Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites

Cheng Wang, Yaoguang Rong, Ti Wang

PDF(1251 KB)
PDF(1251 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (3) : 25. DOI: 10.1007/s12200-023-00078-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites

Author information +
History +

Abstract

In lead halide perovskites, organic A-site cations are generally introduced to fine-tune the properties. One of the questions under debate is whether organic A-site cations are essential for high-performance solar cells. In this study, we compare the band edge carrier dynamics and diffusion process in MAPbBr3 and CsPbBr3 single-crystal microplates. By transient absorption microscopy, the band-edge carrier diffusion constants are unraveled. With the replacement of inorganic A-site cations, the diffusion constant in CsPbBr3 increases almost 8 times compared to that in MAPbBr3. This work reveals that introducing inorganic A-site cations can lead to a much larger diffusion length and improve the performance of band-edge carriers.

Graphical abstract

Keywords

Perovskite / Inorganic cations / Carrier diffusion

Cite this article

Download citation ▾
Cheng Wang, Yaoguang Rong, Ti Wang. Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites. Front. Optoelectron., 2023, 16(3): 25 https://doi.org/10.1007/s12200-023-00078-z

References

[1]
Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., Sum, T.C.: Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)
CrossRef Google scholar
[2]
Zhao, D., Yu, Y., Wang, C., Liao, W., Shrestha, N., Grice, C.R., Cimaroli, A.J., Guan, L., Ellingson, R.J., Zhu, K., Zhao, X., Xiong, R.G., Yan, Y.: Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2(4), 17018 (2017)
CrossRef Google scholar
[3]
Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P.A., Mohammed, O.F., Sargent, E.H., Bakr, O.M.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015)
CrossRef Google scholar
[4]
Zhumekenov, A.A., Saidaminov, M.I., Haque, M.A., Alarousu, E., Sarmah, S.P., Murali, B., Dursun, I., Miao, X.H., Abdelhady, A.L., Wu, T., Mohammed, O.F., Bakr, O.M.: Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 1(1), 32–37 (2016)
CrossRef Google scholar
[5]
He, X., Liu, P., Zhang, H., Liao, Q., Yao, J., Fu, H.: Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 29(12), 1604510 (2017)
CrossRef Google scholar
[6]
Sahli, F., Werner, J., Kamino, B.A., Bräuninger, M., Monnard, R., Paviet-Salomon, B., Barraud, L., Ding, L., Diaz Leon, J.J., Sacchetto, D., Cattaneo, G., Despeisse, M., Boccard, M., Nicolay, S., Jeangros, Q., Niesen, B., Ballif, C.: Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018)
CrossRef Google scholar
[7]
Xiao, Z., Kerner, R.A., Zhao, L., Tran, N.L., Lee, K.M., Koh, T.W., Scholes, G.D., Rand, B.P.: Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11(2), 108–115 (2017)
CrossRef Google scholar
[8]
Fu, Y., Zhu, H., Chen, J., Hautzinger, M.P., Zhu, X.Y., Jin, S.: Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4(3), 169–188 (2019)
CrossRef Google scholar
[9]
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)
CrossRef Google scholar
[10]
NREL. Available at website of nrel.gov/pv/cell-efficiency.html
[11]
Zhu, H., Trinh, M.T., Wang, J., Fu, Y., Joshi, P.P., Miyata, K., Jin, S., Zhu, X.Y.: Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 29(1), 1603072 (2017)
CrossRef Google scholar
[12]
Etienne, T., Mosconi, E., De Angelis, F.: Dynamical origin of the Rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells? J. Phys. Chem. Lett. 7(9), 1638–1645 (2016)
CrossRef Google scholar
[13]
Motta, C., El-Mellouhi, F., Kais, S., Tabet, N., Alharbi, F., Sanvito, S.: Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 6(1), 7026 (2015)
CrossRef Google scholar
[14]
Frost, J.M., Walsh, A.: What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49(3), 528–535 (2016)
CrossRef Google scholar
[15]
Zheng, F., Tan, L.Z., Liu, S., Rappe, A.M.: Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15(12), 7794–7800 (2015)
CrossRef Google scholar
[16]
Pecchia, A., Gentilini, D., Rossi, D., Auf der Maur, M., Di Carlo, A.: Role of ferroelectric nanodomains in the transport properties of perovskite solar cells. Nano Lett. 16(2), 988–992 (2016)
CrossRef Google scholar
[17]
Wang, C., Chu, W., Ye, F., Ou, Z., Li, Z., Guo, Q., Zheng, Z., Wang, Z., Liu, X., Fang, G., Prezhdo, O., Wang, T., Xu, H.: Polar methylammonium organic cations detune state coupling and extend hot-carrier lifetime in lead halide perovskites. Chem 8(11), 3051–3063 (2022)
CrossRef Google scholar
[18]
Niu, G., Guo, X., Wang, L.: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015)
CrossRef Google scholar
[19]
Wang, S., Zhao, Q., Hazarika, A., Li, S., Wu, Y., Zhai, Y., Chen, X., Luther, J.M., Li, G.: Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand. Nat. Commun. 14(1), 2216 (2023)
CrossRef Google scholar
[20]
Correa-Baena, J.P., Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., Tress, W., Hagfeldt, A.: Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017)
CrossRef Google scholar
[21]
Saliba, M., Matsui, T., Seo, J.Y., Domanski, K., Correa-Baena, J.P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)
CrossRef Google scholar
[22]
Huang, J., Lai, M., Lin, J., Yang, P.: Rich chemistry in inorganic halide perovskite nanostructures. Adv. Mater. 30(48), e1802856 (2018)
CrossRef Google scholar
[23]
Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J.: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015)
CrossRef Google scholar
[24]
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J.: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014)
CrossRef Google scholar
[25]
Tian, W., Zhao, C., Leng, J., Cui, R., Jin, S.: Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137(39), 12458–12461 (2015)
CrossRef Google scholar
[26]
Hu, X., Wang, X., Fan, P., Li, Y., Zhang, X., Liu, Q., Zheng, W., Xu, G., Wang, X., Zhu, X., Pan, A.: Visualizing carrier transport in metal halide perovskite nanoplates via electric field modulated photoluminescence imaging. Nano Lett. 18(5), 3024–3031 (2018)
CrossRef Google scholar
[27]
Ou, Z., Wang, T., Tang, J., Zong, X., Wang, W., Guo, Q., Xu, Y., Zhu, C., Wang, L., Huang, W., Xu, H.: Enabling and controlling negative photoconductance of FePS3 nanosheets by hot carrier trapping. Adv. Opt. Mater. 8(10), 2000201 (2020)
CrossRef Google scholar
[28]
Snaider, J.M., Guo, Z., Wang, T., Yang, M., Yuan, L., Zhu, K., Huang, L.: Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films. ACS Energy Lett. 3(6), 1402–1408 (2018)
CrossRef Google scholar
[29]
Zhu, T., Yuan, L., Zhao, Y., Zhou, M., Wan, Y., Mei, J., Huang, L.: Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 4(1), eaao3104 (2018)
CrossRef Google scholar
[30]
Chen, J., Fu, Y., Samad, L., Dang, L., Zhao, Y., Shen, S., Guo, L., Jin, S.: Vapor-phase epitaxial growth of aligned nanowire net-works of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I). Nano Lett. 17(1), 460–466 (2017)
CrossRef Google scholar
[31]
Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., Gustafsson, M.V., Trinh, M.T., Jin, S., Zhu, X.Y.: Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14(6), 636–642 (2015)
CrossRef Google scholar
[32]
Tao, S., Schmidt, I., Brocks, G., Jiang, J., Tranca, I., Meerholz, K., Olthof, S.: Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10(1), 2560 (2019)
CrossRef Google scholar
[33]
Wu, B., Nguyen, H.T., Ku, Z., Han, G., Giovanni, D., Mathews, N., Fan, H.J., Sum, T.C.: Discerning the surface and bulk recombination kinetics of organic–inorganic halide perovskite single crystals. Adv. Energy Mater. 6(14), 1600551 (2016)
CrossRef Google scholar
[34]
Chung, H., Jung, S.I., Kim, H.J., Cha, W., Sim, E., Kim, D., Koh, W.K., Kim, J.: Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX3, X=Br and I) perovskite nanocrystals. Angew. Chem. Int. Ed. Engl. 56(15), 4160–4164 (2017)
CrossRef Google scholar
[35]
Yang, Y., Ostrowski, D.P., France, R.M., Zhu, K., van de Lagemaat, J., Luther, J.M., Beard, M.C.: Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 10(1), 53–59 (2016)
CrossRef Google scholar
[36]
Yang, J., Wen, X., Xia, H., Sheng, R., Ma, Q., Kim, J., Tapping, P., Harada, T., Kee, T.W., Huang, F., Cheng, Y.B., Green, M., Ho-Baillie, A., Huang, S., Shrestha, S., Patterson, R., Conibeer, G.: Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 8(1), 14120 (2017)
CrossRef Google scholar
[37]
Li, M., Bhaumik, S., Goh, T.W., Kumar, M.S., Yantara, N., Grätzel, M., Mhaisalkar, S., Mathews, N., Sum, T.C.: Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun. 8(1), 14350 (2017)
CrossRef Google scholar
[38]
Zhu, X.Y., Podzorov, V.: Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6(23), 4758–4761 (2015)
CrossRef Google scholar
[39]
Rakita, Y., Cohen, S.R., Kedem, N.K., Hodes, G., Cahen, D.: Mechanical properties of APbX3 (A=Cs or CH3NH3, X=I or Br) perovskite single crystals. MRS Commun. 5(4), 623–629 (2015)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1251 KB)

Accesses

Citations

Detail

Sections
Recommended

/