Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb
Yuqi Hu, Qingsong Bai, Xi Tang, Wei Xiong, Yilu Wu, Xin Zhang, Yanlan Xiao, Runchang Du, Leiji Liu, Guangqiong Xia, Zhengmao Wu, Junbo Yang, Heng Zhou, Jiagui Wu
Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb
Ultrafast physical random bit (PRB) generators and integrated schemes have proven to be valuable in a broad range of scientific and technological applications. In this study, we experimentally demonstrated a PRB scheme with a chaotic microcomb using a chip-scale integrated resonator. A microcomb contained hundreds of chaotic channels, and each comb tooth functioned as an entropy source for the PRB. First, a 12 Gbits/s PRB signal was obtained for each tooth channel with proper post-processing and passed the NIST Special Publication 800-22 statistical tests. The chaotic microcomb covered a wavelength range from 1430 to 1675 nm with a free spectral range (FSR) of 100 GHz. Consequently, the combined random bit sequence could achieve an ultra-high rate of about 4 Tbits/s (12 Gbits/s × 294 = 3.528 Tbits/s), with 294 teeth in the experimental microcomb. Additionally, denser microcombs were experimentally realized using an integrated resonator with 33.6 GHz FSR. A total of 805 chaotic comb teeth were observed and covered the wavelength range from 1430 to 1670 nm. In each tooth channel, 12 Gbits/s random sequences was generated, which passed the NIST test. Consequently, the total rate of the PRB was approximately 10 Tbits/s (12 Gbits/s × 805 = 9.66 Tbits/s). These results could offer potential chip solutions of Pbits/s PRB with the features of low cost and a high degree of parallelism.
Physical random bit / Chaos / Microcomb
[1] |
Uchida, A., Amano, K., Inoue, M., Hirano, K., Naito, S., Someya, H., Oowada, I., Kurashige, T., Shiki, M., Yoshimori, S., Yoshimura, K., Davis, P.: Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2(12), 728–732 (2008)
CrossRef
Google scholar
|
[2] |
Reidler, I., Aviad, Y., Rosenbluh, M., Kanter, I.: Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103(2), 024102 (2009)
CrossRef
Google scholar
|
[3] |
Hirano, K., Yamazaki, T., Morikatsu, S., Okumura, H., Aida, H., Uchida, A., Yoshimori, S., Yoshimura, K., Harayama, T., Davis, P.: Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18(6), 5512–5524 (2010)
CrossRef
Google scholar
|
[4] |
Sakuraba, R., Iwakawa, K., Kanno, K., Uchida, A.: Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express 23(2), 1470–1490 (2015)
CrossRef
Google scholar
|
[5] |
Zhang, L., Pan, B., Chen, G., Guo, L., Lu, D., Zhao, L., Wang, W.: 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci. Rep. 7(1), 1–8 (2017)
CrossRef
Google scholar
|
[6] |
Wang, L., Zhao, T., Wang, D., Wu, D., Zhou, L., Wu, J., Liu, X., Wang, Y., Wang, A.: Real-time 14-Gbps physical random bit generator based on time-interleaved sampling of broadband white chaos. IEEE Photonics J. 9(2), 1–13 (2017)
CrossRef
Google scholar
|
[7] |
Li, X.Z., Chan, S.C.: Heterodyne random bit generation using an optically injected semiconductor laser in chaos. IEEE J. Quantum Electron. 49(10), 829–838 (2013)
CrossRef
Google scholar
|
[8] |
Wu, J.G., Tang, X., Wu, Z.M., Xia, G.Q., Feng, G.Y.: Parallel generation of 10 Gbits/s physical random number streams using chaotic semiconductor lasers. Laser Phys. 22(10), 1476–1480 (2012)
CrossRef
Google scholar
|
[9] |
Tang, X., Wu, Z.M., Wu, J.G., Deng, T., Chen, J.J., Fan, L., Zhong, Z., Xia, G.Q.: Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Opt. Express 23(26), 33130–33141 (2015)
CrossRef
Google scholar
|
[10] |
Tang, X., Wu, Z.M., Wu, J.G., Deng, T., Fan, L., Zhong, Z.Q., Chen, J., Xia, G.Q.: Generation of multi-channel high-speed physical random numbers originated from two chaotic signals of mutually coupled semiconductor lasers. Laser Phys. Lett. 12(1), 015003 (2015)
CrossRef
Google scholar
|
[11] |
Ran, C., Tang, X., Wu, Z.M., Xia, G.Q.: Dual-channel physical random bits generation by a master-slave vertical-cavity surface-emitting lasers chaotic system. Laser Phys. 28(12), 126202 (2018)
CrossRef
Google scholar
|
[12] |
Tang, X., Xia, G.Q., Jayaprasath, E., Deng, T., Lin, X.D., Fan, L., Gao, Z., Wu, Z.M.: Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection. IEEE Access 6, 3565–3572 (2018)
CrossRef
Google scholar
|
[13] |
Shi, B., Luo, C., Flores, J.G.F., Lo, G., Kwong, D.L., Wu, J., Wong, C.W.: Gbps physical random bit generation based on the mesoscopic chaos of a silicon photonics crystal microcavity. Opt. Express 28(24), 36685–36695 (2020)
CrossRef
Google scholar
|
[14] |
Virte, M., Mercier, E., Thienpont, H., Panajotov, K., Sciamanna, M.: Physical random bit generation from chaotic solitary laser diode. Opt. Express 22(14), 17271–17280 (2014)
CrossRef
Google scholar
|
[15] |
Tang, X., Xia, G.Q., Ran, C., Deng, T., Lin, X.D., Fan, L., Gao, Z., Lin, G.R., Wu, Z.M.: Fast physical random bit generation based on a broadband chaotic entropy source originated from a filtered feedback WRC-FPLD. IEEE Photonics J. 11(2), 1–10 (2019)
CrossRef
Google scholar
|
[16] |
Wu, J.G., Wu, Z.M., Deng, T., Tang, X., Fan, L., Xie, Y.Y., Xia, G.Q.: 0.5 Gbits/s message bidirectional encryption and decryption based on two synchronized chaotic semiconductor lasers. In: Semiconductor Lasers and Applications V, vol. 8552, pp. 120–126. SPIE (2012)
CrossRef
Google scholar
|
[17] |
Tang, X., Wu, J.G., Xia, G.Q., Wu, Z.M.: 17.5 Gbit/s random bit generation using chaotic output signal of mutually coupled semiconductor lasers. Wuli Xuebao 60(11), 110509 (2011)
CrossRef
Google scholar
|
[18] |
Luo, C., Flores, J.G., Shi, B., Yu, M., Lo, G., Kwong, D.L., Wu, J., Wong, C.W.: Gb/s physical random bits through mesoscopic chaos in integrated silicon optomechanical cavities. In: CLEO: QELS_Fundamental Science, vol. 5, pp. FTu4C. Optica Publishing Group (2019)
CrossRef
Google scholar
|
[19] |
Zhao, A., Jiang, N., Wang, Y., Liu, S., Xue, C., Qiu, K.: Fast physical random bit generation using broadband chaos generated by self-phase-modulated external-cavity semiconductor laser cascaded with microsphere resonator. In: CLEO: Science and Innovations, vol. 73, pp. JTu2A. Optical Society of America (2019)
CrossRef
Google scholar
|
[20] |
Brasch, V., Geiselmann, M., Herr, T., Lihachev, G., Pfeiffer, M.H., Gorodetsky, M.L., Kippenberg, T.J.: Photonic chip based optical frequency comb using soliton induced Cherenkov radiation. In: 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015)
CrossRef
Google scholar
|
[21] |
Johnson, A.R., Mayer, A.S., Klenner, A., Luke, K., Lamb, E.S., Lamont, M.R., Joshi, C., Okawachi, F., Wise, W., Lipson, M., Keller, U., Gaeta, A.L.: Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40(21), 5117–5120 (2015)
CrossRef
Google scholar
|
[22] |
Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)
CrossRef
Google scholar
|
[23] |
Peccianti, M., Pasquazi, A., Park, Y., Little, B.E., Chu, S.T., Moss, D.J., Morandotti, R.: Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3(1), 765 (2012)
CrossRef
Google scholar
|
[24] |
Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)
CrossRef
Google scholar
|
[25] |
Joshi, C., Jang, J.K., Luke, K., Ji, X., Miller, S.A., Klenner, A., Okawachi, Y., Lipson, M., Gaeta, A.L.: Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41(11), 2565–2568 (2016)
CrossRef
Google scholar
|
[26] |
Obrzud, E., Lecomte, S., Herr, T.: Temporal solitons in microresonators driven by optical pulses. Nat. Photonics 11(9), 600–607 (2017)
CrossRef
Google scholar
|
[27] |
Chen, R., Shu, H., Shen, B., Chang, L., Xie, W., Liao, W., Tao, Z., Bowers, J., Wang, X.: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4), 306–314 (2023)
CrossRef
Google scholar
|
[28] |
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Revision 1a. NIST Special Publication, pp. 800–822. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Washington, D.C (2010)
|
[29] |
Kanter, I., Aviad, Y., Reidler, I., Cohen, E., Rosenbluh, M.: An optical ultrafast random bit generator. Nat. Photonics 4(1), 58–61 (2010)
CrossRef
Google scholar
|
[30] |
Li, X.Z., Chan, S.C.: Random bit generation using an optically injected semiconductor laser in chaos with oversampling. Opt. Lett. 37(11), 2163–2165 (2012)
CrossRef
Google scholar
|
[31] |
Butler, T., Durkan, C., Goulding, D., Slepneva, S., Kelleher, B., Hegarty, S.P., Huyet, G.: Optical ultrafast random number generation at 1 Tb/s using a turbulent semiconductor ring cavity laser. Opt. Lett. 41(2), 388–391 (2016)
CrossRef
Google scholar
|
[32] |
Kou, J.Q., Shen, C.C., Shao, H., Che, J., Hou, X., Chu, C.S., Tian, K.K., Zhang, Y.H., Zhang, Z.H., Kuo, H.C.: Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes. Opt. Express 27(12), A643–A653 (2019)
CrossRef
Google scholar
|
[33] |
Xiao, Z.Y., Li, T., Cai, M., Zhang, H., Huang, Y., Li, C., Yao, B., Wu, K., Chen, J.: Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl. 12(1), 33 (2023)
CrossRef
Google scholar
|
[34] |
Chang, L., Liu, S., Bowers, J.E.: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)
CrossRef
Google scholar
|
[35] |
Zhang, H., Tan, T., Chen, H.J., Yu, Y., Wang, W., Chang, B., Liang, Y., Guo, Y., Zhou, H., Xia, H., Gong, Q., Wong, C., Rao, Y., Xiao, Y.F., Yao, B.: Soliton microcombs multiplexing using intracavity-stimulated Brillouin lasers. Phys. Rev. Lett. 130(15), 153802 (2023)
CrossRef
Google scholar
|
[36] |
Tan, T., Yuan, Z., Zhang, H., Yan, G., Zhou, S., An, N., Peng, B., Soavi, G., Rao, Y., Yao, B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716 (2021)
CrossRef
Google scholar
|
[37] |
Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)
CrossRef
Google scholar
|
[38] |
Herr, T., Brasch, V., Jost, J.D., Mirgorodskiy, I., Lihachev, G., Gorodetsky, M.L., Kippenberg, T.J.: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901 (2014)
CrossRef
Google scholar
|
[39] |
Qin, C., Du, J., Tan, T., Chang, B., Jia, K., Liang, Y., Wang, W., Guo, Y., Xia, H., Zhu, S., Rao, Y., Xie, Z., Yao, B.: Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662 (2023)
CrossRef
Google scholar
|
/
〈 | 〉 |