Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser

Sergey N. Mantsevich, Ekaterina I. Kostyleva, Andrey N. Danilin, Vladimir S. Khorkin

PDF(6229 KB)
PDF(6229 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (3) : 21. DOI: 10.1007/s12200-023-00079-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser

Author information +
History +

Abstract

The results of an optoelectronic system—frequency-shifted feedback (FSF) laser experimental examination are presented. The considered FSF laser is seeded only with optical amplifier spontaneous emission (ASE) and operates in the mode-locked regime, whereby the output radiation is sequence of short pulses with a repetition rate determined by the delay time in its optical feedback circuit. In the frequency domain, the spectrum of such a pulse sequence is an optical frequency comb (OFC). These OFCs we call initial. We consider the possibility of tunable acousto-optic (AO) dual and quad-comb frequency spacing downconversion in the FSF laser seeded with ASE and operating in the mode-locked regime. The examined system applies a single frequency shifting loop with single AO tunable filter as the frequency shifter that is fed with several radio frequency signals simultaneously. The initial OFCs with frequency spacing of about 6.5 MHz may be obtained in the wide spectral range and their width, envelope shape and position in the optical spectrum may be tuned. The dual-combs are obtained with a pair of initial OFCs aroused by two various ultrasound waves in the acousto-optic tunable filter (AOTF). The dual-combs frequency spacing is determined by the frequency difference of the signals applied to the AOTF piezoelectric transducer and can be tuned simply. The quad-combs are obtained with three initial OFCs, forming a pair of dual-combs, appearing when three ultrasound frequencies feed the AOTF transducer. The quad-combs frequency spacing is defined by the difference between the frequency spacing of dual-combs. Quad-combs with more than 5000 spectral lines and tunable frequency spacing are observed. The successive frequency downconversion gives the possibility to reduce the OFC frequency spacing form several MHz for initial OFC to tens of kHz for quad-combs.

Graphical abstract

Keywords

Frequency-shifted feedback laser / Optical frequency combs / Acousto-optics / Dual-combs / Quad-combs

Cite this article

Download citation ▾
Sergey N. Mantsevich, Ekaterina I. Kostyleva, Andrey N. Danilin, Vladimir S. Khorkin. Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser. Front. Optoelectron., 2023, 16(3): 21 https://doi.org/10.1007/s12200-023-00079-y

References

[1]
Cundiff, S.T., Ye, J.: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003)
CrossRef Google scholar
[2]
Ohara, T., Takara, H., Yamamoto, T., Masuda, H., Morioka, T., Abe, M., Takahashi, H.: Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. J. Lightwave Technol. 24(6), 2311–2317 (2006)
CrossRef Google scholar
[3]
Del’Haye, P., Schliesser, A., Arcizet, O., Wilken, T., Holzwarth, R., Kippenberg, T.J.: Optical frequency comb generation from a monolithic microresonator. Nature 450(7173), 1214–1217 (2007)
CrossRef Google scholar
[4]
Li, J., Qu, Y., Yu, R., Wu, Y.: Generation and control of optical frequency combs using cavity electromagnetically induced transparency. Phys. Rev. A (Coll. Park) 97(2), 023826 (2018)
CrossRef Google scholar
[5]
Stefszky, M., Ulvila, V., Abdallah, Z., Silberhorn, C., Vainio, M.: Towards optical frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators. Phys. Rev. A (Coll. Park) 98(5), 053850 (2018)
CrossRef Google scholar
[6]
Coppin, P., Hodgkinson, T.G.: Novel optical frequency comb synthesis using optical feedback. Electron. Lett. 26(1), 28–30 (1990)
CrossRef Google scholar
[7]
Newbury, N.R.: Searching for applications with a fine-tooth comb. Nat. Photonics 5(4), 186–188 (2011)
CrossRef Google scholar
[8]
Ideguchi, T., Holzner, S., Bernhardt, B., Guelachvili, G., Picqué, N.,, Hänsch, T.W.: Coherent Raman spectro-imaging with laser frequency combs. Nature 502(7471), 355–358 (2013)
CrossRef Google scholar
[9]
Coddington, I., Swann, W.C., Nenadovic, L., Newbury, N.R.: Rapid and precise absolute distance measurements at long range. Nat. Photonics 3(6), 351–356 (2009)
CrossRef Google scholar
[10]
Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., Pizzocaro, M., Oates, C.W., Ludlow, A.D.: An atomic clock with 10(-18) instability. Science 341(6151), 1215–1218 (2013)
CrossRef Google scholar
[11]
Picqué, N.,, Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019)
CrossRef Google scholar
[12]
Schliesser, A., Picqué, T.H.N., Hänsch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012)
CrossRef Google scholar
[13]
Atutov, S.N., Bonazzi, F., Calabrese, R., Guidi, V., Lenisa, P., Petruio, S., Mariotti, E., Moi, L.: Generation of a frequency comb with a sharp edge of adjustable intensity and frequency. Opt. Commun. 132(3–4), 269–274 (1996)
CrossRef Google scholar
[14]
Martín-Mateos, P., Jerez, B., Acedo, P.: Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy. Opt. Express 23(16), 21149–21158 (2015)
CrossRef Google scholar
[15]
Martín-Mateos, P., Jerez, B., Largo-Izquierdo, P., Acedo, P.: Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time. Opt. Express 26(8), 9700–9713 (2018)
CrossRef Google scholar
[16]
Tu, H., Xi, L., Zhang, X., Zhang, X., Lin, J., Meng, W.: Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier. Photonics Res. 1(2), 88–91 (2013)
CrossRef Google scholar
[17]
Durán, V., Schnébelin, C., Guillet de Chatellus, H.: Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs. Opt. Express 26(11), 13800–13809 (2018)
CrossRef Google scholar
[18]
Ding, Y., Wu, B., Shen, Y.: Acousto-optic frequency shifted comb laser-based micro-Doppler detection for moving target identification. J. Opt. Soc. Am. A 38(6), 844–854 (2021)
CrossRef Google scholar
[19]
Billault, V., Durán, V., Fernández-Pousa, C.R., Crozatier, V., Dolfi, D., de Chatellus, H.G.: All-optical coherent pulse compression for dynamic laser ranging using an acousto-optic dual comb. Opt. Express 29(14), 21369–21385 (2021)
CrossRef Google scholar
[20]
Durán, V., Chatellus, H., Schnebélin, C., Nithyanandan, K., Djevarhidjian, L., Clement, J., Fernández-Pousa, C.R.: Optical frequency combs generated by acousto-optic frequency-shifting loops. IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019)
CrossRef Google scholar
[21]
Mantsevich, S.N., Voloshin, A.S., Yushkov, K.B.: Optical-frequency-comb generation with collinear acousto-optic diffraction: theory and simulations. Phys. Rev. A (Coll. Park) 100(1), 013829 (2019)
CrossRef Google scholar
[22]
Mantsevich, S.N., Kupreychik, M.I., Balakshy, V.I.: Possibilities of wide-angle tellurium dioxide acousto-optic cell application for the optical frequency comb generation. Opt. Express 28(9), 13243–13259 (2020)
CrossRef Google scholar
[23]
Mantsevich, S.N., Yushkov, K.B., Voloshin, A.S.: Optical frequency combs generation with collinear acousto-optic interaction. Proc. SPIE 11357, 142–150 (2020)
CrossRef Google scholar
[24]
Mantsevich, S.N., Kostyleva, E.I.: Determination of the paratellurite stiffness constants temperature coefficients by the acousto-optic method. Materialia (Oxford) 21, 101340 (2022)
CrossRef Google scholar
[25]
Yang, Z., Wen, M., Wan, L., Feng, T., Zhou, W., Liu, D., Zeng, S., Yang, S., Li, Z.: Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate-chalcogenide hybrid platform. Opt. Lett. 47(15), 3808–3811 (2022)
CrossRef Google scholar
[26]
Streifer, W., Whinnery, J.R.: Analysis of a dye laser tuned by acoustooptic filter. Appl. Phys. Lett. 17(8), 335–337 (1970)
CrossRef Google scholar
[27]
Kowalski, F.V., Hale, P.D., Shattil, S.J.: Broadband continuouswave laser. Opt. Lett. 13(8), 622–624 (1988)
CrossRef Google scholar
[28]
Littler, I.C.M., Balle, S., Bergmann, K.: Continuous-wave laser without frequency-domain-mode structure: investigation of emission properties and buildup dynamics. J. Opt. Soc. Am. B 8(7), 1412–1420 (1991)
CrossRef Google scholar
[29]
Littler, I.C.M., Balle, S., Bergmann, K.: The CW modeless laser: spectral control, performance data and build-up dynamics. Opt. Commun. 88(4), 514–522 (1992)
CrossRef Google scholar
[30]
Littler, I.C.M., Eschner, J.H.: The CW modeless laser: model calculations of an active frequency shifted feedback cavity. Opt. Commun. 87(1), 44–52 (1992)
CrossRef Google scholar
[31]
Ogurtsov, V.V., Khodakovskyy, V.M., Yatsenko, L.P., Shore, B.W., Bonnet, G., Bergmann, K.: An all-fiber frequency-shifted feed-back laser for optical ranging; signal variation with distance. Opt. Commun. 281(6), 1679–1685 (2008)
CrossRef Google scholar
[32]
Heidt, A.M., Burger, J.P., Maran, J.N., Traynor, N.: High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser. Opt. Express 15(24), 15892–15897 (2007)
CrossRef Google scholar
[33]
Okhotnikov, O.G.: Multiwavelength picosecond frequency-shifted feedback laser with pulse control by a shaped-gain fiber amplifier. Opt. Lett. 23(18), 1459–1461 (1998)
CrossRef Google scholar
[34]
Nikodem, M.P., Kluźniak, E., Abramski, K.: Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber lasers. Opt. Express 17(5), 3299–3304 (2009)
CrossRef Google scholar
[35]
Vazquez-Zuniga, L.A., Jeong, Y.: Study of a mode-locked erbiumdoped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: experimental results. Opt. Commun. 306, 1–8 (2013)
CrossRef Google scholar
[36]
Vazquez-Zuniga, L.A., Jeong, Y.: Study of a mode-locked erbiumdoped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: numerical results. Opt. Commun. 322, 54–60 (2014)
CrossRef Google scholar
[37]
Woodward, R.I., Majewski, M.R., Jackson, S.D.: Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm. APL Photonics 3(11), 116106 (2018)
CrossRef Google scholar
[38]
Henderson-Sapir, O., Bawden, N., Majewski, M.R., Woodward, R.I., Ottaway, D.J., Jackson, S.D.: Mode-locked and tunable fiber laser at the 3.5 μm band using frequency-shifted feedback. Opt. Lett. 45(1), 224–227 (2020)
CrossRef Google scholar
[39]
Nikodem, M., Abramski, K.: Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique. Opt. Commun. 283(10), 2202–2205 (2010)
CrossRef Google scholar
[40]
Balle, S., Bergmann, K.: Self-pulsing and instabilities in a unidirectional ring dye laser with intracavity frequency shift. Opt. Commun. 116(1), 136–142 (1995)
CrossRef Google scholar
[41]
Kim, J.I., Yatsenko, L.P., Bergmann, K.: Ranging with a frequency- shifted feedback laser using frequency-comb driven phase modulation of injected radiation. J. Phys. B 55(18), 184001 (2022)
CrossRef Google scholar
[42]
Nakamura, K., Hara, T., Yoshida, M., Miyahara, T., Ito, H.: Optical frequency domain ranging by a frequency-shifted feedback laser. IEEE J. Quantum Electron. 36(3), 305–316 (2000)
CrossRef Google scholar
[43]
Yatsenko, L.P., Shore, B.W., Bergmann, K.: Coherence in the out-put spectrum of frequency shifted feedback lasers. Opt. Commun. 282(2), 300–309 (2009)
CrossRef Google scholar
[44]
Littler, I.C.M., Keller, H.M., Gaubatz, U., Bregmann, K.: Velocity control and cooling of an atomic beam using a modeless laser. Z. Phys. D 18(4), 307–308 (1991)
CrossRef Google scholar
[45]
Cashen, M., Bretin, V., Metcalf, H.: Optical pumping in 4He* with frequency-shifted feedback amplification of light. J. Opt. Soc. Am. B 17(4), 530–533 (2000)
CrossRef Google scholar
[46]
Yoshida, M., Nakamura, K., Ito, H.: A new method for measurement of group velocity dispersion of optical fibers by using a frequency-shifted feedback fiber laser. IEEE Photonics Technol. Lett. 13(3), 227–229 (2001)
CrossRef Google scholar
[47]
Guillet de Chatellus, H., Jacquin, O., Hugon, O., Glastre, W., Lacot, E., Marklof, J.: Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers. Opt. Express 21(13), 15065–15074 (2013)
CrossRef Google scholar
[48]
Yatsenko, L.P., Shore, B.W., Bergmann, K.: Theory of a frequency-shifted feedback laser. Opt. Commun. 236(1), 183–202 (2004)
CrossRef Google scholar
[49]
Shore, K.A., Kane, D.M.: Comb generation bandwidth for frequency-shifted feedback semiconductor lasers. IEEE J. Quantum Electron. 35(7), 1053–1056 (1999)
CrossRef Google scholar
[50]
Billault, V., Crozatier, V., Baili, G., Morvan, L., Dolfi, D., Chatellus, H.G.: Dynamic behavior of frequency combs in frequencyshifting loops. J. Opt. Soc. Am. B 37(6), 1812–1820 (2020)
CrossRef Google scholar
[51]
Voloshinov, V.B.: Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal. Ultrasonics 31(5), 333–338 (1993)
CrossRef Google scholar
[52]
Gao, Z., Mei, T.: Spectro-temporal evolution of mode-locked lasing in fiber frequency-shifted feedback laser. Opt. Lett. 47(19), 4973–4976 (2022)
CrossRef Google scholar
[53]
Durán, V., Djevarhidjian, L., Guillet de Chatellus, H.: Bidirectional frequency-shifting loop for dual-comb spectroscopy. Opt. Lett. 44(15), 3789–3792 (2019)
CrossRef Google scholar
[54]
Lucas, E., Lihachev, G., Bouchand, R., Pavlov, N.G., Raja, A.S., Karpov, M., Gorodetsky, M., Kippenberg, T.J.: Spatial multiplexing of soliton microcombs. Nat. Photonics 12(11), 699–705 (2018)
CrossRef Google scholar
[55]
Sun, H., Lv, H., Wu, J., Hu, P., Fu, H., Yang, H., Yang, R., Ding, X.: Subringwavelength multidimensional multiplexing for quadcomb generation from an integrated dual-ring mode-locked laser. Proc. SPIE 12057, 120570 (2021)
CrossRef Google scholar
[56]
Li, T., Zhao, X., Chen, J., Li, Q., Xie, S., Zheng, Z.: Tri-comb and quad-combgeneration based on a multi-dimensional multiplexed mode-locked laser. J. Lightwave Technol. 37(20), 5178–5184 (2019)
CrossRef Google scholar
[57]
Yang, J., Liu, J., Li, T., Hu, J., Wang, J., Wu, Y., Xie, S., Zhao, X., Zheng, Z.: Dynamic spectroscopic characterization for fast spectral variations based on dual asynchronous undersampling with triple optical frequency combs. Opt. Lasers Eng. 156, 107077 (2022)
CrossRef Google scholar
[58]
Lomsadze, B., Smith, B.C., Cundiff, S.T.: Tri-comb spectroscopy. Nat. Photonics 12(11), 676–680 (2018)
CrossRef Google scholar
[59]
Coddington, I., Newbury, N., Swann, W.: Dual-comb spectroscopy. Optica 3(4), 414–426 (2016)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(6229 KB)

Accesses

Citations

Detail

Sections
Recommended

/