Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser
Sergey N. Mantsevich, Ekaterina I. Kostyleva, Andrey N. Danilin, Vladimir S. Khorkin
Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser
The results of an optoelectronic system—frequency-shifted feedback (FSF) laser experimental examination are presented. The considered FSF laser is seeded only with optical amplifier spontaneous emission (ASE) and operates in the mode-locked regime, whereby the output radiation is sequence of short pulses with a repetition rate determined by the delay time in its optical feedback circuit. In the frequency domain, the spectrum of such a pulse sequence is an optical frequency comb (OFC). These OFCs we call initial. We consider the possibility of tunable acousto-optic (AO) dual and quad-comb frequency spacing downconversion in the FSF laser seeded with ASE and operating in the mode-locked regime. The examined system applies a single frequency shifting loop with single AO tunable filter as the frequency shifter that is fed with several radio frequency signals simultaneously. The initial OFCs with frequency spacing of about 6.5 MHz may be obtained in the wide spectral range and their width, envelope shape and position in the optical spectrum may be tuned. The dual-combs are obtained with a pair of initial OFCs aroused by two various ultrasound waves in the acousto-optic tunable filter (AOTF). The dual-combs frequency spacing is determined by the frequency difference of the signals applied to the AOTF piezoelectric transducer and can be tuned simply. The quad-combs are obtained with three initial OFCs, forming a pair of dual-combs, appearing when three ultrasound frequencies feed the AOTF transducer. The quad-combs frequency spacing is defined by the difference between the frequency spacing of dual-combs. Quad-combs with more than 5000 spectral lines and tunable frequency spacing are observed. The successive frequency downconversion gives the possibility to reduce the OFC frequency spacing form several MHz for initial OFC to tens of kHz for quad-combs.
Frequency-shifted feedback laser / Optical frequency combs / Acousto-optics / Dual-combs / Quad-combs
[1] |
Cundiff, S.T., Ye, J.: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003)
CrossRef
Google scholar
|
[2] |
Ohara, T., Takara, H., Yamamoto, T., Masuda, H., Morioka, T., Abe, M., Takahashi, H.: Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. J. Lightwave Technol. 24(6), 2311–2317 (2006)
CrossRef
Google scholar
|
[3] |
Del’Haye, P., Schliesser, A., Arcizet, O., Wilken, T., Holzwarth, R., Kippenberg, T.J.: Optical frequency comb generation from a monolithic microresonator. Nature 450(7173), 1214–1217 (2007)
CrossRef
Google scholar
|
[4] |
Li, J., Qu, Y., Yu, R., Wu, Y.: Generation and control of optical frequency combs using cavity electromagnetically induced transparency. Phys. Rev. A (Coll. Park) 97(2), 023826 (2018)
CrossRef
Google scholar
|
[5] |
Stefszky, M., Ulvila, V., Abdallah, Z., Silberhorn, C., Vainio, M.: Towards optical frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators. Phys. Rev. A (Coll. Park) 98(5), 053850 (2018)
CrossRef
Google scholar
|
[6] |
Coppin, P., Hodgkinson, T.G.: Novel optical frequency comb synthesis using optical feedback. Electron. Lett. 26(1), 28–30 (1990)
CrossRef
Google scholar
|
[7] |
Newbury, N.R.: Searching for applications with a fine-tooth comb. Nat. Photonics 5(4), 186–188 (2011)
CrossRef
Google scholar
|
[8] |
Ideguchi, T., Holzner, S., Bernhardt, B., Guelachvili, G., Picqué, N.,, Hänsch, T.W.: Coherent Raman spectro-imaging with laser frequency combs. Nature 502(7471), 355–358 (2013)
CrossRef
Google scholar
|
[9] |
Coddington, I., Swann, W.C., Nenadovic, L., Newbury, N.R.: Rapid and precise absolute distance measurements at long range. Nat. Photonics 3(6), 351–356 (2009)
CrossRef
Google scholar
|
[10] |
Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., Pizzocaro, M., Oates, C.W., Ludlow, A.D.: An atomic clock with 10(-18) instability. Science 341(6151), 1215–1218 (2013)
CrossRef
Google scholar
|
[11] |
Picqué, N.,, Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019)
CrossRef
Google scholar
|
[12] |
Schliesser, A., Picqué, T.H.N., Hänsch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012)
CrossRef
Google scholar
|
[13] |
Atutov, S.N., Bonazzi, F., Calabrese, R., Guidi, V., Lenisa, P., Petruio, S., Mariotti, E., Moi, L.: Generation of a frequency comb with a sharp edge of adjustable intensity and frequency. Opt. Commun. 132(3–4), 269–274 (1996)
CrossRef
Google scholar
|
[14] |
Martín-Mateos, P., Jerez, B., Acedo, P.: Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy. Opt. Express 23(16), 21149–21158 (2015)
CrossRef
Google scholar
|
[15] |
Martín-Mateos, P., Jerez, B., Largo-Izquierdo, P., Acedo, P.: Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time. Opt. Express 26(8), 9700–9713 (2018)
CrossRef
Google scholar
|
[16] |
Tu, H., Xi, L., Zhang, X., Zhang, X., Lin, J., Meng, W.: Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier. Photonics Res. 1(2), 88–91 (2013)
CrossRef
Google scholar
|
[17] |
Durán, V., Schnébelin, C., Guillet de Chatellus, H.: Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs. Opt. Express 26(11), 13800–13809 (2018)
CrossRef
Google scholar
|
[18] |
Ding, Y., Wu, B., Shen, Y.: Acousto-optic frequency shifted comb laser-based micro-Doppler detection for moving target identification. J. Opt. Soc. Am. A 38(6), 844–854 (2021)
CrossRef
Google scholar
|
[19] |
Billault, V., Durán, V., Fernández-Pousa, C.R., Crozatier, V., Dolfi, D., de Chatellus, H.G.: All-optical coherent pulse compression for dynamic laser ranging using an acousto-optic dual comb. Opt. Express 29(14), 21369–21385 (2021)
CrossRef
Google scholar
|
[20] |
Durán, V., Chatellus, H., Schnebélin, C., Nithyanandan, K., Djevarhidjian, L., Clement, J., Fernández-Pousa, C.R.: Optical frequency combs generated by acousto-optic frequency-shifting loops. IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019)
CrossRef
Google scholar
|
[21] |
Mantsevich, S.N., Voloshin, A.S., Yushkov, K.B.: Optical-frequency-comb generation with collinear acousto-optic diffraction: theory and simulations. Phys. Rev. A (Coll. Park) 100(1), 013829 (2019)
CrossRef
Google scholar
|
[22] |
Mantsevich, S.N., Kupreychik, M.I., Balakshy, V.I.: Possibilities of wide-angle tellurium dioxide acousto-optic cell application for the optical frequency comb generation. Opt. Express 28(9), 13243–13259 (2020)
CrossRef
Google scholar
|
[23] |
Mantsevich, S.N., Yushkov, K.B., Voloshin, A.S.: Optical frequency combs generation with collinear acousto-optic interaction. Proc. SPIE 11357, 142–150 (2020)
CrossRef
Google scholar
|
[24] |
Mantsevich, S.N., Kostyleva, E.I.: Determination of the paratellurite stiffness constants temperature coefficients by the acousto-optic method. Materialia (Oxford) 21, 101340 (2022)
CrossRef
Google scholar
|
[25] |
Yang, Z., Wen, M., Wan, L., Feng, T., Zhou, W., Liu, D., Zeng, S., Yang, S., Li, Z.: Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate-chalcogenide hybrid platform. Opt. Lett. 47(15), 3808–3811 (2022)
CrossRef
Google scholar
|
[26] |
Streifer, W., Whinnery, J.R.: Analysis of a dye laser tuned by acoustooptic filter. Appl. Phys. Lett. 17(8), 335–337 (1970)
CrossRef
Google scholar
|
[27] |
Kowalski, F.V., Hale, P.D., Shattil, S.J.: Broadband continuouswave laser. Opt. Lett. 13(8), 622–624 (1988)
CrossRef
Google scholar
|
[28] |
Littler, I.C.M., Balle, S., Bergmann, K.: Continuous-wave laser without frequency-domain-mode structure: investigation of emission properties and buildup dynamics. J. Opt. Soc. Am. B 8(7), 1412–1420 (1991)
CrossRef
Google scholar
|
[29] |
Littler, I.C.M., Balle, S., Bergmann, K.: The CW modeless laser: spectral control, performance data and build-up dynamics. Opt. Commun. 88(4), 514–522 (1992)
CrossRef
Google scholar
|
[30] |
Littler, I.C.M., Eschner, J.H.: The CW modeless laser: model calculations of an active frequency shifted feedback cavity. Opt. Commun. 87(1), 44–52 (1992)
CrossRef
Google scholar
|
[31] |
Ogurtsov, V.V., Khodakovskyy, V.M., Yatsenko, L.P., Shore, B.W., Bonnet, G., Bergmann, K.: An all-fiber frequency-shifted feed-back laser for optical ranging; signal variation with distance. Opt. Commun. 281(6), 1679–1685 (2008)
CrossRef
Google scholar
|
[32] |
Heidt, A.M., Burger, J.P., Maran, J.N., Traynor, N.: High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser. Opt. Express 15(24), 15892–15897 (2007)
CrossRef
Google scholar
|
[33] |
Okhotnikov, O.G.: Multiwavelength picosecond frequency-shifted feedback laser with pulse control by a shaped-gain fiber amplifier. Opt. Lett. 23(18), 1459–1461 (1998)
CrossRef
Google scholar
|
[34] |
Nikodem, M.P., Kluźniak, E., Abramski, K.: Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber lasers. Opt. Express 17(5), 3299–3304 (2009)
CrossRef
Google scholar
|
[35] |
Vazquez-Zuniga, L.A., Jeong, Y.: Study of a mode-locked erbiumdoped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: experimental results. Opt. Commun. 306, 1–8 (2013)
CrossRef
Google scholar
|
[36] |
Vazquez-Zuniga, L.A., Jeong, Y.: Study of a mode-locked erbiumdoped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: numerical results. Opt. Commun. 322, 54–60 (2014)
CrossRef
Google scholar
|
[37] |
Woodward, R.I., Majewski, M.R., Jackson, S.D.: Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm. APL Photonics 3(11), 116106 (2018)
CrossRef
Google scholar
|
[38] |
Henderson-Sapir, O., Bawden, N., Majewski, M.R., Woodward, R.I., Ottaway, D.J., Jackson, S.D.: Mode-locked and tunable fiber laser at the 3.5 μm band using frequency-shifted feedback. Opt. Lett. 45(1), 224–227 (2020)
CrossRef
Google scholar
|
[39] |
Nikodem, M., Abramski, K.: Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique. Opt. Commun. 283(10), 2202–2205 (2010)
CrossRef
Google scholar
|
[40] |
Balle, S., Bergmann, K.: Self-pulsing and instabilities in a unidirectional ring dye laser with intracavity frequency shift. Opt. Commun. 116(1), 136–142 (1995)
CrossRef
Google scholar
|
[41] |
Kim, J.I., Yatsenko, L.P., Bergmann, K.: Ranging with a frequency- shifted feedback laser using frequency-comb driven phase modulation of injected radiation. J. Phys. B 55(18), 184001 (2022)
CrossRef
Google scholar
|
[42] |
Nakamura, K., Hara, T., Yoshida, M., Miyahara, T., Ito, H.: Optical frequency domain ranging by a frequency-shifted feedback laser. IEEE J. Quantum Electron. 36(3), 305–316 (2000)
CrossRef
Google scholar
|
[43] |
Yatsenko, L.P., Shore, B.W., Bergmann, K.: Coherence in the out-put spectrum of frequency shifted feedback lasers. Opt. Commun. 282(2), 300–309 (2009)
CrossRef
Google scholar
|
[44] |
Littler, I.C.M., Keller, H.M., Gaubatz, U., Bregmann, K.: Velocity control and cooling of an atomic beam using a modeless laser. Z. Phys. D 18(4), 307–308 (1991)
CrossRef
Google scholar
|
[45] |
Cashen, M., Bretin, V., Metcalf, H.: Optical pumping in 4He* with frequency-shifted feedback amplification of light. J. Opt. Soc. Am. B 17(4), 530–533 (2000)
CrossRef
Google scholar
|
[46] |
Yoshida, M., Nakamura, K., Ito, H.: A new method for measurement of group velocity dispersion of optical fibers by using a frequency-shifted feedback fiber laser. IEEE Photonics Technol. Lett. 13(3), 227–229 (2001)
CrossRef
Google scholar
|
[47] |
Guillet de Chatellus, H., Jacquin, O., Hugon, O., Glastre, W., Lacot, E., Marklof, J.: Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers. Opt. Express 21(13), 15065–15074 (2013)
CrossRef
Google scholar
|
[48] |
Yatsenko, L.P., Shore, B.W., Bergmann, K.: Theory of a frequency-shifted feedback laser. Opt. Commun. 236(1), 183–202 (2004)
CrossRef
Google scholar
|
[49] |
Shore, K.A., Kane, D.M.: Comb generation bandwidth for frequency-shifted feedback semiconductor lasers. IEEE J. Quantum Electron. 35(7), 1053–1056 (1999)
CrossRef
Google scholar
|
[50] |
Billault, V., Crozatier, V., Baili, G., Morvan, L., Dolfi, D., Chatellus, H.G.: Dynamic behavior of frequency combs in frequencyshifting loops. J. Opt. Soc. Am. B 37(6), 1812–1820 (2020)
CrossRef
Google scholar
|
[51] |
Voloshinov, V.B.: Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal. Ultrasonics 31(5), 333–338 (1993)
CrossRef
Google scholar
|
[52] |
Gao, Z., Mei, T.: Spectro-temporal evolution of mode-locked lasing in fiber frequency-shifted feedback laser. Opt. Lett. 47(19), 4973–4976 (2022)
CrossRef
Google scholar
|
[53] |
Durán, V., Djevarhidjian, L., Guillet de Chatellus, H.: Bidirectional frequency-shifting loop for dual-comb spectroscopy. Opt. Lett. 44(15), 3789–3792 (2019)
CrossRef
Google scholar
|
[54] |
Lucas, E., Lihachev, G., Bouchand, R., Pavlov, N.G., Raja, A.S., Karpov, M., Gorodetsky, M., Kippenberg, T.J.: Spatial multiplexing of soliton microcombs. Nat. Photonics 12(11), 699–705 (2018)
CrossRef
Google scholar
|
[55] |
Sun, H., Lv, H., Wu, J., Hu, P., Fu, H., Yang, H., Yang, R., Ding, X.: Subringwavelength multidimensional multiplexing for quadcomb generation from an integrated dual-ring mode-locked laser. Proc. SPIE 12057, 120570 (2021)
CrossRef
Google scholar
|
[56] |
Li, T., Zhao, X., Chen, J., Li, Q., Xie, S., Zheng, Z.: Tri-comb and quad-combgeneration based on a multi-dimensional multiplexed mode-locked laser. J. Lightwave Technol. 37(20), 5178–5184 (2019)
CrossRef
Google scholar
|
[57] |
Yang, J., Liu, J., Li, T., Hu, J., Wang, J., Wu, Y., Xie, S., Zhao, X., Zheng, Z.: Dynamic spectroscopic characterization for fast spectral variations based on dual asynchronous undersampling with triple optical frequency combs. Opt. Lasers Eng. 156, 107077 (2022)
CrossRef
Google scholar
|
[58] |
Lomsadze, B., Smith, B.C., Cundiff, S.T.: Tri-comb spectroscopy. Nat. Photonics 12(11), 676–680 (2018)
CrossRef
Google scholar
|
[59] |
Coddington, I., Newbury, N., Swann, W.: Dual-comb spectroscopy. Optica 3(4), 414–426 (2016)
CrossRef
Google scholar
|
/
〈 | 〉 |