Upconversion luminescence and optical thermometry behaviors of Yb3+ and Ho3+ co-doped GYTO crystal

Chuancheng Zhang, Shoujun Ding, Miaomiao Wang, Hao Ren, Xubing Tang, Yong Zou, Renqin Dou, Wenpeng Liu

PDF(3006 KB)
PDF(3006 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (3) : 31. DOI: 10.1007/s12200-023-00083-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Upconversion luminescence and optical thermometry behaviors of Yb3+ and Ho3+ co-doped GYTO crystal

Author information +
History +

Abstract

Optical thermometry based on the upconversion (UC) luminescence intensity ratio (LIR) has attracted considerable attention because of its feasibility for achievement of accurate non-contact temperature measurement. Compared with traditional UC phosphors, optical thermometry based on UC single crystals can achieve faster response and higher sensitivity due to the stability and high thermal conductivity of the single crystals. In this study, a high-quality 5 at% Yb3+ and 1 at% Ho3+ co-doped Gd0.74Y0.2TaO4 single crystal was grown by the Czochralski (Cz) method, and the structure of the as-grown crystal was characterized. Importantly, the UC luminescent properties and optical thermometry behaviors of this crystal were revealed. Under 980 nm wavelength excitation, green and red UC luminescence lines at 550 and 650 nm and corresponding to the 5F4/5S25I8 and 5F55I8 transitions of Ho3+, respectively, were observed. The green and red UC emissions involved a two-photon mechanism, as evidenced by the analysis of power-dependent UC emission spectra. The temperature-dependent UC emission spectra were measured in the temperature range of 330–660 K to assess the optical temperature sensing behavior. At 660 K, the maximum relative sensing sensitivity (Sr) was determined to be 0.0037 K−1. These results highlight the significant potential of Yb,Ho:GYTO single crystal for optical temperature sensors.

Graphical abstract

Keywords

Yb,Ho:GYTO / Optical temperature sensor / Luminescence intensity ratio / Upconversion luminescence

Cite this article

Download citation ▾
Chuancheng Zhang, Shoujun Ding, Miaomiao Wang, Hao Ren, Xubing Tang, Yong Zou, Renqin Dou, Wenpeng Liu. Upconversion luminescence and optical thermometry behaviors of Yb3+ and Ho3+ co-doped GYTO crystal. Front. Optoelectron., 2023, 16(3): 31 https://doi.org/10.1007/s12200-023-00083-2

References

[1]
Duan, C., Liang, L., Li, L., Zhang, R., Xu, Z.P.: Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B 6, 192–209 (2018)
CrossRef Google scholar
[2]
Zhang, J., Chen, J., Zhang, Y., An, S.: Yb3+/Tm3+ and Yb3+/Ho3+ doped Na9(SiO4)6O2 phosphors: upconversion luminescence processes, temperature-dependent emission spectra and optical temperature-sensing properties. J. Alloy. Compd. 860, 158473 (2021)
CrossRef Google scholar
[3]
Li, M., Chen, B., Zhang, C., Wang, X., Wu, F., Zhao, R.: Crystallization and up-/down-conversion luminescence of size-dependent CdWO4: Yb3+, RE3+ (RE=Ho and Er). Opt. Mater. 142, 113995 (2023)
CrossRef Google scholar
[4]
Wang, J., Su, Q., Lv, Q., Cai, B., Xiaohalati, X., Wang, G., Wang, Z., Wang, L.: Oxygen-generating cyanobacteria powered by upconversion-nanoparticles-converted near-infrared light for ischemic stroke treatment. Nano Lett. 21, 4654–4665 (2021)
CrossRef Google scholar
[5]
Fu, J., Pang, R., Jiang, L., Jia, Y., Sun, W., Zhang, S., Li, C.: A novel dichromic self-referencing optical probe SrO: Bi3+, Eu3+ for temperature spatially and temporally imaging. Dalton Trans. 45, 13317–13323 (2016)
CrossRef Google scholar
[6]
Dubey, A., Soni, A.K., Kumari, A., Dey, R., Rai, V.K.: Enhanced green upconversion emission in NaYF4: Er3+/Yb3+/Li+ phosphors for optical thermometry. J. Alloy. Compd. 693, 194–200 (2017)
CrossRef Google scholar
[7]
Zhao, Y., Wang, X., Zhang, Y., Li, Y., Yao, X.: Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress. J. Alloy. Compd. 817, 152691 (2020)
CrossRef Google scholar
[8]
Wang, C., Jin, Y., Lv, Y., Ju, G., Liu, D., Chen, L., Li, Z., Hu, Y.: Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4: Eu2+, Ho3+ and photostimulable luminescence for optical information storage. J. Mater. Chem. C 6, 6058–6067 (2018)
CrossRef Google scholar
[9]
Qiao, J., Ning, L., Molokeev, M.S., Chuang, Y.C., Zhang, Q., Poeppelmeier, K.R., Xia, Z.: Site-selective occupancy of Eu2+ toward blue light excited red emission in a Rb3YSi2O7: Eu phosphor. Angew. Chem. Chem. 131, 11645–11650 (2019)
CrossRef Google scholar
[10]
Teixeira, R.N., Baratto, A.C.: A Nickel–carbon eutectic cell for contact and non-contact thermometry. Int. J. Thermophys. Thermophys. 28, 1993–2001 (2007)
CrossRef Google scholar
[11]
He, D., Guo, C., Jiang, S., Zhang, N., Duan, C., Yin, M., Li, T.: Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln= Gd, Y) up-conversion phosphors. (2014)
CrossRef Google scholar
[12]
Sun, L.-D.,, Dong, H., Zhang, P.-Z.,, Yan, C.-H.: Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem. Rev. Phys. Chem. 66, 619–642 (2015)
CrossRef Google scholar
[13]
Cui, S., Chen, G., Chen, Y., Jin, L., Shang, F., Xu, J.: Fabrication, tunable fluorescence emission and energy transfer of Tm3+-Dy3+ co-activated P2O5–B2O3–SrO–K2O glasses. J. Am. Ceram. Soc. 103, 1057–1066 (2020)
CrossRef Google scholar
[14]
Zhang, J., Ji, B., Chen, G., Hua, Z.: Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application. Inorg. Chem. Chem. 57, 5038–5047 (2018)
CrossRef Google scholar
[15]
Liu, S., Cui, J., Jia, J., Fu, J., You, W., Zeng, Q., Yang, Y., Ye, X.: High sensitive Ln3+/Tm3+/Yb3+ (Ln3+ = Ho3+, Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels. Ceram. Int. 45, 1–10 (2019)
CrossRef Google scholar
[16]
Liu, L., Xing, J., Shang, F., Chen, G.: Structure and up-conversion luminescence of Yb3+/Ho3+ co-doped fluoroborate glasses. Optics Commun. 490, 126944 (2021)
CrossRef Google scholar
[17]
Tian, Z., Yu, H., Han, Z., Guan, Z., Xu, S., Sun, J., Cao, Y., Wang, Y., Cheng, L., Chen, B.: Luminescence properties, and anti-counterfeiting application of one-dimensional electrospun Y2Ti2O7: Ho/Yb nanostructures. Ceram. Int. 48, 27836–27848 (2022)
CrossRef Google scholar
[18]
Kshetri, Y.K., Chaudhary, B., Dhakal, D.R., Murali, G., Pachhai, S., Lee, S.W., Kim, H.-S., Kim, T.-H.: Anomalous upconversion behavior and high-temperature spectral properties of Yb/Ho-SiAlON ceramics. Ceram. Int. 49, 4807–4815 (2023)
CrossRef Google scholar
[19]
Lim, C.S., Aleksandrovsky, A., Molokeev, M., Oreshonkov, A., Atuchin, V.: Structural and spectroscopic effects of Li+ substitution for Na+ in LixNa1–xCaGd0.5Ho0.05Yb0.45(MoO4)3 scheelite-type upconversion phosphors. Molecules 26, 7357 (2021)
CrossRef Google scholar
[20]
Li, H., Zhang, Y., Shao, L., Yuan, P., Xia, X.: Influence of pump power and doping concentration for optical temperature sensing based on BaZrO3: Yb3+/Ho3+ ceramics. J. Lumin. Lumin. 192, 999–1003 (2017)
CrossRef Google scholar
[21]
Qi, Y., Li, S., Min, Q., Lu, W., Xu, X., Zhou, D., Qiu, J., Wang, L., Yu, X.: Optical temperature sensing properties of KLu2F7: Yb3+/Er3+/Nd3+ nanoparticles under NIR excitation. J. Alloy. Compd. 742, 497–503 (2018)
CrossRef Google scholar
[22]
Lim, C.S., Aleksandrovsky, A., Molokeev, M., Oreshonkov, A., Atuchin, V.: The modulated structure and frequency upconversion properties of CaLa2(MoO4)4:Ho3+/Yb3+ phosphors prepared by microwave synthesis. Phys. Chem. Chem. Phys. 17, 19278–19287 (2015)
CrossRef Google scholar
[23]
Zhang, J.Z., Xia, H.P., Yang, S., Jiang, Y.Z., Xue-mei, G., Zhang, J.L., Jiang, H.C., Chen, B.J.: Upconversion luminescence from Ho3+ and Yb3+ codoped α-NaYF4 single crystals. Chin. J. Chem. Phys. 28, 351–354 (2015)
CrossRef Google scholar
[24]
Pilch, A., Wurth, C., Kaiser, M., Wawrzynczyk, D., Kurnatowska, M., Arabasz, S., Prorok, K., Samoc, M., Strek, W., Resch-Genger, U., Bednarkiewicz, A.: Shaping luminescent properties of Yb3+ and Ho3+ Co-doped upconverting core-shell beta-NaYF4 nanoparticles by dopant distribution and spacing. Small 13, 1701635 (2017)
CrossRef Google scholar
[25]
Tian, Z., Yu, H., Han, Z., Guan, Z., Xu, S., Sun, J., Cao, Y., Wang, Y., Cheng, L., Chen, B.: Luminescence properties, and anti-counterfeiting application of one-dimensional electrospun Y2Ti2O7: Ho/Yb nanostructures. Ceram. Int. 48, 27836–27848 (2022)
CrossRef Google scholar
[26]
Pan, Y., Lin, H., Hong, R., Zhang, D.: Yb, Ho:(La0.1Y0.9)2O3 ceramics for thermometric applications based on the upconversion emission. J. Luminesc. 238, 118293 (2021)
CrossRef Google scholar
[27]
Pandey, A., Rai, V.K.: Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor. Dalton Trans. 42, 11005–11011 (2013)
CrossRef Google scholar
[28]
Rakov, N., Maciel, G.S.: A study of energy transfer phenomenon leading to photon up-conversion in Ho3+: Yb3+:CaF2 crystalline powders and its temperature sensing properties. Curr. Appl. Phys. Appl. Phys. 17, 1223–1231 (2017)
CrossRef Google scholar
[29]
Savchuk, O.A., Carvajal, J.J., Pujol, M.C., Barrera, E.W., Massons, J., Aguilo, M., Diaz, F.: Ho, Yb:KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry. J. Phys. Chem. C 119, 18546–18558 (2015)
CrossRef Google scholar
[30]
Liu, L., Xing, J., Shang, F., Chen, G.: Structure and up-conversion luminescence of Yb3+/Ho3+ co-doped fluoroborate glasses. Opt. Commun.Commun. 490, 126944 (2021)
CrossRef Google scholar
[31]
Brixner, L.H.: A study of the calcium molybdate-rare earth niobate systems. J. Electrochem. Soc. Electrochem. Soc. 111, 690 (1964)
CrossRef Google scholar
[32]
van Eijk, C.W.E.: Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res. Sect. A 460, 1–14 (2001)
CrossRef Google scholar
[33]
Zhang, W., Li, L., Zhou, S., Gao, H.: Efficient continuous-wave diode-pumped Ho:GTO laser with a pump recycling scheme. J. Russ. Laser Res. 41, 94–97 (2020)
CrossRef Google scholar
[34]
Dou, R., Zhang, Q., Sun, D., Luo, J., Yang, H., Liu, W., Sun, G.: Growth, thermal, and spectroscopic properties of a 2.911 μm Yb, Ho:GdYTaO4 laser crystal. CrystEngComm 16, 11007–11012 (2014)
CrossRef Google scholar
[35]
Ren, H., Ding, S., Li, H., Liu, W., Zou, Y., Han, Y., Zhang, Q.: Growth, structure and upconversion properties of Yb3+ and Er3+ co-doped Gd3Sc2Al3O12 crystal. J. Lumin. Lumin. 251, 119149 (2022)
CrossRef Google scholar
[36]
McIlvried, M.: Penn State University, University Park, Pennsylvania, USA, ICDD Grant-in-Aid (1972)
[37]
Keller, C.: Über ternäre Oxide des Niobs und Tantals vom Typ ABO4. Z. Anorg. Allg. Chem. Anorg. Allg. Chem. 318, 89–106 (1962)
CrossRef Google scholar
[38]
Han, B., Xiao, H., Chen, Y., Huang, J., Gong, X., Lin, Y., Luo, Z., Huang, Y.: Polarized spectroscopic properties and 1046 nm laser operation of Yb3+: Ca3TaGa3Si2O14 crystal. J. Lumin. Lumin. 251, 119219 (2022)
CrossRef Google scholar
[39]
Brunckova, H., Medvecky, L., Mudra, E., Kovalcikova, A., Girman, V.: Structural properties of gadolinium orthoniobate and orthotantalate thin films prepared by sol–gel method. J. Alloy. Compd. 735, 1111–1118 (2018)
CrossRef Google scholar
[40]
Jiang, T., Tian, Y., Xing, M., Fu, Y., Yin, X., Wang, H., Feng, X., Luo, X.: Research on the photoluminescence and up-conversion luminescence properties of Y2Mo4O15: Yb, Ho under 454 and 980 nm excitation. Mater. Res. Bull. 98, 328–334 (2018)
CrossRef Google scholar
[41]
Azam, M., Rai, V.K.: Ho3+-Yb3+ codoped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion. Solid State Sci. 66, 7–15 (2017)
CrossRef Google scholar
[42]
Denisenko, Y.G., Atuchin, V.V., Molokeev, M.S., Wang, N., Jiang, X., Aleksandrovsky, A.S., Krylov, A.S., Oreshonkov, A.S., Sedykh, A.E., Volkova, S.S.: Negative thermal expansion in one-dimension of a new double sulfate AgHo (SO4)2 with isolated SO4 tetrahedra. J. Mater. Sci. Technol. 76, 111–121 (2021)
CrossRef Google scholar
[43]
Tanabe, S., Yoshii, S., Hirao, K., Soga, N.: Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses. Phys. Rev. B 45, 4620 (1992)
CrossRef Google scholar
[44]
Zhang, Y., Cao, Y., Zhao, Y., Wang, X., Ran, S., Cao, L., Zhang, L., Chen, B.: Optical temperature sensor based on upconversion luminescence of Er3+ doped GdTaO4 phosphors. J. Am. Ceram. Soc. 104, 361–368 (2020)
CrossRef Google scholar
[45]
Suyver, J.F., Grimm, J., Van Veen, M., Biner, D., Krämer, K., Güdel, H.-U.: Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. Lumin. 117, 1–12 (2006)
CrossRef Google scholar
[46]
Lim, C.S., Atuchin, V.V., Aleksandrovsky, A.S., Molokeev, M.S.: Preparation of NaSrLa (WO4)3: Ho3+/Yb3+ ternary tungstates and their upconversion photoluminescence properties. Mater. Lett. 181, 38–41 (2016)
CrossRef Google scholar
[47]
Lim, C.S., Atuchin, V.V., Aleksandrovsky, A.S., Molokeev, M.S., Oreshonkov, A.S.: Incommensurately modulated structure and spectroscopic properties of CaGd2 (MoO4)4: Ho3+/Yb3+ phosphors for up-conversion applications. J. Alloy. Compd. 695, 737–746 (2017)
CrossRef Google scholar
[48]
Kaminskiĭ, A. A.: Crystalline lasers: physical processes and operating schemes, (No Title) (1996)
[49]
Gao, W., Zheng, H., Han, Q., He, E., Wang, R.: Unusual upconversion emission from single NaYF4: Yb3+/Ho3+ microrods under NIR excitation. CrystEngComm 16, 6697–6706 (2014)
CrossRef Google scholar
[50]
Pollnau, M., Gamelin, D.R., Lüthi, S., Güdel, H., Hehlen, M.P.: Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337 (2000)
CrossRef Google scholar
[51]
Xu, W., Gao, X., Zheng, L., Zhang, Z., Cao, W.: Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior. Opt. Express 20, 18127–18137 (2012)
CrossRef Google scholar
[52]
Guo, Y., Wang, D., He, Y.: Fabrication of highly porous Y2O3: Ho, Yb ceramic and its thermometric applications. J. Alloy. Compd. 741, 1158–1162 (2018)
CrossRef Google scholar
[53]
Zhang, J., Zhang, Y., Jiang, X.: Investigations on upconversion luminescence of K3Y(PO4)2:Yb3+-Er3+/Ho3+/Tm3+ phosphors for optical temperature sensing. J. Alloy. Compd. 748, 438–445 (2018)
CrossRef Google scholar
[54]
Sheng, C., Li, X., Tian, Y., Wang, X., Xu, S., Yu, H., Cao, Y., Chen, B.: Temperature dependence of up-conversion luminescence and sensing properties of LaNbO4: Nd3+/Yb3+/Ho3+ phosphor under 808 nm excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. Acta Part A Mol. Biomol. Spectrosc. 244, 118846 (2021)
CrossRef Google scholar
[55]
Liu, W., Xu, S., Lei, L.: Enhancing upconversion of Sc2Mo3O12: Yb/Ln (Ln = Er, Ho) phosphors by doping Ca2+ ions. Opt. Mater. 143, 114166 (2023)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(3006 KB)

Accesses

Citations

Detail

Sections
Recommended

/