Bioinspired and biomimetic membranes for water purification and chemical separation: A review
Elham Abaie, Limeimei Xu, Yue-xiao Shen
Bioinspired and biomimetic membranes for water purification and chemical separation: A review
•The history of biological and artificial water channels is reviewed.
•A comprehensive channel characterization platform is introduced.
•Rationale designs and fabrications of biomimetic membranes are summarized.
•The advantages, limitations, and challenges of biomimetic membranes are discussed.
•The prospect and scalable solutions of biomimetic membranes are discussed.
Bioinspired and biomimetic membranes that contain biological transport channels or attain their structural designs from biological systems have been through a remarkable development over the last two decades. They take advantage of the exceptional transport properties of those channels, thus possess both high permeability and selectivity, and have emerged as a promising solution to existing membranes. Since the discovery of biological water channel proteins aquaporins (AQPs), extensive efforts have been made to utilize them to make separation membranes–AQP-based membranes, which have been commercialized. The exploration of AQPs’ unique structures and transport properties has resulted in the evolution of biomimetic separation materials from protein-based to artificial channel-based membranes. However, large-scale, defect-free biomimetic membranes are not available yet. This paper reviews the state-of-the-art biomimetic membranes and summarizes the latest research progress, platform, and methodology. Then it critically discusses the potential routes of this emerging area toward scalable applications. We conclude that an appropriate combination of bioinspired concepts and molecular engineering with mature polymer industry may lead to scalable polymeric membranes with intrinsic selective channels, which will gain the merit of both desired selectivity and scalability.
Aquaporins / Artificial water channels / Biomimetic membranes / Chemical separation and water purification
[1] |
Abdulsalam Ebrahim M, Karan S, Livingston A G (2020). On the influence of salt concentration on the transport properties of reverse osmosis membranes in high pressure and high recovery desalination. Journal of Membrane Science, 594: 117339
CrossRef
Google scholar
|
[2] |
Adewole J K, Ahmad A L, Ismail S, Leo C P (2013). Current challenges in membrane separation of CO2 from natural gas: A review. International Journal of Greenhouse Gas Control, 17: 46–65
CrossRef
Google scholar
|
[3] |
Agre P (2004). Aquaporin water channels (nobel lecture). Angewandte Chemie International Edition, 43(33): 4278–4290
CrossRef
Google scholar
|
[4] |
Agre P, King L S, Yasui M, Guggino W B, Ottersen O P, Fujiyoshi Y, Engel A, Nielsen S (2002). Aquaporin water channels: From atomic structure to clinical medicine. Journal of Physiology, 542(1): 3–16
CrossRef
Google scholar
|
[5] |
Aksimentiev A, Schulten K (2005). Imaging α-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map. Biophysical Journal, 88(6): 3745–3761
CrossRef
Google scholar
|
[6] |
Aquaporin A/S.Available online at aquaporin.com
|
[7] |
Balaram V (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4): 1285–1303
CrossRef
Google scholar
|
[8] |
Barakat M A (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4): 361–377
CrossRef
Google scholar
|
[9] |
Barboiu M (2012). Artificial water channels. Angewandte Chemie International Edition, 51(47): 11674–11676
CrossRef
Google scholar
|
[10] |
Barboiu M (2016). Artificial water channels: Incipient innovative developments. Chemical Communications, 52(33): 5657–5665
CrossRef
Google scholar
|
[11] |
Barboiu M, Gilles A (2013). From natural to bioassisted and biomimetic artificial water channel system. Accounts of Chemical Research, 46(12): 2814–2823
CrossRef
Google scholar
|
[12] |
Belegrinou S, Dorn J, Kreiter M, Kita-Tokarczyk K, Sinner E K, Meier W (2010). Biomimetic supported membranes from amphiphilic block copolymers. Soft Matter, 6(1): 179–186
CrossRef
Google scholar
|
[13] |
Belluati A, Mikhalevich V, Yorulmaz Avsar S, Daubian D, Craciun I, Chami M, Meier W P, Palivan C G (2020). How do the properties of amphiphilic polymer membranes influence the functional insertion of peptide pores? Biomacromolecules, 21(2): 701–715
CrossRef
Google scholar
|
[14] |
Benrabah D, Baril D, Sanchez J Y, Armand M, Heres B P S, Gard G G (1993). Comparative electrochemical study of new poly(oxyethy1ene)-Li salt complexes. Journal of the Chemical Society, Faraday Transactions, 89(2): 355–359
CrossRef
Google scholar
|
[15] |
Böckmann R A, De Groot B L, Kakorin S, Neumann E, Grubmüller H (2008). Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophysical Journal, 95(4): 1837–1850
CrossRef
Google scholar
|
[16] |
Borgnia M, Nielsen S, Engel A, Agre P (1999b). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry, 68(1): 425–458
CrossRef
Google scholar
|
[17] |
Borgnia M J, Kozono D, Calamita G, Maloney P C, Agre P, Ambientale G (1999a). Functional reconstitution and characterization of AqpZ, the E . coli water channel protein. 291(5): 1169–1179
|
[18] |
Bornhorst J, Falke J J (2010). Purification of proteins using polyhistidine affinity tags. Methods in Enzymology, 2000(326): 245–254
|
[19] |
Branton D, Deamer D W, Marziali A, Bayley H, Benner S A, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich S B, Krstic P S, Lindsay S, Ling X S, Mastrangelo C H, Meller A, Oliver J S, Pershin Y V, Ramsey J M, Riehn R, Soni G V, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss J A (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26(10): 1146–1153
CrossRef
Google scholar
|
[20] |
Burger B, Maffettone P M, Gusev V V, Aitchison C M, Bai Y, Wang X, Li X, Alston B M, Li B, Clowes R, Rankin N, Harris B, Sprick R S, Cooper A I (2020). A mobile robotic chemist. Nature, 583(7815): 237–241
CrossRef
Google scholar
|
[21] |
Calamita G, Bishai W R, Preston G M, Guggino W B, Agre P (1995). Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. Journal of Biological Chemistry, 270(49): 29063–29066
CrossRef
Google scholar
|
[22] |
Carmichael V E, Dutton P J, Fyles T M, James T D, Swan J A, Zojaji M (1989). Biomimetic ion transport: A functional model of a unimolecular ion channel. Journal of the American Chemical Society, 111(2): 767–769
CrossRef
Google scholar
|
[23] |
Cheisson T, Schelter E J (2019). Rare earth elements: Mendeleev’s bane, modern marvels. Science, 363(6426): 489–493
CrossRef
Google scholar
|
[24] |
Chen L, Si W, Zhang L, Tang G, Li Z T, Hou J L (2013). Chiral selective transmembrane transport of amino acids through artificial channels. Journal of the American Chemical Society, 135(6): 2152–2155
CrossRef
Google scholar
|
[25] |
Chen X, Zhang H, Tunuguntla R H, Noy A (2019). Silicon nanoribbon pH sensors protected by a barrier membrane with carbon nanotube porins. Nano Letters, 19(2): 629–634
CrossRef
Google scholar
|
[26] |
Chowdhury M R, Steffes J, Huey B D, McCutcheon J R (2018a). 3D printed polyamide membranes for desalination. Science, 361(6403): 682–686
CrossRef
Google scholar
|
[27] |
Chowdhury R, Ren T, Shankla M, Decker K, Grisewood M, Prabhakar J, Baker C, Golbeck J H, Aksimentiev A, Kumar M, Maranas C D (2018b). PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nature Communications, 9(1): 3661
CrossRef
Google scholar
|
[28] |
Chrispeels M J, Agre P (1994). Aquaporins: water channel proteins of plant and animal cells. Trends in Biochemical Sciences, 19(10): 421–425
CrossRef
Google scholar
|
[29] |
Chun Y, Qing L, Sun G, Bilad M R, Fane A G, Chong T H (2018). Prototype aquaporin-based forward osmosis membrane: Filtration properties and fouling resistance. Desalination, 445: 75–84
CrossRef
Google scholar
|
[30] |
Cohen S M (2012). Postsynthetic methods for the functionalization of metal-organic frameworks. Chemical Reviews, 112(2): 970–1000
CrossRef
Google scholar
|
[31] |
Compton O C, Nguyen S T (2010). Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small, 6(6): 711–723
CrossRef
Google scholar
|
[32] |
Connolly D L, Shanahan C M, Weissberg P L (1998). The aquaporins. A family of water channel proteins. International Journal of Biochemistry & Cell Biology, 30(2): 169–172
CrossRef
Google scholar
|
[33] |
Cragg P J, Sharma K (2012). Pillar[5]arenes: Fascinating cyclophanes with a bright future. Chemical Society Reviews, 41(2): 597–607
CrossRef
Google scholar
|
[34] |
Dalane K, Dai Z, Mogseth G, Hillestad M, Deng L (2017). Potential applications of membrane separation for subsea natural gas processing: A review. Journal of Natural Gas Science and Engineering, 39: 101–117
CrossRef
Google scholar
|
[35] |
Dhakshnamoorthy B, Rohaim A, Rui H, Blachowicz L, Roux B (2016). Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola. Nature Communications, 7(1): 12753
CrossRef
Google scholar
|
[36] |
Di Vincenzo M, Tiraferri A, Musteata V, Chisca S, Sougrat R, Huang L (2020). Biomimetic artificial water channel membranes for enhanced desalination. Nature Nanotechnology, https://doi.org/10.1038/s41565-020-00796-x
|
[37] |
Dorn J, Belegrinou S, Kreiter M, Sinner E K, Meier W (2011). Planar block copolymer membranes by vesicle spreading. Macromolecular Bioscience, 11(4): 514–525
CrossRef
Google scholar
|
[38] |
Duong P H H, Chung T S, Jeyaseelan K, Armugam A, Chen Z, Yang J, Hong M (2012). Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. Journal of Membrane Science, 409–410: 34–43
CrossRef
Google scholar
|
[39] |
Elimelech M, Phillip W A (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333(6043): 712–717
CrossRef
Google scholar
|
[40] |
Epsztein R, DuChanois R M, Ritt C L, Noy A, Elimelech M (2020). Towards single-species selectivity of membranes with subnanometre pores. Nature Nanotechnology, 15(6): 426–436
CrossRef
Google scholar
|
[41] |
Erbakan M, Shen Y X, Grzelakowski M, Butler P J, Kumar M, Curtis W R (2014). Molecular cloning, overexpression and characterization of a novel water channel protein from Rhodobacter sphaeroides. PLoS One, 9(1): e86830
CrossRef
Google scholar
|
[42] |
Ersson B, Rydén L, Janson J C (2011). In: Janson J C, eds. Protein purification: Principles, high resolution methods, and applications. 3rd ed. Hoboken: Wiley
|
[43] |
Falagán C, Grail B M, Johnson D B (2017). New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, 106: 71–78
CrossRef
Google scholar
|
[44] |
Fei Z, Zhao D, Geldbach T J, Scopelliti R, Dyson P J, Antonijevic S, Bodenhausen G (2005). A synthetic zwitterionic water channel: Characterization in the solid state by X-ray crystallography and NMR spectroscopy. Angewandte Chemie International Edition, 44(35): 5720–5725
CrossRef
Google scholar
|
[45] |
Feng H, Lu X, Wang W, Kang N G, Mays J W (2017). Block copolymers: Synthesis, self-assembly, and applications. Polymers, 9(10): 494
CrossRef
Google scholar
|
[46] |
Flory P J, Krigbaum W R (1951). Thermodynamics of high polymer solutions. Annual Review of Physical Chemistry, 2(1): 383–402
CrossRef
Google scholar
|
[47] |
Freeman B D (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 32(2): 375–380
CrossRef
Google scholar
|
[48] |
Fujiyoshi Y (1998). The structural study of membrane proteins by electron crystallography. Advances in Biophysics, 35: 25–80
CrossRef
Google scholar
|
[49] |
Fuwad A, Ryu H, Malmstadt N, Kim S M, Jeon T J (2019). Biomimetic membranes as potential tools for water purification: Preceding and future avenues. Desalination, 458: 97–115
CrossRef
Google scholar
|
[50] |
Fyles T M (2007). Synthetic ion channels in bilayer membranes. Chemical Society Reviews, 36(2): 335–347
CrossRef
Google scholar
|
[51] |
Garner L E, Park J, Dyar S M, Chworos A, Sumner J J, Bazan G C (2010). Modification of the optoelectronic properties of membranes via insertion of amphiphilic phenylenevinylene oligoelectrolytes. Journal of the American Chemical Society, 132(29): 10042–10052
CrossRef
Google scholar
|
[52] |
Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli L R, Allen F I, Shnyrova A V, Cho K R, Munoz D, Wang Y M, Grigoropoulos C P, Ajo-Franklin C M, Frolov V A, Noy A (2014). Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature, 514(7524): 612–615
CrossRef
Google scholar
|
[53] |
Gin D L, Noble R D, (2011). Designing the next generation of chemical separation membranes. Science, 332(6030): 674–676
CrossRef
Google scholar
|
[54] |
Giwa A, Hasan S W, Yousuf A, Chakraborty S, Johnson D J, Hilal N (2017). Biomimetic membranes: A critical review of recent progress. Desalination, 420: 403–424
CrossRef
Google scholar
|
[55] |
Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta- Biomembranes, 1788(6): 1213–1228
|
[56] |
Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004). Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature, 429(6988): 193–197
CrossRef
Google scholar
|
[57] |
Gonen T, Walz T (2006). The structure of aquaporins. Quarterly Reviews of Biophysics, 39(4): 361–396
CrossRef
Google scholar
|
[58] |
Górecki R, Reurink D M, Khan M M, Sanahuja-Embuena V, Trzaskuś K, Hélix-Nielsen C (2020). Improved reverse osmosis thin film composite biomimetic membranes by incorporation of polymersomes. Journal of Membrane Science, 593: 117392
CrossRef
Google scholar
|
[59] |
Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P (2009). Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research, 43(9): 2317–2348
CrossRef
Google scholar
|
[60] |
Grzelakowski M, Cherenet M F, Shen Y X, Kumar M (2015). A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes. Journal of Membrane Science, 479: 223–231
CrossRef
Google scholar
|
[61] |
Guo S, Dong S (2011). Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 40(5): 2644–2672
CrossRef
Google scholar
|
[62] |
Guo W, Ngo H H, Li J (2012). A mini-review on membrane fouling. Bioresource Technology, 122: 27–34
CrossRef
Google scholar
|
[63] |
Habel J, Hansen M, Kynde S, Larsen N, Midtgaard S R, Jensen G V, Bomholt J, Ogbonna A, Almdal K, Schulz A, Hélix-Nielsen C (2015). Aquaporin-based biomimetic polymeric membranes: Approaches and challenges. Membranes, 5(3): 307–351
CrossRef
Google scholar
|
[64] |
Hancock R E W, Carey A M (1979). Outer membrane of Pseudomonas aeruginosa: Heat- and 2-mercaptoethanol-modifiable proteins. Journal of Bacteriology, 140(3): 902–910
CrossRef
Google scholar
|
[65] |
Harrison R G, Todd P, Rudge S R, Petrides D P (2015). In: Harrison R G, eds. Bioseparations Science and Engineering. 1st ed. New York: Oxford University Press
|
[66] |
Hasell T, Cooper A I (2016). Porous organic cages: Soluble, modular and molecular pores. Nature Reviews. Materials, 1(9): 16053
CrossRef
Google scholar
|
[67] |
Hasler L, Heymann J B, Engel A, Kistler J, Walz T (1998). 2D crystallization of membrane proteins: Rationales and examples. Journal of Structural Biology, 121(2): 162–171
CrossRef
Google scholar
|
[68] |
Hélix-Nielsen C (2009). Biomimetic membranes for sensor and separation applications. Analytical and Bioanalytical Chemistry, 395(3): 697–718
CrossRef
Google scholar
|
[69] |
Hélix-Nielsen C (2018). Biomimetic membranes as a technology platform: Challenges and opportunities. Membranes, 8(3): 44
CrossRef
Google scholar
|
[70] |
Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L G (2004). Aligned multiwalled carbon nanotube membranes. Science, 303(5654): 62–65
CrossRef
Google scholar
|
[71] |
Hodnik N, Baldizzone C, Polymeros G, Geiger S, Grote J P, Cherevko S, Mingers A, Zeradjanin A, Mayrhofer K J J (2016). Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution. Nature Communications, 7(1): 13164
CrossRef
Google scholar
|
[72] |
Holme J P, Hansen J S, Vissing T, Perry M. E, Hélix-Nielsen C (2015). Biomimetic membranes and uses thereof. US20150360183A1
|
[73] |
Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776): 1034–1037
CrossRef
Google scholar
|
[74] |
Hong H, Tamm L K (2004). Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proceedings of the National Academy of Sciences of the United States of America, 101(12): 4065–4070
CrossRef
Google scholar
|
[75] |
Hoomann T, Jahnke N, Horner A, Keller S, Pohl P (2013). Filter gate closure inhibits ion but not water transport through potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 110(26): 10842–10847
CrossRef
Google scholar
|
[76] |
Horner A, Pohl P (2018). Single-file transport of water through membrane channels. Faraday Discussions, 209: 9–33
CrossRef
Google scholar
|
[77] |
Horner A, Zocher F, Preiner J, Ollinger N, Siligan C, Akimov S A, Pohl P (2015). The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Science Advances, 1(2): e1400083
CrossRef
Google scholar
|
[78] |
Hovijitra N T, Wuu J J, Peaker B, Swartz J R (2009). Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnology and Bioengineering, 104(1): 40–49
CrossRef
Google scholar
|
[79] |
Hu X B, Chen Z, Tang G, Hou J L, Li Z T (2012). Single-molecular artificial transmembrane water channels. Journal of the American Chemical Society, 134(20): 8384–8387
CrossRef
Google scholar
|
[80] |
Hub J S, Grubmüller H, de Groot B L (2009). In: Beitz E, ed. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? BT–Aquaporins. Berlin: Springer, 57–76
|
[81] |
Huggins M L (1942). Some properties of solutions of long-chain compounds. Journal of Physical Chemistry, 46(1): 151–158
CrossRef
Google scholar
|
[82] |
Humphrey W, Dalke A, Schulten K (1996). VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14(1): 33–38
CrossRef
Google scholar
|
[83] |
Huo Y, Zeng H (2016). “Sticky”-Ends-Guided creation of functional hollow nanopores for guest encapsulation and water transport. Accounts of Chemical Research, 49(5): 922–930
CrossRef
Google scholar
|
[84] |
Israelachvili J N, Mitchell D J, Ninham B W (1977). Theory of self-assembly of lipid bilayers and vesicles. BBA- Biomembranes, 470(2): 185–201
|
[85] |
Jap B K, Walian P J, Gehring K (1991). Structural architecture of an outer membrane channel as determined by electron crystallography. Nature, 350(6314): 167–170
CrossRef
Google scholar
|
[86] |
Jörg V, Groth Jesper S, Hoier N K, Oliver G (2015). Membranes, Hollow fiber module having tfc-aquaporin modified. US20151445-53A1
|
[87] |
Kalaj M, Bentz K C, Ayala S Jr, Palomba J M, Barcus K S, Katayama Y, Cohen S M (2020). MOF-Polymer Hybrid Materials: From simple composites to tailored architectures. Chemical Reviews, 120(16): 8267–8302
CrossRef
Google scholar
|
[88] |
Kaler E W, Murthy A K, Rodriguez B E, Zasadzinski J A N (1989). Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 245(4924): 1371–1374
CrossRef
Google scholar
|
[89] |
Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K. (1999). NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151(1): 283–312
CrossRef
Google scholar
|
[90] |
Kaucher M S, Peterca M, Dulcey A E, Kim A J, Vinogradov S A, Hammer D A, Heiney P A, Percec V (2007). Selective transport of water mediated by porous dendritic dipeptides. Journal of the American Chemical Society, 129(38): 11698–11699
CrossRef
Google scholar
|
[91] |
Kaufman Y, Berman A, Freger V (2010). Supported lipid bilayer membranes for water purification by reverse osmosis. Langmuir, 26(10): 7388–7395
CrossRef
Google scholar
|
[92] |
Kaufman Y, Grinberg S, Linder C, Heldman E, Gilron J, Shen Y X, Kumar M, Lammertink R G H, Freger V (2014). Towards supported bolaamphiphile membranes for water filtration: Roles of lipid and substrate. Journal of Membrane Science, 457: 50–61
CrossRef
Google scholar
|
[93] |
Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W (2005). Block copolymer vesicles: Using concepts from polymer chemistry to mimic biomembranes. Polymer, 46(11): 3540–3563
CrossRef
Google scholar
|
[94] |
Klaerke D A, Tejada M L A, Christensen V G, Lassen M, Pedersen P A, Calloe K (2018). Reconstitution and electrophysiological characterization of ion channels in lipid bilayers. Current Protocols in Pharmacology, 81(1): e37
CrossRef
Google scholar
|
[95] |
Klara S S, Saboe P O, Sines I T, Babaei M, Chiu P L, Dezorzi R, Dayal K, Walz T, Kumar M, Mauter M S (2016). Magnetically directed two-dimensional crystallization of OmpF membrane proteins in block copolymers. Journal of the American Chemical Society, 138(1): 28–31
CrossRef
Google scholar
|
[96] |
Kocsis I, Sorci M, Vanselous H, Murail S, Sanders S E, Licsandru E (2018a). Oriented chiral water wires in artificial transmembrane channels. Science Advances, 4(3): eaao5603
|
[97] |
Kocsis I, Sun Z, Legrand Y M, Barboiu M (2018b). Artificial water channels—deconvolution of natural aquaporins through synthetic design. NPJ Clean Water, 1(1): 13
|
[98] |
Köper I (2007). Insulating tethered bilayer lipid membranes to study membrane proteins. Molecular BioSystems, 3(10): 651–657
CrossRef
Google scholar
|
[99] |
Koros W J, Zhang C (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3): 289–297
CrossRef
Google scholar
|
[100] |
Kruse E, Uehlein N, Kaldenhoff R (2006). The aquaporins. Genome Biology, 7(2): 206
CrossRef
Google scholar
|
[101] |
Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W (2007). Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proceedings of the National Academy of Sciences of the United States of America, 104(52): 20719–20724
CrossRef
Google scholar
|
[102] |
Kumar M, Habel J E O, Shen Y X, Meier W P, Walz T (2012). High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes. Journal of the American Chemical Society, 134(45): 18631–18637
CrossRef
Google scholar
|
[103] |
Kumar M, Shen Y X, Saboe P O (2013). Biological and biomimetic membranes. In: Hoek E M V, ed. Encyclopedia of Membrane Science and Technology. 1st ed. Hoboken: Wiley, 1–37
|
[104] |
Kumar Y P, Das R N, Schütte O M, Steinem C, Dash J (2016). Bis-triazolyl diguanosine derivatives as synthetic transmembrane ion channels. Nature Protocols, 11(6): 1039–1056
CrossRef
Google scholar
|
[105] |
Kutzner C, Grubmüller H, De Groot B L, Zachariae U (2011). Computational electrophysiology: The molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophysical Journal, 101(4): 809–817
CrossRef
Google scholar
|
[106] |
Lang C, Shen Y X, LaNasa J A, Ye D, Song W, Zimudzi T J, Hickner M A, Gomez E D, Gomez E W, Kumar M, Hickey R J (2018). Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes. Faraday Discussions, 209: 179–191
CrossRef
Google scholar
|
[107] |
Lang C, Ye D, Song W, Yao C, Tu Y M, Capparelli C, LaNasa J A, Hickner M A, Gomez E W, Gomez E D, Hickey R J, Kumar M (2019). Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes. ACS Nano, 13(7): 8292–8302
CrossRef
Google scholar
|
[108] |
Latimer P, Pyle B E (1972). Light scattering at various angles. Biophysical Journal, 12(7): 764–773
CrossRef
Google scholar
|
[109] |
Le Duc Y, Michau M, Gilles A, Gence V, Legrand Y M, Vanderlee A, Tingry S, Barboiu M (2011). Imidazole-quartet water and proton dipolar channels. Angewandte Chemie International Edition, 50(48): 11366–11372
CrossRef
Google scholar
|
[110] |
Lehn B J (1990). Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angewandte Chemie International Edition, 29(11): 1304–1319
CrossRef
Google scholar
|
[111] |
Lehn J M (1988). Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angewandte Chemie International Edition, 27(1): 89–112
CrossRef
Google scholar
|
[112] |
Lei J C, Zhang X, Zhou Z (2015). Recent advances in MXene: Preparation, properties, and applications. Frontiers in Physics, 10(3): 276–286
CrossRef
Google scholar
|
[113] |
Li M, Xiong Y, Qing G (2020). Smart bio-separation materials. Trends in Analytical Chemistry, 124: 115585
CrossRef
Google scholar
|
[114] |
Li Q, Li X, Ning L, Tan C H, Mu Y, Wang R (2019a). Hyperfast water transport through biomimetic nanochannels from peptide-attached (pR)-pillar[5]arene. Small, 15(6): 1804678
CrossRef
Google scholar
|
[115] |
Li X, Chou S, Wang R, Shi L, Fang W, Chaitra G, Tang C Y, Torres J, Hu X, Fane A G (2015). Nature gives the best solution for desalination: Aquaporin-based hollow fiber composite membrane with superior performance. Journal of Membrane Science, 494: 68–77
CrossRef
Google scholar
|
[116] |
Li X, Loh C H, Wang R, Widjajanti W, Torres J (2017a). Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. Journal of Membrane Science, 525: 257–268
CrossRef
Google scholar
|
[117] |
Li X, Wang R, Tang C, Vararattanavech A, Zhao Y, Torres J, Fane T (2012). Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids and Surfaces. B, Biointerfaces, 94: 333–340
CrossRef
Google scholar
|
[118] |
Li X, Wang R, Wicaksana F, Tang C, Torres J, Fane A G (2014). Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. Journal of Membrane Science, 450: 181–188
CrossRef
Google scholar
|
[119] |
Li Y, Qi S, Tian M, Widjajanti W, Wang R (2019b). Fabrication of aquaporin-based biomimetic membrane for seawater desalination. Desalination, 467: 103–112
CrossRef
Google scholar
|
[120] |
Li Z, Valladares Linares R, Bucs S, Fortunato L, Hélix-Nielsen C, Vrouwenvelder J S, Ghaffour N, Leiknes T O, Amy G (2017b). Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation. Desalination, 420: 208–215
CrossRef
Google scholar
|
[121] |
Liang Y, Zhu Y, Liu C, Lee K R, Hung W S, Wang Z, Li Y, Elimelech M, Jin J, Lin S (2020). Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nature Communications, 11(1): 2015
CrossRef
Google scholar
|
[122] |
Licsandru E, Kocsis I, Shen Y X, Murail S, Legrand Y M, Van Der Lee A, Tsai D, Baaden M, Kumar M, Barboiu M (2016). Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. Journal of the American Chemical Society, 138(16): 5403–5409
CrossRef
Google scholar
|
[123] |
Liu G, Jin W, Xu N (2016). Two-dimensional-material membranes: A new family of high-performance separation membranes. Angewandte Chemie International Edition, 55(43): 13384–13397
CrossRef
Google scholar
|
[124] |
Liu G, Zhao Z, Ghahreman A (2019a). Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy, 187: 81–100
CrossRef
Google scholar
|
[125] |
Liu K, Tian Y, Jiang L (2013). Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science, 58(4): 503–564
CrossRef
Google scholar
|
[126] |
Liu M, Wang S, Jiang L (2017). Nature-inspired superwettability systems. Nature Reviews. Materials, 2(7): 17036
CrossRef
Google scholar
|
[127] |
Liu M, Zhang L, Little M A, Kapil V, Ceriotti M, Yang S, Ding L, Holden D L, Balderas-Xicohténcatl R, He D, Clowes R, Chong S Y, Schütz G, Chen L, Hirscher M, Cooper A I (2019b). Barely porous organic cages for hydrogen isotope separation. Science, 366(6465): 613–620
CrossRef
Google scholar
|
[128] |
Luo W, Xie M, Song X, Guo W, Ngo H H, Zhou J L, Nghiem L D (2018). Biomimetic aquaporin membranes for osmotic membrane bioreactors: Membrane performance and contaminant removal. Bioresource Technology, 249: 62–68
CrossRef
Google scholar
|
[129] |
MacKerell A D Jr, Bashford D, Bellott M, Dunbrack R L Jr, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher W E, Roux B, Schlenkrich M, Smith J C, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18): 3586–3616
CrossRef
Google scholar
|
[130] |
Madsen H T, Bajraktari N, Hélix-Nielsen C, Van der Bruggen B, Søgaard E G (2015). Use of biomimetic forward osmosis membrane for trace organics removal. Journal of Membrane Science, 476: 469–474
CrossRef
Google scholar
|
[131] |
Mai Y, Eisenberg A (2012). Self-assembly of block copolymers. Chemical Society Reviews, 41(18): 5969–5985
CrossRef
Google scholar
|
[132] |
Malinova V, Belegrinou S, de Bruyn Ouboter D, Meier W P (2010). In: Meier W P, Knoll W, eds. Biomimetic Block Copolymer Membranes. Berlin: Springer, 87–111
|
[133] |
Masi M, Pagès J M (2013). Structure, function and regulation of outer membrane proteins involved in drugt transport in enterobactericeae: the OmpF/C–TolC Case. Open Microbiology Journal, 7(1): 22–33
CrossRef
Google scholar
|
[134] |
Matile S, Vargas Jentzsch A, Montenegro J, Fin A (2011). Recent synthetic transport systems. Chemical Society Reviews, 40(5): 2453–2474
CrossRef
Google scholar
|
[135] |
McCutcheon J R (2019). Avoiding the hype in developing commercially viable desalination Technologies. Joule, 3(5): 1168–1171
CrossRef
Google scholar
|
[136] |
Meinild A K, Klaerke D A, Zeuthen T (1998). Bidirectional water fluxes and specificity for small hydrophilic molecules in aquaporins 0–5. Journal of Biological Chemistry, 273(49): 32446–32451
CrossRef
Google scholar
|
[137] |
Mentzel S, Perry M E, Vogel J, Braekevelt S, Geschke O, Larsen M E S (2014). Systems for water extraction. WO2014128293Al
|
[138] |
Miao Y, Johnson N W, Phan T, Heck K, Gedalanga P B, Zheng X, Adamson D, Newell C, Wong M S, Mahendra S (2020). Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants. Water Research, 173: 115540
CrossRef
Google scholar
|
[139] |
Mohammad M M, Howard K R, Movileanu L (2011). Redesign of a plugged β-barrel membrane protein. Journal of Biological Chemistry, 286(10): 8000–8013
CrossRef
Google scholar
|
[140] |
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B (2000). Structural determinants of water permeation through aquaporin-. Nature, 407(6804): 599–605
CrossRef
Google scholar
|
[141] |
Nagai A, Guo Z, Feng X, Jin S, Chen X, Ding X, Jiang D (2011). Pore surface engineering in covalent organic frameworks. Nature Communications, 2(1): 536
CrossRef
Google scholar
|
[142] |
Nassrullah H, Anis S F, Hashaikeh R, Hilal N (2020). Energy for desalination: A state-of-the-art review. Desalination, 491: 114569
CrossRef
Google scholar
|
[143] |
Nath A, Atkins W M, Sligar S G (2007). Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry, 46(8): 2059–2069
CrossRef
Google scholar
|
[144] |
Nephrol S (1998). Decreased membrane hypercalcemic aquaporin-2 delivery rats expression in kidney and collecting apical ducts plasma of polyuric. Journal of the American Society of Nephrology, 9(2): 2181–2193
|
[145] |
Ogoshi T, Kanai S, Fujinami S, Yamagishi T A, Nakamoto Y (2008). Para-bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host-guest property. Journal of the American Chemical Society, 130(15): 5022–5023
CrossRef
Google scholar
|
[146] |
Ogoshi T, Yamagishi T A, Nakamoto Y (2016). Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. Chemical Reviews, 116(14): 7937–8002
CrossRef
Google scholar
|
[147] |
Okamoto Y, Lienhard J H (2019). How RO membrane permeability and other performance factors affect process cost and energy use: A review. Desalination, 470: 114064
CrossRef
Google scholar
|
[148] |
Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D (2017). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530
CrossRef
Google scholar
|
[149] |
Peng B, Tang J, Luo J, Wang P, Ding B, Tam K C (2018). Applications of nanotechnology in oil and gas industry: Progress and perspective. Canadian Journal of Chemical Engineering, 96(1): 91–100
CrossRef
Google scholar
|
[150] |
Plançon L, Chami M, Letellier L (1997). Reconstitution of FhuA, an Escherichia coli outer membrane protein, into liposomes: Binding of phage T5 to FhuA triggers the transfer of DNA into the proteoliposomes. Journal of Biological Chemistry, 272(27): 16868–16872
CrossRef
Google scholar
|
[151] |
Pollmann K, Kutschke S, Matys S, Kostudis S, Hopfe S, Raff J (2016). Novel biotechnological approaches for the recovery of metals from primary and secondary resources. Minerals (Basel), 6(2): 54
CrossRef
Google scholar
|
[152] |
Porter C J, Werber J R, Zhong M, Wilson C J, Elimelech M (2020). Pathways and challenges for biomimetic desalination membranes with sub-nanometer channels. ACS Nano, 14(9): 10894–10916
CrossRef
Google scholar
|
[153] |
Preston G M, Carroll T P, Guggino W B, Agre P (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 256(5055): 385–387
CrossRef
Google scholar
|
[154] |
Qi S, Wang R, Chaitra G K M, Torres J, Hu X, Fane A G (2016). Aquaporin-based biomimetic reverse osmosis membranes: Stability and long term performance. Journal of Membrane Science, 508: 94–103
CrossRef
Google scholar
|
[155] |
Qiu S, Xue M, Zhu G (2014). Metal-organic framework membranes: From synthesis to separation application. Chemical Society Reviews, 43(16): 6116–6140
CrossRef
Google scholar
|
[156] |
Rajesh S, Yan Y, Chang H C, Gao H, Phillip W A (2014). Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations. ACS Nano, 8(12): 12338–12345
CrossRef
Google scholar
|
[157] |
Rathee V S, Qu S, Phillip W A, Whitmer J K (2016). A coarse-grained thermodynamic model for the predictive engineering of valence-selective membranes. Molecular Systems Design & Engineering, 1(3): 301–312
CrossRef
Google scholar
|
[158] |
Ren T, Erbakan M, Shen Y X, Barbieri E, Saboe P, Feroz H, Yan H, McCuskey S, Hall J F, Schantz A B, Bazan G C, Butler P J, Grzelakowski M, Kumar M (2017). Membrane protein insertion into and compatibility with biomimetic membranes. Advanced Biosystems, 1(7): 1700053
CrossRef
Google scholar
|
[159] |
Rhoden V, Goldin S M (1979). Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis. Biochemistry, 18(19): 4173–4176
CrossRef
Google scholar
|
[160] |
Robeson L M (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62(2): 165–185
CrossRef
Google scholar
|
[161] |
Robeson L M (2008). The upper bound revisited. Journal of Membrane Science, 320(1–2): 390–400
CrossRef
Google scholar
|
[162] |
Saboe P O, Rapisarda C, Kaptan S, Hsiao Y S, Summers S R, de Zorzi R, Dukovski D, Yu J, de Groot B L, Kumar M, Walz T (2017). Role of pore-lining residues in defining the rate of water conduction by aquaporin-0. Biophysical Journal, 112(5): 953–965
CrossRef
Google scholar
|
[163] |
Sabolic I, Valenti G, Verbavatz J M, Van Hoek A N, Verkman A S, Ausiello D A, Brown D (1992). Localization of the CHIP28 water channel in rat kidney. American Journal of Physiology. Cell Physiology, 263(6): C1225–C1233
CrossRef
Google scholar
|
[164] |
Sakai N, Matile S (2013). Synthetic ion channels. Langmuir, 29(29): 9031–9040
CrossRef
Google scholar
|
[165] |
Sakipov S, Sobolevsky A I, Kurnikova M G (2018). Ion permeation mechanism in epithelial calcium channel TRVP6. Scientific Reports, 8(1): 5715
CrossRef
Google scholar
|
[166] |
Sanborn J R, Chen X, Yao Y, Hammons J A, Tunuguntla R H, Zhang Y, Newcomb C C, Soltis J A, de Yoreo J J, Van Buuren A, Parikh A N, Noy A (2018). Membranes: Carbon nanotube porins in amphiphilic block copolymers as fully synthetic mimics of biological membranes. Advanced Materials, 30(51): 1803355
CrossRef
Google scholar
|
[167] |
Sanchez C, Arribart H, Giraud Guille M M(2005). Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 4(4): 277–288
CrossRef
Google scholar
|
[168] |
Sanders C R II, Landis G C (1995). Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry, 34(12): 4030–4040
CrossRef
Google scholar
|
[169] |
Sanders D F, Smith Z P, Guo R, Robeson L M, McGrath J E, Paul D R, Freeman B D (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 54(18): 4729–4761
CrossRef
Google scholar
|
[170] |
Schneider S, Licsandru E D, Kocsis I, Gilles A, Dumitru F, Moulin E, Tan J, Lehn J M, Giuseppone N, Barboiu M (2017). Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. Journal of the American Chemical Society, 139(10): 3721–3727
CrossRef
Google scholar
|
[171] |
Scopes R K (1982). In: Scopes R K, eds. Protein purification: Principles and practice. 1st ed. Berlin: Springer
|
[172] |
Seddon A M, Curnow P, Booth P J (2004). Membrane proteins, lipids and detergents: Not just a soap opera. Biochimica et Biophysica Acta- Biomembranes, 1666(1–2): 105–117
|
[173] |
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M (2008). Science and technology for water purification in the coming decades. Nature, 452(7185): 301–310
CrossRef
Google scholar
|
[174] |
Shen J, Fan J, Ye R, Li N, Mu Y, Zeng H (2020a). Polypyridine-based helical amide foldamer channels: Rapid transport of water and protons with high ion rejection. Angewandte Chemie International Edition, 59(32): 13328–13334
CrossRef
Google scholar
|
[175] |
Shen J, Ye R, Romanies A, Roy A, Chen F, Ren C, Liu Z, Zeng H (2020b). Aquafoldmer-based aquaporin-like synthetic water channel. Journal of the American Chemical Society, 142(22): 10050–10058
CrossRef
Google scholar
|
[176] |
Shen Y X, Saboe P O, Sines I T, Erbakan M, Kumar M (2014). Biomimetic membranes: A review. Journal of Membrane Science, 454: 359–381
CrossRef
Google scholar
|
[177] |
Shen Y X, Si W, Erbakan M, Decker K, de Zorzi R, Saboe P O, Kang Y J, Majd S, Butler P J, Walz T, Aksimentiev A, Hou J, Kumar M (2015). Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proceedings of the National Academy of Sciences of the United States of America, 112(32): 9810–9815
CrossRef
Google scholar
|
[178] |
Shen Y X, Song W C, Barden D R, Ren T, Lang C, Feroz H (2018). Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nature Communications, 9(1): 2294
CrossRef
Google scholar
|
[179] |
Shi B, Marchetti P, Peshev D, Zhang S, Livingston A G (2017). Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. Journal of Membrane Science, 525: 35–47
CrossRef
Google scholar
|
[180] |
Sholl D S, Lively R P (2016). Seven chemical separations to change the world. Nature, 532(7600): 435–437
CrossRef
Google scholar
|
[181] |
Si W, Xin P, Li Z T, Hou J L (2015). Tubular unimolecular transmembrane channels: Construction strategy and transport activities. Accounts of Chemical Research, 48(6): 1612–1619
CrossRef
Google scholar
|
[182] |
Sianipar M, Kim S H, Khoiruddin K, Iskandar F, Wenten I G (2017). Functionalized carbon nanotube (CNT) membrane: Progress and challenges. RSC Advances, 7(81): 51175–51198
CrossRef
Google scholar
|
[183] |
Sisson A L, Shah M R, Bhosale S, Matile S (2006). Synthetic ion channels and pores (2004–2005). Chemical Society Reviews, 35(12): 1269–1286
CrossRef
Google scholar
|
[184] |
Song W, Joshi H, Chowdhury R, Najem J S, Shen Y X, Lang C, Henderson C B, Tu Y M, Farell M, Pitz M E, Maranas C D, Cremer P S, Hickey R J, Sarles S A, Hou J, Aksimentiev A, Kumar M (2020). Artificial water channels enable fast and selective water permeation through water-wire networks. Nature Nanotechnology, 15(1): 73–79
CrossRef
Google scholar
|
[185] |
Song W, Kumar M (2019). Artificial water channels: toward and beyond desalination. Current Opinion in Chemical Engineering, 25: 9–17
CrossRef
Google scholar
|
[186] |
Song W, Lang C, Shen Y, Kumar M (2018). Design considerations for artificial water channel–based membranes. Annual Review of Materials Research, 48(1): 57–82
CrossRef
Google scholar
|
[187] |
Song W, Tu Y M, Oh H, Samineni L, Kumar M (2019). Hierarchical optimization of high-performance biomimetic and bioinspired membranes. Langmuir, 35(3): 589–607
CrossRef
Google scholar
|
[188] |
Spulber M, Gerstandt K (2018). Diblock copolymer vesicles and separation membranes comprising aquaporin water channels and methods of making and using them. WO2018141985A1
|
[189] |
Sullivan K, Zhang Y, Lopez J, Lowe M, Noy A (2020). Carbon nanotube porin diffusion in mixed composition supported lipid bilayers. Scientific Reports, 10(1): 11908
CrossRef
Google scholar
|
[190] |
Sun G, Chung T S, Chen N, Lu X, Zhao Q (2013a). Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach. RSC Advances, 3(24): 9178–9184
CrossRef
Google scholar
|
[191] |
Sun G, Chung T S, Jeyaseelan K, Armugam A (2013b). A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Advances, 3(2): 473–481
CrossRef
Google scholar
|
[192] |
Sun G, Chung T S, Jeyaseelan K, Armugam A (2013c). Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Colloids and Surfaces. B, Biointerfaces, 102: 466–471
CrossRef
Google scholar
|
[193] |
Tabushi I, Kuroda Y, Yokota K (1982). A,B,D,F-tetrasubstituted β-cyclodextrin as artificial channel compound. Tetrahedron Letters, 23(44): 4601–4604
CrossRef
Google scholar
|
[194] |
Tan Z, Chen S, Peng X, Zhang L, Gao C (2018). Polyamide membranes with nanoscale Turing structures for water purification. Science, 360(6388): 518–521
CrossRef
Google scholar
|
[195] |
Tang C, Qiu C, Zhao Y, Shen W, Vararattanavech A, Wang R (2014). Aquaporin based thin film composite membranes. US2014332468
|
[196] |
Tang C, Wang Z, Petrinić I, Fane A G, Hélix-Nielsen C (2015). Biomimetic aquaporin membranes coming of age. Desalination, 368: 89–105
CrossRef
Google scholar
|
[197] |
Tang C Y, Zhao Y, Wang R, Hélix-Nielsen C, Fane A G (2013). Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 308: 34–40
CrossRef
Google scholar
|
[198] |
Tu Y M, Song W, Ren T, Shen Y X, Chowdhury R, Rajapaksha P, Culp T E, Samineni L, Lang C, Thokkadam A, Carson D, Dai Y, Mukthar A, Zhang M, Parshin A, Sloand J N, Medina S H, Grzelakowski M, Bhattacharya D, Phillip W A, Gomez E D, Hickey R J, Wei Y, Kumar M (2020). Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nature Materials, 19(3): 347–354
CrossRef
Google scholar
|
[199] |
Tunuguntla R H, Allen F I, Kim K, Belliveau A, Noy A (2016a). Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nature Nanotechnology, 11(7): 639–644
CrossRef
Google scholar
|
[200] |
Tunuguntla R H, Escalada A, Frolov V A, Noy A (2016b). Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nature Protocols, 11(10): 2029–2047
CrossRef
Google scholar
|
[201] |
Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A (2017). Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science, 357(6353): 792–796
CrossRef
Google scholar
|
[202] |
Venkata Subbaiah Y P, Saji K J, Tiwari A (2016). Atomically Thin MoS2 : A Versatile nongraphene 2D material. Advanced Functional Materials, 26(13): 2046–2069
CrossRef
Google scholar
|
[203] |
Verkman A S, Mitra A K (2000). Structure and function of aquaporin water channels. American Journal of Physiology. Renal Physiology, 278(1): F13–F28
CrossRef
Google scholar
|
[204] |
Virkki L V, Cooper G J, Boron W F (2001). Cloning and functional expression of an MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281(6): R1994–R2003
CrossRef
Google scholar
|
[205] |
Voyer N, Robitaille M (1995). A novel functional artificial ion channel. Journal of the American Chemical Society, 117(24): 6599–6600
CrossRef
Google scholar
|
[206] |
Wagh P, Escobar I C (2019). Biomimetic and bioinspired membranes for water purification: A critical review and future directions. Environmental Progress & Sustainable Energy, 38(3): e13215
CrossRef
Google scholar
|
[207] |
Wagh P, Parungao G, Viola R E, Escobar I C (2015). A new technique to fabricate high-performance biologically inspired membranes for water treatment. Separation and Purification Technology, 156: 754–765
CrossRef
Google scholar
|
[208] |
Wagner S, Bader M L, Drew D, de Gier J W (2006). Rationalizing membrane protein overexpression. Trends in Biotechnology, 24(8): 364–371
CrossRef
Google scholar
|
[209] |
Walz T, Hirai T, Murata K, Heymann J B, Mitsuoka K, Fujiyoshi Y, Smith B L, Agre P, Engel A (1997). The three-dimensional structure of aquaporin-1. Nature, 387(6633): 624–627
CrossRef
Google scholar
|
[210] |
Wang H, Chung T S, Tong Y W, Jeyaseelan K, Armugam A, Chen Z, Hong M, Meier W (2012). Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. Small, 8(8): 1185–1190
CrossRef
Google scholar
|
[211] |
Wang H, Chung T S, Tong Y W, Meier W, Chen Z, Hong M, Jeyaseelan K, Armugam A (2011). Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter, 7(16): 7274–7280
CrossRef
Google scholar
|
[212] |
Wang H L, Chung T S, Tong Y W, Jeyaseelan K, Armugam A, Duong H H P, Fu F, Seah H, Yang J, Hong M (2013). Mechanically robust and highly permeable AquaporinZ biomimetic membranes. Journal of Membrane Science, 434: 130–136
CrossRef
Google scholar
|
[213] |
Wang M, Wang Z, Wang X, Wang S, Ding W, Gao C (2015). Layer-by-layer assembly of aquaporin z-incorporated biomimetic membranes for water purification. Environmental Science & Technology, 49(6): 3761–3768
CrossRef
Google scholar
|
[214] |
Wang Z, Wang Z, Lin S, Jin H, Gao S, Zhu Y, Jin J (2018). Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 9(1): 2004
CrossRef
Google scholar
|
[215] |
Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O (2015). Bioinspired structural materials. Nature Materials, 14(1): 23–36
CrossRef
Google scholar
|
[216] |
Werber J R, Deshmukh A, Elimelech M (2016a). The critical need for increased selectivity, not increased water permeability for desalination membranes. Environmental Science & Technology Letters, 3(4): 112–120
CrossRef
Google scholar
|
[217] |
Werber J R, Elimelech M (2018). Permselectivity limits of biomimetic desalination membranes. Science Advances, 4(6): eaar8266
|
[218] |
Werber J R, Osuji C O, Elimelech M (2016b). Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 1(5): 16018
CrossRef
Google scholar
|
[219] |
Xia L, Andersen M F, Hélix-Nielsen C, McCutcheon J R (2017). Novel commercial aquaporin flat-sheet membrane for forward osmosis. Industrial & Engineering Chemistry Research, 56(41): 11919–11925
CrossRef
Google scholar
|
[220] |
Xie M, Luo W, Guo H, Nghiem L D, Tang C Y, Gray S R (2018). Trace organic contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms and membrane stability. Water Research, 132: 90–98
CrossRef
Google scholar
|
[221] |
Xie W, He F, Wang B, Chung T S, Jeyaseelan K, Armugam A, Tong Y W (2013). An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(26): 7592–7600
CrossRef
Google scholar
|
[222] |
Yang Y, Walton A, Sheridan R, Güth K, Gauß R, Gutfleisch O, Buchert M, Steenari B M, Van Gerven T, Jones P T, Binnemans K (2017). REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review. Journal of Sustainable Metallurgy, 3(1): 122–149
CrossRef
Google scholar
|
[223] |
Yao Y C, Taqieddin A, Alibakhshi M A, Wanunu M, Aluru N R, Noy A (2019). Strong electroosmotic coupling dominates ion conductance of 1.5 nm diameter carbon nanotube porins. ACS Nano, 13(11): 12851–12859
CrossRef
Google scholar
|
[224] |
Zeidel M L, Ambudkar S V, Smith B L, Agre P (1992). Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry, 31(33): 7436–7440
CrossRef
Google scholar
|
[225] |
Zhang X, Fu W, Palivan C G, Meier W (2013). Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane. Scientific Reports, 3(1): 2196
CrossRef
Google scholar
|
[226] |
Zhang X, Tanner P, Graff A, Palivan C G, Meier W (2012). Mimicking the cell membrane with block copolymer membranes. Journal of Polymer Science. Part A, Polymer Chemistry, 50(12): 2293–2318
CrossRef
Google scholar
|
[227] |
Zhao H, Ong W Q, Fang X, Zhou F, Hii M N, Li S F Y, Su H, Zeng H (2012a). Synthesis, structural investigation and computational modelling of water-binding aquafoldamers. Organic & Biomolecular Chemistry, 10(6): 1172–1180
CrossRef
Google scholar
|
[228] |
Zhao H, Sheng S, Hong Y, Zeng H (2014a). Proton gradient-induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules. Journal of the American Chemical Society, 136(40): 14270–14276
CrossRef
Google scholar
|
[229] |
Zhao J, Zhao X, Jiang Z, Li Z, Fan X, Zhu J, Wu H, Su Y, Yang D, Pan F, Shi J (2014b). Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 39(9): 1668–1720
CrossRef
Google scholar
|
[230] |
Zhao Y, Qiu C, Li X, Vararattanavech A, Shen W, Torres J, Hélix-Nielsen C, Wang R, Hu X, Fane A G, Tang C Y (2012b). Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. Journal of Membrane Science, 423–424: 422–428
CrossRef
Google scholar
|
[231] |
Zhong P S, Chung T S, Jeyaseelan K, Armugam A (2012). Aquaporin-embedded biomimetic membranes for nanofiltration. Journal of Membrane Science, 407–408: 27–33
CrossRef
Google scholar
|
[232] |
Zhou X, Liu G, Yamato K, Shen Y, Cheng R, Wei X, Bai W, Gao Y, Li H, Liu Y, Liu F, Czajkowsky D M, Wang J, Dabney M J, Cai Z, Hu J, Bright F V, He L, Zeng X C, Shao Z, Gong B (2012). Self-assembling subnanometer pores with unusual mass-transport properties. Nature Communications, 3(1): 949
CrossRef
Google scholar
|
[233] |
Zhu F, Tajkhorshid E, Schulten K (2004). Collective diffusion model for water permeation through microscopic channels. Physical Review Letters, 93(22): 224501
CrossRef
Google scholar
|
/
〈 | 〉 |