Monolithic tapered Yb-doped fiber chirped pulse amplifier delivering 126 μJ and 207 MW femtosecond laser with near diffraction-limited beam quality

Tao Wang, Bo Ren, Can Li, Kun Guo, Jinyong Leng, Pu Zhou

PDF(1906 KB)
PDF(1906 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (3) : 30. DOI: 10.1007/s12200-023-00087-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Monolithic tapered Yb-doped fiber chirped pulse amplifier delivering 126 μJ and 207 MW femtosecond laser with near diffraction-limited beam quality

Author information +
History +

Abstract

In this work, a high-energy and high peak power chirped pulse amplification system with near diffraction-limited beam quality based on tapered confined-doped fiber (TCF) is experimentally demonstrated. The TCF has a core numerical aperture of 0.07 with core/cladding diameter of 35/250 μm at the thin end and 56/400 μm at the thick end. With a backward-pumping configuration, a maximum single pulse energy of 177.9 μJ at a repetition rate of 504 kHz is realized, corresponding to an average power of 89.7 W. Through partially compensating for the accumulated nonlinear phase during the amplification process via adjusting the high order dispersion of the stretching chirped fiber Bragg grating, the duration of the amplified pulse is compressed to 401 fs with a pulse energy of 126.3 μJ and a peak power of 207 MW, which to the best of our knowledge represents the highest peak power ever reported from a monolithic ultrafast fiber laser. At the highest energy, the polarization extinction ratio and the M2 factor were respectively measured to be ∼ 19 dB and 1.20. In addition, the corresponding intensity noise properties as well as the short- and long-term stability were also examined, verifying a stable operation of the system. It is believed that the demonstrated laser source could find important applications in, for example, advanced manufacturing and photomedicine.

Graphical abstract

Keywords

High-energy laser / Femtosecond laser / Tapered fiber / Fiber laser / Chirped pulse amplifier

Cite this article

Download citation ▾
Tao Wang, Bo Ren, Can Li, Kun Guo, Jinyong Leng, Pu Zhou. Monolithic tapered Yb-doped fiber chirped pulse amplifier delivering 126 μJ and 207 MW femtosecond laser with near diffraction-limited beam quality. Front. Optoelectron., 2023, 16(3): 30 https://doi.org/10.1007/s12200-023-00087-y

References

[1]
Hädrich, S., Klenke, A., Rothhardt, J., Krebs, M., Hoffmann, A., Pronin, O., Pervak, V., Limpert, J., Tünnermann, A.: High photon flux table-top coherent extreme-ultraviolet source. Nat. Photonics 8(10), 779–783 (2014)
CrossRef Google scholar
[2]
Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., Juodkazis, S.: Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), e16133 (2016)
CrossRef Google scholar
[3]
Kerse, C., Kalaycıoğlu, H., Elahi, P., Çetin, B., Kesim, D.K., Akçaalan, Ö., Yavaş, S., Aşık, M.D., Öktem, B., Hoogland, H., Holzwarth, R., Ilday, F.Ö.: Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537(7618), 84–88 (2016)
CrossRef Google scholar
[4]
Chang, Z., Fang, L., Fedorov, V., Geiger, C., Ghimire, S., Heide, C., Ishii, N., Itatani, J., Joshi, C., Kobayashi, Y., Kumar, P., Marra, A., Mirov, S., Petrushina, I., Polyanskiy, M., Reis, D.A., Tochitsky, S., Vasilyev, S., Wang, L., Wu, Y., Zhou, F.: Intense infrared lasers for strong-field science. Adv. Opt. Photonics 14(4), 652–782 (2022)
CrossRef Google scholar
[5]
Wang, Y., Chi, H., Baumgarten, C., Dehne, K., Meadows, A.R., Davenport, A., Murray, G., Reagan, B.A., Menoni, C.S., Rocca, J.J.: 1.1 J Yb:YAG picosecond laser at 1 kHz repetition rate. Opt. Lett. 45(24), 6615–6618 (2020)
CrossRef Google scholar
[6]
Wang, W., Wu, H., Liu, C., Sun, B., Liang, H.: Multigigawatt 50 fs Yb:CALGO regenerative amplifier system with 11 W average power and mid-infrared generation. Photon. Res. 9(8), 1439–1445 (2021)
CrossRef Google scholar
[7]
Zervas, M.N., Codemard, C.A.: High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014)
CrossRef Google scholar
[8]
Zhou, J., Pan, W., Qi, W., Cao, X., Cheng, Z., Feng, Y.: Ultrafast Raman fiber laser: a review and prospect. PhotoniX. 3(1), 18 (2022)
CrossRef Google scholar
[9]
Chang, G., Wei, Z.: Ultrafast fiber lasers: an expanding versatile toolbox. iScience. 23(5), 101101 (2020)
CrossRef Google scholar
[10]
Zuo, J., Lin, X.: High-power laser systems. Laser Photonics Rev. 16(5), 2100741 (2022)
CrossRef Google scholar
[11]
Wang, B., Peng, Z., Cheng, Z., Xu, Y.A.N., Wang, P.: High-power 0.4-mJ picosecond CPA system based on an extra-large-modearea triple-clad fiber. Opt. Express 30(23), 41171–41180 (2022)
CrossRef Google scholar
[12]
Zhang, Y., Wang, J., Teng, H., Fang, S., Wang, J., Chang, G., Wei, Z.: Double-pass pre-chirp managed amplification with high gain and high average power. Opt. Lett. 46(13), 3115–3118 (2021)
CrossRef Google scholar
[13]
Shestaev, E., Hoff, D., Sayler, A.M., Klenke, A., Hädrich, S., Just, F., Eidam, T., Jójárt, P., Várallyay, Z., Osvay, K., Paulus, G.G., Tünnermann, A., Limpert, J.: High-power ytterbium-doped fiber laser delivering few-cycle, carrier-envelope phase-stable 100 μJ pulses at 100 kHz. Opt. Lett. 45(1), 97–100 (2020)
CrossRef Google scholar
[14]
Wang, T., Li, C., Ren, B., Guo, K., Wu, J., Leng, J., Zhou, P.: High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier. High Power Laser Sci. Eng. 11, e25 (2023)
CrossRef Google scholar
[15]
Limpert, J., Liem, A., Reich, M., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., Broeng, J., Petersson, A., Jakobsen, C.: Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 12, 1313–1319 (2004)
CrossRef Google scholar
[16]
Habib, M.S., Antonio-Lopez, J.E., Markos, C., Schülzgen, A., Amezcua-Correa, R.: Single-mode, low loss hollow-core antiresonant fiber designs. Opt. Express 27(4), 3824–3836 (2019)
CrossRef Google scholar
[17]
Limpert, J., Stutzki, F., Jansen, F., Otto, H.J., Eidam, T., Jauregui, C., Tünnermann, A.: Yb-doped large-pitch fibres: effective singlemode operation based on higher-order mode delocalisation. Light Sci. Appl. 1(4), e8 (2012)
CrossRef Google scholar
[18]
Steinkopff, A., Jauregui, C., Stutzki, F., Nold, J., Hupel, C., Haarlammert, N., Bierlich, J., Tünnermann, A., Limpert, J.: Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter. Opt. Lett. 44(3), 650–653 (2019)
CrossRef Google scholar
[19]
Ma, X., Zhu, C., Hu, I.N., Kaplan, A., Galvanauskas, A.: Single-mode chirally-coupled-core fibers with larger than 50μm diameter cores. Opt. Express 22(8), 9206–9219 (2014)
CrossRef Google scholar
[20]
Želudevičius, J., Danilevičius, R., Viskontas, K., Rusteika, N., Regelskis, K.: Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber. Opt. Express 21(5), 5338–5345 (2013)
CrossRef Google scholar
[21]
Eidam, T., Rothhardt, J., Stutzki, F., Jansen, F., Hädrich, S., Carstens, H., Jauregui, C., Limpert, J., Tünnermann, A.: Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Opt. Express 19(1), 255–260 (2011)
CrossRef Google scholar
[22]
Filippov, V., Chamorovskii, Y., Kerttula, J., Golant, K., Pessa, M., Okhotnikov, O.G.: Double clad tapered fiber for high power applications. Opt. Express 16(3), 1929–1944 (2008)
CrossRef Google scholar
[23]
Kerttula, J., Filippov, V., Chamorovskii, Y., Ustimchik, V., Golant, K., Okhotnikov, O.G.: Principles and performance of tapered fiber lasers: from uniform to flared geometry. Appl. Opt. 51(29), 7025–7038 (2012)
CrossRef Google scholar
[24]
Huang, L., Ma, P., Su, R., Lai, W., Ma, Y., Zhou, P.: Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform- limited nanosecond fiber laser. Opt. Express 29(2), 761–782 (2021)
CrossRef Google scholar
[25]
Ren, B., Li, C., Wang, T., Guo, K., Wu, J., Su, R., Ma, P., Zhou, P.: Generation of ultrafast laser with 11 MW peak power from a gain-managed nonlinear tapered fiber amplifier. Opt. Laser Technol. 160, 109081 (2023)
CrossRef Google scholar
[26]
Chen, X., Yao, T., Huang, L., An, Y., Wu, H., Pan, Z., Zhou, P.: Functional fibers and functional fiber-based components for high-power lasers. Adv. Fiber Mater. 5(1), 59–106 (2023)
CrossRef Google scholar
[27]
Lai, W., Ma, P., Liu, W., Huang, L., Li, C., Ma, Y., Zhou, P.: 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber. Opt. Express 28(14), 20908–20919 (2020)
CrossRef Google scholar
[28]
Huang, L., Lai, W., Ma, P., Wang, J., Su, R., Ma, Y., Li, C., Zhi, D., Zhou, P.: Tapered Yb-doped fiber enabled monolithic high-power linearly polarized single-frequency laser. Opt. Lett. 45(14), 4001–4004 (2020)
CrossRef Google scholar
[29]
Ustimchik, V., Chamorovskii, Y., Filippov, V.: High average power (500 W/50 ps) and high peak power (3.2 MW/50 ps) picosecond pulsed MOPA system with tapered double-clad ytterbium fiber. SPIE LASE (SPIE). 11981 (2022)
CrossRef Google scholar
[30]
Leich, M., Kalide, A., Eschrich, T., Lorenz, M., Lorenz, A., Wondraczek, K., Schönfeld, D., Langner, A., Schötz, G., Jäger, M.: 2 MW peak power generation in fluorine co-doped Yb fiber prepared by powder-sinter technology. Opt. Lett. 45(16), 4404–4407 (2020)
CrossRef Google scholar
[31]
Bobkov, K., Levchenko, A., Kashaykina, T., Aleshkina, S., Bubnov, M., Lipatov, D., Laptev, A., Guryanov, A., Leventoux, Y., Granger, G., Couderc, V., Février, S., Likhachev, M.: Scaling of average power in sub-MW peak power Yb-doped tapered fiber picosecond pulse amplifiers. Opt. Express 29(2), 1722–1735 (2021)
CrossRef Google scholar
[32]
Petrov, A., Odnoblyudov, M., Gumenyuk, R., Minyonok, L., Chumachenko, A., Filippov, V.: Picosecond Yb-doped tapered fiber laser system with 1.26 MW peak power and 200 W average output power. Sci. Rep. 10(1), 17781 (2020)
CrossRef Google scholar
[33]
Li, W., Ma, P., Lai, W., Song, J., Wang, T., Ren, B., Liu, W., Zhou, P., Si, L.: Tapered active fiber simultaneously enabled 141 W high average and 1.3 MW high peak power via all-fiber and polarization-maintained picosecond amplifier. Opt. Laser Technol. 152, 108166 (2022)
CrossRef Google scholar
[34]
Roy, V., Grenier, P., Desbiens, L., Deshaies, S., Deladurantaye, M., Paradis, P., Boivin, M., Labranche, B., Proulx, A., Taillon, Y.: High-power/energy large mode area tapered fiber amplifiers. In: Proceedings of SPIE, 1166509 (2021)
CrossRef Google scholar
[35]
Koptev, M.Y., Anashkina, E.A., Bobkov, K.K., Likhachev, M.E., Levchenko, A.E., Aleshkina, S.S., Semjonov, S.L., Denisov, A.N., Bubnov, M.M., Lipatov, D.S., Laptev, A.Y., Gur’yanov, A.N., Andrianov, A.V., Muravyev, S.V., Kim, A.V.: Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses. Quantum Electron. 45(5), 443–450 (2015)
CrossRef Google scholar
[36]
Bobkov, K., Andrianov, A., Koptev, M., Muravyev, S., Levchenko, A., Velmiskin, V., Aleshkina, S., Semjonov, S., Lipatov, D., Guryanov, A., Kim, A., Likhachev, M.: Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier. Opt. Express 25(22), 26958–26972 (2017)
CrossRef Google scholar
[37]
Guesmi, K., Mugnier, A., Canat, G., Canal, C., Maine, P.: Simple design for high energy femtosecond tapered double clad fiber amplifier. In: Proceedings of SPIE, 1166517(2021)
CrossRef Google scholar
[38]
Cao, X., Li, Q., Li, F., Zhao, H., Zhao, W., Wang, Y., Li, D., Yang, Y., Wen, W., Si, J.: Femtosecond Yb-doped tapered fiber pulse amplifiers with peak power of over hundred megawatts. Opt. Express 31(4), 5507–5518 (2023)
CrossRef Google scholar
[39]
Gouhier, B., Dixneuf, C., Hilico, A., Guiraud, G., Traynor, N., Santarelli, G.: Low intensity noise high-power tunable fiber-based laser around 1007 nm. J. Lightwave Technol. 37(14), 3539–3543 (2019)
CrossRef Google scholar
[40]
Tao, Y., Jiang, M., Liu, L., Li, C., Zhou, P., Jiang, Z.: Over 250 W low noise core-pumped single-frequency all-fiber amplifier. Opt. Express 31(6), 10586–10595 (2023)
CrossRef Google scholar
[41]
Nguyen, D., Piracha, M.U., Delfyett, P.J.: Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power. Opt. Lett. 37(23), 4913–4915 (2012)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1906 KB)

Accesses

Citations

Detail

Sections
Recommended

/