Sep 2023, Volume 16 Issue 3
    

  • Select all
  • REVIEW ARTICLE
    Pengfei Liu, Hao Wen, Linhao Ren, Lei Shi, Xinliang Zhang

    Second-order (χ(2)) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices. Due to strong photon confinement and long photon lifetime, integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical effects. However, existing silicon-based materials lack a χ(2) response due to their centrosymmetric structures. A variety of novel material platforms possessing χ(2) nonlinearity have been developed over the past two decades. This review comprehensively summarizes the progress of second-order nonlinear optical effects in integrated microresonators. First, the basic principles of χ(2) nonlinear effects are introduced. Afterward, we highlight the commonly used χ(2) nonlinear optical materials, including their material properties and respective functional devices. We also discuss the prospects and challenges of utilizing χ(2) nonlinearity in the field of integrated microcavity photonics.

  • RESEARCH ARTICLE
    Yuting Ouyang, Jiayu Zhang, Wanggen Sun, Mengxiao Li, Tao Chen, Haikun Zhang, Wenjing Tang, Wei Xia

    Stable picosecond dissipative soliton pulses were observed in an ytterbium-doped fiber laser employing a high-quality mixture of BP/SnSe2-PVA saturable absorber (SA). The modulation depth, saturation intensity, and non-saturable loss of the mixture of BP/SnSe2-PVA SA were measured with values of 5.98%, 18.37 MW/cm2, and 33%, respectively. Within the pump power range of 150–270 mW, stable dissipative soliton pulses were obtained with an output power of 1.68–4 mW. When the minimum pulse duration is 1.28 ps, a repetition rate of 0.903 MHz, center wavelength of 1064.38 nm and 3 dB bandwidth of 2 nm were obtained. The maximum pulse energy of 4.43 nJ and the signal-to-noise ratio up to 72 dB were achieved at pump power of 270 mW. The results suggest that the BP/SnSe2-PVA mixture SA has outstanding nonlinear saturable absorption characteristics and broad ultrafast laser applications.

  • RESEARCH ARTICLE
    Weilei Gou, Yuan Yu, Xinliang Zhang

    Optical beating is the usual approach to generation of microwave signals. However, the highest frequency achievable for microwave signals is limited by the bandwidths of optoelectronic devices. To maximize the microwave frequency with a limited bandwidth of a photodetector (PD) and relieve the bandwidth bottleneck, we propose to generate microwave signals with the single sideband (SSB) format by beating a continuous wave (CW) light with an optical SSB signal. By simply adjusting the frequency difference between the CW light and the carrier of the optical SSB signal, the frequency of the generated microwave SSB signal is changed correspondingly. In the experiment, amplitude shift keying (ASK) microwave signals with the SSB format are successfully generated with different carrier frequencies and coding bit rates, and the recovered coding information agrees well with the original pseudo random binary sequence (PRBS) of 27–1 bits. The proposed approach can significantly relieve the bandwidth restriction set by optoelectronic devices in high-speed microwave communication systems.

  • RESEARCH ARTICLE
    Sergey N. Mantsevich, Ekaterina I. Kostyleva, Andrey N. Danilin, Vladimir S. Khorkin

    The results of an optoelectronic system—frequency-shifted feedback (FSF) laser experimental examination are presented. The considered FSF laser is seeded only with optical amplifier spontaneous emission (ASE) and operates in the mode-locked regime, whereby the output radiation is sequence of short pulses with a repetition rate determined by the delay time in its optical feedback circuit. In the frequency domain, the spectrum of such a pulse sequence is an optical frequency comb (OFC). These OFCs we call initial. We consider the possibility of tunable acousto-optic (AO) dual and quad-comb frequency spacing downconversion in the FSF laser seeded with ASE and operating in the mode-locked regime. The examined system applies a single frequency shifting loop with single AO tunable filter as the frequency shifter that is fed with several radio frequency signals simultaneously. The initial OFCs with frequency spacing of about 6.5 MHz may be obtained in the wide spectral range and their width, envelope shape and position in the optical spectrum may be tuned. The dual-combs are obtained with a pair of initial OFCs aroused by two various ultrasound waves in the acousto-optic tunable filter (AOTF). The dual-combs frequency spacing is determined by the frequency difference of the signals applied to the AOTF piezoelectric transducer and can be tuned simply. The quad-combs are obtained with three initial OFCs, forming a pair of dual-combs, appearing when three ultrasound frequencies feed the AOTF transducer. The quad-combs frequency spacing is defined by the difference between the frequency spacing of dual-combs. Quad-combs with more than 5000 spectral lines and tunable frequency spacing are observed. The successive frequency downconversion gives the possibility to reduce the OFC frequency spacing form several MHz for initial OFC to tens of kHz for quad-combs.

  • RESEARCH ARTICLE
    Semyachkina‑Glushkovskaya Oxana, Shirokov Alexander, Blokhina Inna, Fedosov Ivan, Terskov Andrey, Dubrovsky Alexander, Tsoy Maria, Elovenko Daria, Adushkina Viktoria, Evsukova Arina, Telnova Valeria, Tzven Anna, Krupnova Valeria, Manzhaeva Maria, Dmitrenko Alexander, Penzel Thomas, Kurths Jürgen

    With the increase in the aging population, the global number of people with Alzheimer’s disease (AD) progressively increased worldwide. The situation is aggravated by the fact that there is no the effective pharmacological therapy of AD. Photobiomodulation (PBM) is non-pharmacological approach that has shown very promising results in the therapy of AD in pilot clinical and animal studies. However, the mechanisms of therapeutic effects of PBM for AD are poorly understood. In this study on mice, we demonstrate that photodynamic effects of 5-aminolevulenic acid and laser 635 nm cause reduction of network of the meningeal lymphatic vessels (MLVs) leading to suppression of lymphatic removal of beta-amyloid (Aβ) from the right lateral ventricle and the hippocampus. Using the original protocol of PBM under electroencephalographic monitoring of wakefulness and sleep stages in non-anesthetized mice, we discover that the 7-day course of PBM during deep sleep vs. wakefulness provides better restoration of clearance of Aβ from the ventricular system of the brain and the hippocampus. Our results shed light on the mechanism of PBM and show the stimulating effects of PBM on the brain lymphatic drainage that promotes transport of Aβ via the lymphatic pathway. The effects of PBM on the brain lymphatics in sleeping brain open a new niche in the study of restorative functions of sleep as well as it is an important informative platform for the development of innovative smart sleep technologies for the therapy of AD.

  • REVIEW ARTICLE
    Huaqing Qiu, Yong Liu, Xiansong Meng, Xiaowei Guan, Yunhong Ding, Hao Hu

    An optical phased array (OPA) is a promising non-mechanical technique for beam steering in solid-state light detection and ranging systems. The performance of the OPA largely depends on the phase shifter, which affects power consumption, insertion loss, modulation speed, and footprint. However, for a thermo-optic phase shifter, achieving good performance in all aspects is challenging due to trade-offs among these aspects. In this work, we propose and demonstrate two types of energy-efficient optical phase shifters that overcome these trade-offs and achieve a well-balanced performance in all aspects. Additionally, the proposed round-spiral phase shifter is robust in fabrication and fully compatible with deep ultraviolet (DUV) processes, making it an ideal building block for large-scale photonic integrated circuits (PICs). Using the high-performance phase shifter, we propose a periodic OPA with low power consumption, whose maximum electric power consumption within the field of view is only 0.33 W. Moreover, we designed Gaussian power distribution in both the azimuthal (ϕ) and polar (θ) directions and experimentally achieved a large sidelobe suppression ratio of 15.1 and 25 dB, respectively.

  • RESEARCH ARTICLE
    Yuqi Hu, Qingsong Bai, Xi Tang, Wei Xiong, Yilu Wu, Xin Zhang, Yanlan Xiao, Runchang Du, Leiji Liu, Guangqiong Xia, Zhengmao Wu, Junbo Yang, Heng Zhou, Jiagui Wu

    Ultrafast physical random bit (PRB) generators and integrated schemes have proven to be valuable in a broad range of scientific and technological applications. In this study, we experimentally demonstrated a PRB scheme with a chaotic microcomb using a chip-scale integrated resonator. A microcomb contained hundreds of chaotic channels, and each comb tooth functioned as an entropy source for the PRB. First, a 12 Gbits/s PRB signal was obtained for each tooth channel with proper post-processing and passed the NIST Special Publication 800-22 statistical tests. The chaotic microcomb covered a wavelength range from 1430 to 1675 nm with a free spectral range (FSR) of 100 GHz. Consequently, the combined random bit sequence could achieve an ultra-high rate of about 4 Tbits/s (12 Gbits/s × 294 = 3.528 Tbits/s), with 294 teeth in the experimental microcomb. Additionally, denser microcombs were experimentally realized using an integrated resonator with 33.6 GHz FSR. A total of 805 chaotic comb teeth were observed and covered the wavelength range from 1430 to 1670 nm. In each tooth channel, 12 Gbits/s random sequences was generated, which passed the NIST test. Consequently, the total rate of the PRB was approximately 10 Tbits/s (12 Gbits/s × 805 = 9.66 Tbits/s). These results could offer potential chip solutions of Pbits/s PRB with the features of low cost and a high degree of parallelism.

  • RESEARCH ARTICLE
    Cheng Wang, Yaoguang Rong, Ti Wang

    In lead halide perovskites, organic A-site cations are generally introduced to fine-tune the properties. One of the questions under debate is whether organic A-site cations are essential for high-performance solar cells. In this study, we compare the band edge carrier dynamics and diffusion process in MAPbBr3 and CsPbBr3 single-crystal microplates. By transient absorption microscopy, the band-edge carrier diffusion constants are unraveled. With the replacement of inorganic A-site cations, the diffusion constant in CsPbBr3 increases almost 8 times compared to that in MAPbBr3. This work reveals that introducing inorganic A-site cations can lead to a much larger diffusion length and improve the performance of band-edge carriers.

  • RESEARCH ARTICLE
    Qing Ye, Hui Kong, Jintian Bian, Jiyong Yao, Enlong Wang, Yunlong Wu, Haiping Xu, Kaihua Wen, Yihua Hu

    The widely tunable and high resolution mid-infrared laser based on a BaGa4Se7 (BGSe) optical parametric oscillator (OPO) was demonstrated. A wavelength tuning range of 2.76–4.64 μm and a wavelength tuning resolution of about 0.3 nm were obtained by a BGSe (56.3°, 0°) OPO, which was pumped by a 1064 nm laser. It is the narrowest reported wavelength tuning resolution for BGSe OPO, and was obtained by simultaneously controlling the angle and temperature of BGSe.

  • RESEARCH ARTICLE
    Xinzhao Zhao, Mingyu Li, Tianjun Ma, Jun Yan, Gomaa Mohamed Gomaa Khalaf, Chao Chen, Hsien-Yi Hsu, Haisheng Song, Jiang Tang

    Infrared solar cells are more effective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region, thus also at broadening the absorption spectra and improving power conversion efficiency. PbS colloidal quantum dots (QDs) with tunable bandgap are ideal infrared photovoltaic materials. However, QD solar cell production suffers from small-area-based spin-coating fabrication methods and unstable QD ink. Herein, the QD ink stability mechanism was fully investigated according to Lewis acid–base theory and colloid stability theory. We further studied a mixed solvent system using dimethylformamide and butylamine, compatible with the scalable manufacture of method-blade coating. Based on the ink system, 100 cm2 of uniform and dense near-infrared PbS QDs (∼ 0.96 eV) film was successfully prepared by blade coating. The average efficiencies of above absorber-based devices reached 11.14% under AM1.5G illumination, and the 800 nm-filtered efficiency achieved 4.28%. Both were the top values among blade coating method based devices. The newly developed ink showed excellent stability, and the device performance based on the ink stored for 7 h was similar to that of fresh ink. The matched solvent system for stable PbS QD ink represents a crucial step toward large area blade coating photoelectric devices.

  • RESEARCH ARTICLE
    Jungang He, You Ge, Ya Wang, Mohan Yuan, Hang Xia, Xingchen Zhang, Xiao Chen, Xia Wang, Xianchang Zhou, Kanghua Li, Chao Chen, Jiang Tang

    Lead selenide (PbSe) colloidal quantum dots (CQDs) are suitable for the development of the next-generation of photovoltaics (PVs) because of efficient multiple-exciton generation and strong charge coupling ability. To date, the reported high-efficient PbSe CQD PVs use spin-coated zinc oxide (ZnO) as the electron transport layer (ETL). However, it is found that the surface defects of ZnO present a difficulty in completion of passivation, and this impedes the continuous progress of devices. To address this disadvantage, fluoride (F) anions are employed for the surface passivation of ZnO through a chemical bath deposition method (CBD). The F-passivated ZnO ETL possesses decreased densities of oxygen vacancy and a favorable band alignment. Benefiting from these improvements, PbSe CQD PVs report an efficiency of 10.04%, comparatively 9.4% higher than that of devices using sol-gel (SG) ZnO as ETL. We are optimistic that this interface passivation strategy has great potential in the development of solution-processed CQD optoelectronic devices.

  • REVIEW ARTICLE
    Yanran Wu, Bing Duan, Changhong Li, Daquan Yang

    Optical microcavities have the ability to confine photons in small mode volumes for long periods of time, greatly enhancing light-matter interactions, and have become one of the research hotspots in international academia. In recent years, sensing applications in complex environments have inspired the development of multimode optical microcavity sensors. These multimode sensors can be used not only for multi-parameter detection but also to improve measurement precision. In this review, we introduce multimode sensing methods based on optical microcavities and present an overview of the multimode single/multi-parameter optical microcavities sensors. Expected further research activities are also put forward.

  • RESEARCH ARTICLE
    Tao Wang, Bo Ren, Can Li, Kun Guo, Jinyong Leng, Pu Zhou

    In this work, a high-energy and high peak power chirped pulse amplification system with near diffraction-limited beam quality based on tapered confined-doped fiber (TCF) is experimentally demonstrated. The TCF has a core numerical aperture of 0.07 with core/cladding diameter of 35/250 μm at the thin end and 56/400 μm at the thick end. With a backward-pumping configuration, a maximum single pulse energy of 177.9 μJ at a repetition rate of 504 kHz is realized, corresponding to an average power of 89.7 W. Through partially compensating for the accumulated nonlinear phase during the amplification process via adjusting the high order dispersion of the stretching chirped fiber Bragg grating, the duration of the amplified pulse is compressed to 401 fs with a pulse energy of 126.3 μJ and a peak power of 207 MW, which to the best of our knowledge represents the highest peak power ever reported from a monolithic ultrafast fiber laser. At the highest energy, the polarization extinction ratio and the M2 factor were respectively measured to be ∼ 19 dB and 1.20. In addition, the corresponding intensity noise properties as well as the short- and long-term stability were also examined, verifying a stable operation of the system. It is believed that the demonstrated laser source could find important applications in, for example, advanced manufacturing and photomedicine.

  • RESEARCH ARTICLE
    Chuancheng Zhang, Shoujun Ding, Miaomiao Wang, Hao Ren, Xubing Tang, Yong Zou, Renqin Dou, Wenpeng Liu

    Optical thermometry based on the upconversion (UC) luminescence intensity ratio (LIR) has attracted considerable attention because of its feasibility for achievement of accurate non-contact temperature measurement. Compared with traditional UC phosphors, optical thermometry based on UC single crystals can achieve faster response and higher sensitivity due to the stability and high thermal conductivity of the single crystals. In this study, a high-quality 5 at% Yb3+ and 1 at% Ho3+ co-doped Gd0.74Y0.2TaO4 single crystal was grown by the Czochralski (Cz) method, and the structure of the as-grown crystal was characterized. Importantly, the UC luminescent properties and optical thermometry behaviors of this crystal were revealed. Under 980 nm wavelength excitation, green and red UC luminescence lines at 550 and 650 nm and corresponding to the 5F4/5S25I8 and 5F55I8 transitions of Ho3+, respectively, were observed. The green and red UC emissions involved a two-photon mechanism, as evidenced by the analysis of power-dependent UC emission spectra. The temperature-dependent UC emission spectra were measured in the temperature range of 330–660 K to assess the optical temperature sensing behavior. At 660 K, the maximum relative sensing sensitivity (Sr) was determined to be 0.0037 K−1. These results highlight the significant potential of Yb,Ho:GYTO single crystal for optical temperature sensors.