuoka K, Fujiyoshi Y, Smith B L, Agre P, Engel A (1997). The three-dimensional structure of aquaporin-1. Nature, 387(6633): 624–627

[210]

Wang H, Chung T S, Tong Y W, Jeyaseelan K, Armugam A, Chen Z, Hong M, Meier W (2012). Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. Small, 8(8): 1185–1190

[211]

Wang H, Chung T S, Tong Y W, Meier W, Chen Z, Hong M, Jeyaseelan K, Armugam A (2011). Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter, 7(16): 7274–7280

[212]

Wang H L, Chung T S, Tong Y W, Jeyaseelan K, Armugam A, Duong H H P, Fu F, Seah H, Yang J, Hong M (2013). Mechanically robust and highly permeable AquaporinZ biomimetic membranes. Journal of Membrane Science, 434: 130–136

[213]

Wang M, Wang Z, Wang X, Wang S, Ding W, Gao C (2015). Layer-by-layer assembly of aquaporin z-incorporated biomimetic membranes for water purification. Environmental Science & Technology, 49(6): 3761–3768

[214]

Wang Z, Wang Z, Lin S, Jin H, Gao S, Zhu Y, Jin J (2018). Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 9(1): 2004

[215]

Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O (2015). Bioinspired structural materials. Nature Materials, 14(1): 23–36

[216]

Werber J R, Deshmukh A, Elimelech M (2016a). The critical need for increased selectivity, not increased water permeability for desalination membranes. Environmental Science & Technology Letters, 3(4): 112–120

[217]

Werber J R, Elimelech M (2018). Permselectivity limits of biomimetic desalination membranes. Science Advances, 4(6): eaar8266

[218]

Werber J R, Osuji C O, Elimelech M (2016b). Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 1(5): 16018

[219]

Xia L, Andersen M F, Hélix-Nielsen C, McCutcheon J R (2017). Novel commercial aquaporin flat-sheet membrane for forward osmosis. Industrial & Engineering Chemistry Research, 56(41): 11919–11925

[220]

Xie M, Luo W, Guo H, Nghiem L D, Tang C Y, Gray S R (2018). Trace organic contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms and membrane stability. Water Research, 132: 90–98

[221]

Xie W, He F, Wang B, Chung T S, Jeyaseelan K, Armugam A, Tong Y W (2013). An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(26): 7592–7600

[222]

Yang Y, Walton A, Sheridan R, Güth K, Gauß R, Gutfleisch O, Buchert M, Steenari B M, Van Gerven T, Jones P T, Binnemans K (2017). REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review. Journal of Sustainable Metallurgy, 3(1): 122–149

[223]

Yao Y C, Taqieddin A, Alibakhshi M A, Wanunu M, Aluru N R, Noy A (2019). Strong electroosmotic coupling dominates ion conductance of 1.5 nm diameter carbon nanotube porins. ACS Nano, 13(11): 12851–12859

[224]

Zeidel M L, Ambudkar S V, Smith B L, Agre P (1992). Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry, 31(33): 7436–7440

[225]

Zhang X, Fu W, Palivan C G, Meier W (2013). Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane. Scientific Reports, 3(1): 2196

[226]

Zhang X, Tanner P, Graff A, Palivan C G, Meier W (2012). Mimicking the cell membrane with block copolymer membranes. Journal of Polymer Science. Part A, Polymer Chemistry, 50(12): 2293–2318

[227]

Zhao H, Ong W Q, Fang X, Zhou F, Hii M N, Li S F Y, Su H, Zeng H (2012a). Synthesis, structural investigation and computational modelling of water-binding aquafoldamers. Organic & Biomolecular Chemistry, 10(6): 1172–1180

[228]

Zhao H, Sheng S, Hong Y, Zeng H (2014a). Proton gradient-induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules. Journal of the American Chemical Society, 136(40): 14270–14276

[229]

Zhao J, Zhao X, Jiang Z, Li Z, Fan X, Zhu J, Wu H, Su Y, Yang D, Pan F, Shi J (2014b). Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 39(9): 1668–1720

[230]

Zhao Y, Qiu C, Li X, Vararattanavech A, Shen W, Torres J, Hélix-Nielsen C, Wang R, Hu X, Fane A G, Tang C Y (2012b). Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. Journal of Membrane Science, 423–424: 422–428

[231]

Zhong P S, Chung T S, Jeyaseelan K, Armugam A (2012). Aquaporin-embedded biomimetic membranes for nanofiltration. Journal of Membrane Science, 407–408: 27–33

[232]

Zhou X, Liu G, Yamato K, Shen Y, Cheng R, Wei X, Bai W, Gao Y, Li H, Liu Y, Liu F, Czajkowsky D M, Wang J, Dabney M J, Cai Z, Hu J, Bright F V, He L, Zeng X C, Shao Z, Gong B (2012). Self-assembling subnanometer pores with unusual mass-transport properties. Nature Communications, 3(1): 949

[233]

Zhu F, Tajkhorshid E, Schulten K (2004). Collective diffusion model for water permeation through microscopic channels. Physical Review Letters, 93(22): 224501

RIGHTS & PERMISSIONS

The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep. com.cn

AI Summary AI Mindmap
PDF (4406KB)

11414

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/