Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb

Yuqi Hu, Qingsong Bai, Xi Tang, Wei Xiong, Yilu Wu, Xin Zhang, Yanlan Xiao, Runchang Du, Leiji Liu, Guangqiong Xia, Zhengmao Wu, Junbo Yang, Heng Zhou, Jiagui Wu

PDF(5960 KB)
PDF(5960 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (3) : 24. DOI: 10.1007/s12200-023-00081-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb

Author information +
History +

Abstract

Ultrafast physical random bit (PRB) generators and integrated schemes have proven to be valuable in a broad range of scientific and technological applications. In this study, we experimentally demonstrated a PRB scheme with a chaotic microcomb using a chip-scale integrated resonator. A microcomb contained hundreds of chaotic channels, and each comb tooth functioned as an entropy source for the PRB. First, a 12 Gbits/s PRB signal was obtained for each tooth channel with proper post-processing and passed the NIST Special Publication 800-22 statistical tests. The chaotic microcomb covered a wavelength range from 1430 to 1675 nm with a free spectral range (FSR) of 100 GHz. Consequently, the combined random bit sequence could achieve an ultra-high rate of about 4 Tbits/s (12 Gbits/s × 294 = 3.528 Tbits/s), with 294 teeth in the experimental microcomb. Additionally, denser microcombs were experimentally realized using an integrated resonator with 33.6 GHz FSR. A total of 805 chaotic comb teeth were observed and covered the wavelength range from 1430 to 1670 nm. In each tooth channel, 12 Gbits/s random sequences was generated, which passed the NIST test. Consequently, the total rate of the PRB was approximately 10 Tbits/s (12 Gbits/s × 805 = 9.66 Tbits/s). These results could offer potential chip solutions of Pbits/s PRB with the features of low cost and a high degree of parallelism.

Graphical abstract

Keywords

Physical random bit / Chaos / Microcomb

Cite this article

Download citation ▾
Yuqi Hu, Qingsong Bai, Xi Tang, Wei Xiong, Yilu Wu, Xin Zhang, Yanlan Xiao, Runchang Du, Leiji Liu, Guangqiong Xia, Zhengmao Wu, Junbo Yang, Heng Zhou, Jiagui Wu. Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb. Front. Optoelectron., 2023, 16(3): 24 https://doi.org/10.1007/s12200-023-00081-4

References

[1]
Uchida, A., Amano, K., Inoue, M., Hirano, K., Naito, S., Someya, H., Oowada, I., Kurashige, T., Shiki, M., Yoshimori, S., Yoshimura, K., Davis, P.: Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2(12), 728–732 (2008)
CrossRef Google scholar
[2]
Reidler, I., Aviad, Y., Rosenbluh, M., Kanter, I.: Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103(2), 024102 (2009)
CrossRef Google scholar
[3]
Hirano, K., Yamazaki, T., Morikatsu, S., Okumura, H., Aida, H., Uchida, A., Yoshimori, S., Yoshimura, K., Harayama, T., Davis, P.: Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18(6), 5512–5524 (2010)
CrossRef Google scholar
[4]
Sakuraba, R., Iwakawa, K., Kanno, K., Uchida, A.: Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express 23(2), 1470–1490 (2015)
CrossRef Google scholar
[5]
Zhang, L., Pan, B., Chen, G., Guo, L., Lu, D., Zhao, L., Wang, W.: 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci. Rep. 7(1), 1–8 (2017)
CrossRef Google scholar
[6]
Wang, L., Zhao, T., Wang, D., Wu, D., Zhou, L., Wu, J., Liu, X., Wang, Y., Wang, A.: Real-time 14-Gbps physical random bit generator based on time-interleaved sampling of broadband white chaos. IEEE Photonics J. 9(2), 1–13 (2017)
CrossRef Google scholar
[7]
Li, X.Z., Chan, S.C.: Heterodyne random bit generation using an optically injected semiconductor laser in chaos. IEEE J. Quantum Electron. 49(10), 829–838 (2013)
CrossRef Google scholar
[8]
Wu, J.G., Tang, X., Wu, Z.M., Xia, G.Q., Feng, G.Y.: Parallel generation of 10 Gbits/s physical random number streams using chaotic semiconductor lasers. Laser Phys. 22(10), 1476–1480 (2012)
CrossRef Google scholar
[9]
Tang, X., Wu, Z.M., Wu, J.G., Deng, T., Chen, J.J., Fan, L., Zhong, Z., Xia, G.Q.: Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Opt. Express 23(26), 33130–33141 (2015)
CrossRef Google scholar
[10]
Tang, X., Wu, Z.M., Wu, J.G., Deng, T., Fan, L., Zhong, Z.Q., Chen, J., Xia, G.Q.: Generation of multi-channel high-speed physical random numbers originated from two chaotic signals of mutually coupled semiconductor lasers. Laser Phys. Lett. 12(1), 015003 (2015)
CrossRef Google scholar
[11]
Ran, C., Tang, X., Wu, Z.M., Xia, G.Q.: Dual-channel physical random bits generation by a master-slave vertical-cavity surface-emitting lasers chaotic system. Laser Phys. 28(12), 126202 (2018)
CrossRef Google scholar
[12]
Tang, X., Xia, G.Q., Jayaprasath, E., Deng, T., Lin, X.D., Fan, L., Gao, Z., Wu, Z.M.: Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection. IEEE Access 6, 3565–3572 (2018)
CrossRef Google scholar
[13]
Shi, B., Luo, C., Flores, J.G.F., Lo, G., Kwong, D.L., Wu, J., Wong, C.W.: Gbps physical random bit generation based on the mesoscopic chaos of a silicon photonics crystal microcavity. Opt. Express 28(24), 36685–36695 (2020)
CrossRef Google scholar
[14]
Virte, M., Mercier, E., Thienpont, H., Panajotov, K., Sciamanna, M.: Physical random bit generation from chaotic solitary laser diode. Opt. Express 22(14), 17271–17280 (2014)
CrossRef Google scholar
[15]
Tang, X., Xia, G.Q., Ran, C., Deng, T., Lin, X.D., Fan, L., Gao, Z., Lin, G.R., Wu, Z.M.: Fast physical random bit generation based on a broadband chaotic entropy source originated from a filtered feedback WRC-FPLD. IEEE Photonics J. 11(2), 1–10 (2019)
CrossRef Google scholar
[16]
Wu, J.G., Wu, Z.M., Deng, T., Tang, X., Fan, L., Xie, Y.Y., Xia, G.Q.: 0.5 Gbits/s message bidirectional encryption and decryption based on two synchronized chaotic semiconductor lasers. In: Semiconductor Lasers and Applications V, vol. 8552, pp. 120–126. SPIE (2012)
CrossRef Google scholar
[17]
Tang, X., Wu, J.G., Xia, G.Q., Wu, Z.M.: 17.5 Gbit/s random bit generation using chaotic output signal of mutually coupled semiconductor lasers. Wuli Xuebao 60(11), 110509 (2011)
CrossRef Google scholar
[18]
Luo, C., Flores, J.G., Shi, B., Yu, M., Lo, G., Kwong, D.L., Wu, J., Wong, C.W.: Gb/s physical random bits through mesoscopic chaos in integrated silicon optomechanical cavities. In: CLEO: QELS_Fundamental Science, vol. 5, pp. FTu4C. Optica Publishing Group (2019)
CrossRef Google scholar
[19]
Zhao, A., Jiang, N., Wang, Y., Liu, S., Xue, C., Qiu, K.: Fast physical random bit generation using broadband chaos generated by self-phase-modulated external-cavity semiconductor laser cascaded with microsphere resonator. In: CLEO: Science and Innovations, vol. 73, pp. JTu2A. Optical Society of America (2019)
CrossRef Google scholar
[20]
Brasch, V., Geiselmann, M., Herr, T., Lihachev, G., Pfeiffer, M.H., Gorodetsky, M.L., Kippenberg, T.J.: Photonic chip based optical frequency comb using soliton induced Cherenkov radiation. In: 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015)
CrossRef Google scholar
[21]
Johnson, A.R., Mayer, A.S., Klenner, A., Luke, K., Lamb, E.S., Lamont, M.R., Joshi, C., Okawachi, F., Wise, W., Lipson, M., Keller, U., Gaeta, A.L.: Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40(21), 5117–5120 (2015)
CrossRef Google scholar
[22]
Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)
CrossRef Google scholar
[23]
Peccianti, M., Pasquazi, A., Park, Y., Little, B.E., Chu, S.T., Moss, D.J., Morandotti, R.: Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3(1), 765 (2012)
CrossRef Google scholar
[24]
Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)
CrossRef Google scholar
[25]
Joshi, C., Jang, J.K., Luke, K., Ji, X., Miller, S.A., Klenner, A., Okawachi, Y., Lipson, M., Gaeta, A.L.: Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41(11), 2565–2568 (2016)
CrossRef Google scholar
[26]
Obrzud, E., Lecomte, S., Herr, T.: Temporal solitons in microresonators driven by optical pulses. Nat. Photonics 11(9), 600–607 (2017)
CrossRef Google scholar
[27]
Chen, R., Shu, H., Shen, B., Chang, L., Xie, W., Liao, W., Tao, Z., Bowers, J., Wang, X.: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4), 306–314 (2023)
CrossRef Google scholar
[28]
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Revision 1a. NIST Special Publication, pp. 800–822. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Washington, D.C (2010)
[29]
Kanter, I., Aviad, Y., Reidler, I., Cohen, E., Rosenbluh, M.: An optical ultrafast random bit generator. Nat. Photonics 4(1), 58–61 (2010)
CrossRef Google scholar
[30]
Li, X.Z., Chan, S.C.: Random bit generation using an optically injected semiconductor laser in chaos with oversampling. Opt. Lett. 37(11), 2163–2165 (2012)
CrossRef Google scholar
[31]
Butler, T., Durkan, C., Goulding, D., Slepneva, S., Kelleher, B., Hegarty, S.P., Huyet, G.: Optical ultrafast random number generation at 1 Tb/s using a turbulent semiconductor ring cavity laser. Opt. Lett. 41(2), 388–391 (2016)
CrossRef Google scholar
[32]
Kou, J.Q., Shen, C.C., Shao, H., Che, J., Hou, X., Chu, C.S., Tian, K.K., Zhang, Y.H., Zhang, Z.H., Kuo, H.C.: Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes. Opt. Express 27(12), A643–A653 (2019)
CrossRef Google scholar
[33]
Xiao, Z.Y., Li, T., Cai, M., Zhang, H., Huang, Y., Li, C., Yao, B., Wu, K., Chen, J.: Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl. 12(1), 33 (2023)
CrossRef Google scholar
[34]
Chang, L., Liu, S., Bowers, J.E.: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)
CrossRef Google scholar
[35]
Zhang, H., Tan, T., Chen, H.J., Yu, Y., Wang, W., Chang, B., Liang, Y., Guo, Y., Zhou, H., Xia, H., Gong, Q., Wong, C., Rao, Y., Xiao, Y.F., Yao, B.: Soliton microcombs multiplexing using intracavity-stimulated Brillouin lasers. Phys. Rev. Lett. 130(15), 153802 (2023)
CrossRef Google scholar
[36]
Tan, T., Yuan, Z., Zhang, H., Yan, G., Zhou, S., An, N., Peng, B., Soavi, G., Rao, Y., Yao, B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716 (2021)
CrossRef Google scholar
[37]
Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)
CrossRef Google scholar
[38]
Herr, T., Brasch, V., Jost, J.D., Mirgorodskiy, I., Lihachev, G., Gorodetsky, M.L., Kippenberg, T.J.: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901 (2014)
CrossRef Google scholar
[39]
Qin, C., Du, J., Tan, T., Chang, B., Jia, K., Liang, Y., Wang, W., Guo, Y., Xia, H., Zhu, S., Rao, Y., Xie, Z., Yao, B.: Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662 (2023)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(5960 KB)

Accesses

Citations

Detail

Sections
Recommended

/