Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics

Jungang He, You Ge, Ya Wang, Mohan Yuan, Hang Xia, Xingchen Zhang, Xiao Chen, Xia Wang, Xianchang Zhou, Kanghua Li, Chao Chen, Jiang Tang

PDF(2285 KB)
PDF(2285 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (3) : 28. DOI: 10.1007/s12200-023-00082-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics

Author information +
History +

Abstract

Lead selenide (PbSe) colloidal quantum dots (CQDs) are suitable for the development of the next-generation of photovoltaics (PVs) because of efficient multiple-exciton generation and strong charge coupling ability. To date, the reported high-efficient PbSe CQD PVs use spin-coated zinc oxide (ZnO) as the electron transport layer (ETL). However, it is found that the surface defects of ZnO present a difficulty in completion of passivation, and this impedes the continuous progress of devices. To address this disadvantage, fluoride (F) anions are employed for the surface passivation of ZnO through a chemical bath deposition method (CBD). The F-passivated ZnO ETL possesses decreased densities of oxygen vacancy and a favorable band alignment. Benefiting from these improvements, PbSe CQD PVs report an efficiency of 10.04%, comparatively 9.4% higher than that of devices using sol-gel (SG) ZnO as ETL. We are optimistic that this interface passivation strategy has great potential in the development of solution-processed CQD optoelectronic devices.

Graphical abstract

Keywords

Zinc oxide / Surface passivation / Band alignment / Quantum-dot solar cells

Cite this article

Download citation ▾
Jungang He, You Ge, Ya Wang, Mohan Yuan, Hang Xia, Xingchen Zhang, Xiao Chen, Xia Wang, Xianchang Zhou, Kanghua Li, Chao Chen, Jiang Tang. Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics. Front. Optoelectron., 2023, 16(3): 28 https://doi.org/10.1007/s12200-023-00082-3

References

[1]
Yang, J., Hu, H., Lv, Y., Yuan, M., Wang, B., He, Z., Chen, S., Wang, Y., Hu, Z., Yu, M., Zhang, X., He, J., Zhang, J., Liu, H., Hsu, H.-Y., Tang, J., Song, H., Lan, X.: Ligand-engineered HgTe colloidal quantum dot solids for infrared photodetectors. Nano Lett 22(8), 3465–3472 (2022)
CrossRef Google scholar
[2]
Liu, J., Liu, P., Chen, D., Shi, T., Qu, X., Chen, L., Wu, T., Ke, J., Xiong, K., Li, M., Song, H., Wei, W., Cao, J., Zhang, J., Gao, L., Tang, J.: A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nat. Electron. 5(7), 443–451 (2022)
CrossRef Google scholar
[3]
Ahmad, W., He, J., Liu, Z., Xu, K., Chen, Z., Yang, X., Li, D., Xia, Y., Zhang, J., Chen, C.: Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency. Adv. Mater 31(33), 1900593 (2019)
CrossRef Google scholar
[4]
Yuan, M., Hu, H., Wang, Y., Xia, H., Zhang, X., Wang, B., He, Z., Yu, M., Tan, Y., Shi, Z., Li, K., Yang, X., Yang, J., Li, M., Chen, X., Hu, L., Peng, X., He, J., Chen, C., Lan, X., Tang, J.: Cation-exchange enables in situ preparation of PbSe quantum dot ink for high performance solar cells. Small 18(48), 2205356 (2022)
CrossRef Google scholar
[5]
Gao, L., Quan, L.N., García de Arquer, F.P., Zhao, Y., Munir, R., Proppe, A., Quintero-Bermudez, R., Zou, C., Yang, Z., Saidaminov, M.I., Voznyy, O., Kinge, S., Lu, Z., Kelley, S.O., Amassian, A., Tang, J., Sargent, E.H.: Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photonics 14(4), 227–233 (2020)
CrossRef Google scholar
[6]
Deng, Y., Lin, X., Fang, W., Di, D., Wang, L., Friend, R.H., Peng, X., Jin, Y.: Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 11(1), 2309 (2020)
CrossRef Google scholar
[7]
Zhu, M., Liu, X., Liu, S., Chen, C., He, J., Liu, W., Yang, J., Gao, L., Niu, G., Tang, J., Zhang, J.: Efficient PbSe colloidal quantum dot solar cells using SnO2 as a buffer layer. ACS Appl. Mater. Inter 12(2), 2566–2571 (2020)
CrossRef Google scholar
[8]
Yuan, M., Wang, X., Chen, X., He, J., Li, K., Song, B., Hu, H., Gao, L., Lan, X., Chen, C., Tang, J.: Phase-transfer exchange lead chalcogenide colloidal quantum dots: Ink Preparation, film Assembly, and solar cell construction. Small 18(2), 2102340 (2022)
CrossRef Google scholar
[9]
Midgett, A.G., Luther, J.M., Stewart, J.T., Smith, D.K., Padilha, L.A., Klimov, V.I., Nozik, A.J., Beard, M.C.: Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbSxSe1-x alloyed quantum dots. Nano Lett. 13(7), 3078–3085 (2013)
CrossRef Google scholar
[10]
Talapin, D.V., Murray, C.B.: PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 310(5745), 86–89 (2005)
CrossRef Google scholar
[11]
Semonin, O.E., Luther, J.M., Choi, S., Chen, H.-Y., Gao, J., Nozik, A.J., Beard, M.C.: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334(6062), 1530–1533 (2011)
CrossRef Google scholar
[12]
Davis, N.J., Böhm, M.L., Tabachnyk, M., Wisnivesky-Rocca-Rivarola, F., Jellicoe, T.C., Ducati, C., Ehrler, B., Greenham, N.C.: Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 6, 8259–8265 (2015)
CrossRef Google scholar
[13]
Zhang, J., Gao, J., Church, C.P., Miller, E.M., Luther, J.M., Klimov, V.I., Beard, M.C.: PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 14(10), 6010–6015 (2014)
CrossRef Google scholar
[14]
Milan, S., Koposov, A.Y., Mcguire, J.A., Schulze, R.K., Olexandr, T., Pietryga, J.M., Klimov, V.I.: Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 4(4), 2021–2034 (2010)
CrossRef Google scholar
[15]
Xia, Y., Chen, W., Zhang, P., Liu, S., Wang, K., Yang, X., Tang, H., Lian, L., He, J., Liu, X., Liang, G., Tan, M., Gao, L., Liu, H., Song, H., Zhang, D., Gao, J., Wang, K., Lan, X., Zhang, X., Müller-Buschbaum, P., Tang, J., Zhang, J.: Facet control for trapstate suppression in colloidal quantum dot solids. Adv. Funct. Mater. 30(22), 2000594 (2020)
CrossRef Google scholar
[16]
Xia, Y., Liu, S., Wang, K., Yang, X., Lian, L., Zhang, Z., He, J., Liang, G., Wang, S., Tan, M., Song, H., Zhang, D., Gao, J., Tang, J., Beard, M.C., Zhang, J.: Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 30(4), 1907379 (2020)
CrossRef Google scholar
[17]
Liu, Y., Li, F., Shi, G., Liu, Z., Lin, X., Shi, Y., Chen, Y., Meng, X., Lv, Y., Deng, W., Pan, X., Ma, W.: PbSe quantum dot solar cells based on directly synthesized semiconductive inks. ACS Energy Lett. 5(12), 3797–3803 (2020)
CrossRef Google scholar
[18]
Liu, M., Voznyy, O., Sabatini, R., De Arquer, F.P.G., Munir, R., Balawi, A.H., Lan, X., Fan, F., Walters, G., Kirmani, A.R., Hoogland, S., Laquai, F., Amassian, A., Sargent, E.H.: Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater 16(2), 258–263 (2017)
CrossRef Google scholar
[19]
Liu, M., Chen, Y., Tan, C.-S., Quintero-Bermudez, R., Proppe, A.H., Munir, R., Tan, H., Voznyy, O., Scheffel, B., Walters, G., Kam, A.P.T., Bin, S., Choi, M.J., Hoogland, S., Amassian, A., Kelley, S.O., Arquer, F.P.G.D., Sargent, E.H.: Lattice anchoring stabilizes solution-processed semiconductors. Nature 570(7759), 96–101 (2019)
CrossRef Google scholar
[20]
Ning, Z., Ren, Y., Hoogland, S., Voznyy, O., Levina, L., Stadler, P., Lan, X., Zhitomirsky, D., Sargent, E.H.: All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater 24(47), 6295–6299 (2012)
CrossRef Google scholar
[21]
Kim, H.I., Baek, S.-W., Cheon, H.J., Ryu, S.U., Lee, S., Choi, M.-J., Choi, K., Biondi, M., Hoogland, S., de Arquer, F.P.G., Kwon, S.-K., Kim, Y.-H., Park, T., Sargent, E.H.: A tuned alternating D-A copolymer hole-transport layer enables colloidal quantum dot solar cells with superior fill factor and efficiency. Adv. Mater 32(48), 2004985 (2020)
CrossRef Google scholar
[22]
Ding, C., Wang, D., Liu, D., Li, H., Li, Y., Hayase, S., Sogabe, T., Masuda, T., Zhou, Y., Yao, Y., Zou, Z., Wang, R., Shen, Q.: Over 15% efficiency PbS quantum-dot solar cells by synergistic effects of three interface engineering: reducing nonradiative recombination and balancing charge carrier extraction. Adv. Energy. Mater 12(35), 2201676 (2022)
CrossRef Google scholar
[23]
Azmi, R., Seo, G., Ahn, T.K., Jang, S.-Y.: High-efficiency air-stable colloidal quantum dot solar cells based on a potassium-doped ZnO electron-accepting layer. ACS Appl. Mater. Inter 10(41), 35244–35249 (2018)
CrossRef Google scholar
[24]
Woo, H.K., Kang, M.S., Park, T., Bang, J., Jeon, S., Lee, W.S., Ahn, J., Cho, G., Ko, D.-K., Kim, Y., Ha, D.-H., Oh, S.J.: Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells. Nanoscale 11(37), 17498–17505 (2019)
CrossRef Google scholar
[25]
Yang, F., Xu, Y., Gu, M., Zhou, S., Wang, Y., Lu, K., Liu, Z., Ling, X., Zhu, Z., Chen, J., Wu, Z., Zhang, Y., Xue, Y., Li, F., Yuan, J., Ma, W.: Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells. J. Mater. Chem. A 6(36), 17688–17697 (2018)
CrossRef Google scholar
[26]
Choi, J., Jo, J.W., de Arquer, F.P.G., Zhao, Y.-B., Sun, B., Kim, J., Choi, M.-J., Baek, S.-W., Proppe, A.H., Seifitokaldani, A., Nam, D.-H., Li, P., Ouellette, O., Kim, Y., Voznyy, O., Hoogland, S., Kelley, S.O., Lu, Z.-H., Sargent, E.H.: Activated electron-transport layers for infrared quantum dot optoelectronics. Adv. Mater 30(29), 1801720 (2018)
CrossRef Google scholar
[27]
Choi, J., Kim, Y., Jo, J.W., Kim, J., Sun, B., Walters, G., García de Arquer, F.P., Quintero-Bermudez, R., Li, Y., Tan, C.S., Quan, L.N., Kam, A.P.T., Hoogland, S., Lu, Z., Voznyy, O., Sargent, E.H.: Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics. Adv. Mater 29(33), 1702350 (2017)
CrossRef Google scholar
[28]
Della Gaspera, E., Kennedy, D.F., van Embden, J., Chesman, A.S.R., Gengenbach, T.R., Weber, K., Jasieniak, J.J.: Flash-assisted processing of highly conductive Zinc Oxide electrodes from water. Adv. Funct. Mater. 25(47), 7263–7271 (2015)
CrossRef Google scholar
[29]
Zhang, Y., Liu, C., Liu, J., Xiong, J., Liu, J., Zhang, K., Liu, Y., Peng, M., Yu, A., Zhang, A., Zhang, Y., Wang, Z., Zhai, J., Wang, Z.L.: Lattice Strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators. ACS Appl. Mater. Inter 8(2), 1381–1387 (2016)
CrossRef Google scholar
[30]
Che, L., Song, J., Yang, J., Chen, X., Li, J., Zhang, N., Yang, S., Wang, Y.: Fluorine, chlorine, and gallium co-doped zinc oxide transparent conductive films fabricated using the sol-gel spin method. J. Materiomics 9(4), 745–753 (2023)
CrossRef Google scholar
[31]
Chen, X., Liu, K., Wang, X., Li, B., Zhang, Z., Xie, X., Shen, D.: Performance enhancement of a ZnMgO film UV photodetector by HF solution treatment. J. Mater. Chem. C 5(40), 10645–10651 (2017)
CrossRef Google scholar
[32]
Shen, X., Kang, J., Niu, W., Wang, M., Zhang, Q., Wang, Y.: Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics. Catal. Sci. Technol. 7(16), 3598–3612 (2017)
CrossRef Google scholar
[33]
Xia, J., Mao, D., Zhang, B., Chen, Q., Zhang, Y., Tang, Y.: Catalytic properties of fluorinated alumina for the production of dimethyl ether. Catal. Commun. 7(6), 362–366 (2006)
CrossRef Google scholar
[34]
Liu, K., Marwat, M.A., Ma, W., Wei, T., Li, M., Fan, P., Lu, D., Tian, Y., Samart, C., Ye, B., He, J., Zhang, H.: Enhanced energy storage performance of nanocomposites filled with paraelectric ceramic nanoparticles by weakening the electric field distortion. Ceram. Int 46(13), 21149–21155 (2020)
CrossRef Google scholar
[35]
Li, K., Lu, Y., Yang, X., Fu, L., He, J., Lin, X., Zheng, J., Lu, S., Chen, C., Tang, J.: Filter-free self-power CdSe/Sb2(S1–x, Sex)3 nearinfrared narrowband detection and imaging. InfoMat 3(10), 1145–1153 (2021)
CrossRef Google scholar
[36]
Chen, C., Liu, X., Li, K., Lu, S., Wang, S., Li, S., Lu, Y., He, J., Zheng, J., Lin, X., Tang, J.: High-efficient Sb2Se3 solar cell using ZnxCd1-xS n-type layer. Appl. Phys. Lett. 118(17), 172103 (2021)
CrossRef Google scholar
[37]
He, J., Yuan, M., Wang, X., Chen, X., Peng, X., Hu, L., Zhao, X., Liu, J., Li, J., Li, K., Chen, C., Tang, J.: Extrinsic photoresponse of Ag doped MAPbBr3 perovskite crystals. Appl. Surf. Sci 614, 156230 (2023)
CrossRef Google scholar
[38]
Yang, X., Hu, L., Deng, H., Qiao, K., Hu, C., Liu, Z., Yuan, S., Khan, J., Li, D., Tang, J., Song, H., Cheng, C.: Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano-Micro Lett. 9(2), 24 (2017)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(2285 KB)

Accesses

Citations

Detail

Sections
Recommended

/