χ(2) nonlinear photonics in integrated microresonators

Pengfei Liu, Hao Wen, Linhao Ren, Lei Shi, Xinliang Zhang

PDF(1830 KB)
PDF(1830 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (3) : 18. DOI: 10.1007/s12200-023-00073-4
REVIEW ARTICLE
REVIEW ARTICLE

χ(2) nonlinear photonics in integrated microresonators

Author information +
History +

Abstract

Second-order (χ(2)) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices. Due to strong photon confinement and long photon lifetime, integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical effects. However, existing silicon-based materials lack a χ(2) response due to their centrosymmetric structures. A variety of novel material platforms possessing χ(2) nonlinearity have been developed over the past two decades. This review comprehensively summarizes the progress of second-order nonlinear optical effects in integrated microresonators. First, the basic principles of χ(2) nonlinear effects are introduced. Afterward, we highlight the commonly used χ(2) nonlinear optical materials, including their material properties and respective functional devices. We also discuss the prospects and challenges of utilizing χ(2) nonlinearity in the field of integrated microcavity photonics.

Graphical abstract

Keywords

Second-order nonlinearity / Integrated microresonators / Frequency conversion / Electro-optic effect

Cite this article

Download citation ▾
Pengfei Liu, Hao Wen, Linhao Ren, Lei Shi, Xinliang Zhang. χ(2) nonlinear photonics in integrated microresonators. Front. Optoelectron., 2023, 16(3): 18 https://doi.org/10.1007/s12200-023-00073-4

References

[1]
Franken, P.A., Hill, A.E., Peters, C.W., Weinreich, G.: Generation of optical harmonics. Phys. Rev. Lett. 7(4), 118–119 (1961)
CrossRef Google scholar
[2]
Shen, Y.R.: Surface properties probed by second-harmonic and sum-frequency generation. Nature 337(6207), 519–525 (1989)
CrossRef Google scholar
[3]
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)
CrossRef Google scholar
[4]
Vodopyanov, K.L., Fejer, M.M., Yu, X., Harris, J.S., Lee, Y.S., Hurlbut, W.C., Kozlov, V.G., Bliss, D., Lynch, C.: Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett. 89(14), 141119 (2006)
CrossRef Google scholar
[5]
He, J., Chen, H., Hu, J., Zhou, J., Zhang, Y., Kovach, A., Sideris, C., Harrison, M.C., Zhao, Y., Armani, A.M.: Nonlinear nano-photonic devices in the ultraviolet to visible wavelength range. Nanophotonics 9(12), 3781–3804 (2020)
CrossRef Google scholar
[6]
McKenna, T.P., Stokowski, H.S., Ansari, V., Mishra, J., Jankowski, M., Sarabalis, C.J., Herrmann, J.F., Langrock, C., Fejer, M.M., Safavi-Naeini, A.H.: Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun. 13(1), 4532 (2022)
CrossRef Google scholar
[7]
Bussières, F., Clausen, C., Tiranov, A., Korzh, B., Verma, V.B., Nam, S.W., Marsili, F., Ferrier, A., Goldner, P., Herrmann, H., Silberhorn, C., Sohler, W., Afzelius, M., Gisin, N.: Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photonics 8(10), 775–778 (2014)
CrossRef Google scholar
[8]
Bogdanov, S., Shalaginov, M.Y., Boltasseva, A., Shalaev, V.M.: Material platforms for integrated quantum photonics. Opt. Mater. Express 7(1), 111–132 (2017)
CrossRef Google scholar
[9]
Bock, M., Eich, P., Kucera, S., Kreis, M., Lenhard, A., Becher, C., Eschner, J.: High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 9(1), 1998 (2018)
CrossRef Google scholar
[10]
Tang, L., Tang, J., Chen, M., Nori, F., Xiao, M., Xia, K.: Quantum squeezing induced optical nonreciprocity. Phys. Rev. Lett. 128(8), 083604 (2022)
CrossRef Google scholar
[11]
Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandrasekhar, S., Winzer, P., Lončar, M.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562(7725), 101–104 (2018)
CrossRef Google scholar
[12]
Vahala, K.J.: Optical microcavities. Nature 424(6950), 839–846 (2003)
CrossRef Google scholar
[13]
Ward, J., Benson, O.: WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 5(4), 553–570 (2011)
CrossRef Google scholar
[14]
Lin, G., Coillet, A., Chembo, Y.K.: Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photonics 9(4), 828–890 (2017)
CrossRef Google scholar
[15]
Song, Q.: Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci. China Phys. Mech. Astron. 62(7), 74231 (2019)
CrossRef Google scholar
[16]
Liu, J., Bo, F., Chang, L., Dong, C.H., Ou, X., Regan, B., Shen, X., Song, Q., Yao, B., Zhang, W., Zou, C.L., Xiao, Y.F.: Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron. 65(10), 104201 (2022)
CrossRef Google scholar
[17]
Soref, R.: The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)
CrossRef Google scholar
[18]
Strekalov, D.V., Marquardt, C., Matsko, A.B., Schwefel, H.G.L., Leuchs, G.: Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 18(12), 123002 (2016)
CrossRef Google scholar
[19]
Zhang, X., Cao, Q.T., Wang, Z., Liu, Y.X., Qiu, C.W., Yang, L., Gong, Q., Xiao, Y.F.: Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics 13(1), 21–24 (2019)
CrossRef Google scholar
[20]
Puzyrev, D.N., Skryabin, D.V.: Ladder of Eckhaus instabilities and parametric conversion in χ(2) microresonators. Commun. Phys. 5(1), 138 (2022)
CrossRef Google scholar
[21]
Feng, S., Lei, T., Chen, H., Cai, H., Luo, X., Poon, A.W.: Silicon photonics: from a microresonator perspective. Laser Photonics Rev. 6(2), 145–177 (2012)
CrossRef Google scholar
[22]
Moss, D.J., Morandotti, R., Gaeta, A.L., Lipson, M.: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7(8), 597–607 (2013)
CrossRef Google scholar
[23]
Thomson, D., Zilkie, A., Bowers, J.E., Komljenovic, T., Reed, G.T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.M., Hartmann, J.M., Schmid, J.H., Xu, D.X., Boeuf, F., O’Brien, P., Mashanovich, G.Z., Nedeljkovic, M.: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)
CrossRef Google scholar
[24]
Kovach, A., Chen, D., He, J., Choi, H., Dogan, A.H., Ghasemkhani, M., Taheri, H., Armani, A.M.: Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photonics 12(1), 135–222 (2020)
CrossRef Google scholar
[25]
Blumenthal, D.J., Heideman, R., Geuzebroek, D., Leinse, A., Roeloffzen, C.: Silicon nitride in silicon photonics. Proc. IEEE 106(12), 2209–2231 (2018)
CrossRef Google scholar
[26]
Taghavi, I., Moridsadat, M., Tofini, A., Raza, S., Jaeger, N.A.F., Chrostowski, L., Shastri, B.J., Shekhar, S.: Polymer modulators in silicon photonics: review and projections. Nanophotonics 11(17), 3855–3871 (2022)
CrossRef Google scholar
[27]
Lu, X., Moille, G., Rao, A., Westly, D.A., Srinivasan, K.: Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 15(2), 131–136 (2021)
CrossRef Google scholar
[28]
Nitiss, E., Hu, J., Stroganov, A., Brès, C.S.: Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 16(2), 134–141 (2022)
CrossRef Google scholar
[29]
Boes, A., Corcoran, B., Chang, L., Bowers, J., Mitchell, A.: Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 12(4), 1700256 (2018)
CrossRef Google scholar
[30]
Wang, S., Yang, L., Cheng, R., Xu, Y., Shen, M., Cone, R.L., Thiel, C.W., Tang, H.X.: Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett. 116(15), 151103 (2020)
CrossRef Google scholar
[31]
Milad Gholipour, V., Sasan, F.: Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics 4(3), 034001 (2022)
CrossRef Google scholar
[32]
Chen, G., Li, N., Ng, J.D., Lin, H.L., Zhou, Y., Fu, Y.H., Lee, L.Y., Yu, Y., Liu, A.Q., Danner, A.: Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics 4(3), 034003 (2022)
CrossRef Google scholar
[33]
Yi, A., Wang, C., Zhou, L., Zhu, Y., Zhang, S., You, T., Zhang, J., Ou, X.: Silicon carbide for integrated photonics. Appl. Phys. Rev. 9(3), 031302 (2022)
CrossRef Google scholar
[34]
Li, N., Ho, C.P., Zhu, S., Fu, Y.H., Zhu, Y., Lee, L.Y.T.: Aluminium nitride integrated photonics: a review. Nanophotonics 10(9), 2347–2387 (2021)
CrossRef Google scholar
[35]
Liu, X., Bruch, A.W., Tang, H.X.: Aluminum nitride photonic integrated circuits: from piezo-optomechanics to nonlinear optics. Adv. Opt. Photonics 15(1), 236–317 (2023)
CrossRef Google scholar
[36]
Zheng, Y., Sun, C., Xiong, B., Wang, L., Hao, Z., Wang, J., Han, Y., Li, H., Yu, J., Luo, Y.: Integrated gallium nitride nonlinear photonics. Laser Photonics Rev. 16(1), 2100071 (2022)
CrossRef Google scholar
[37]
Wilson, D.J., Schneider, K., Hönl, S., Anderson, M., Baumgartner, Y., Czornomaz, L., Kippenberg, T.J., Seidler, P.: Integrated gallium phosphide nonlinear photonics. Nat. Photonics 14(1), 57–62 (2020)
CrossRef Google scholar
[38]
Mobini, E., Espinosa, D.H.G., Vyas, K., Dolgaleva, K.: AlGaAs nonlinear integrated photonics. Micromachines (Basel) 13(7), 991 (2022)
CrossRef Google scholar
[39]
Zhu, D., Shao, L.B., Yu, M.J., Cheng, R., Desiatov, B., Xin, C.J., Hu, Y.W., Holzgrafe, J., Ghosh, S., Shams-Ansari, A., Puma, E., Sinclair, N., Reimer, C., Zhang, M., Loncar, M.: Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13(2), 242–352 (2021)
CrossRef Google scholar
[40]
Gao, R., Zhang, H., Bo, F., Fang, W., Hao, Z., Yao, N., Lin, J., Guan, J., Deng, L., Wang, M., Qiao, L., Cheng, Y.: Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J. Phys. 23(12), 123027 (2021)
CrossRef Google scholar
[41]
Gräupner, P., Pommier, J.C., Cachard, A., Coutaz, J.L.: Electro-optical effect in aluminum nitride waveguides. J. Appl. Phys. 71(9), 4136–4139 (1992)
CrossRef Google scholar
[42]
Pernice, W.H.P., Xiong, C., Schuck, C., Tang, H.X.: Second harmonic generation in phase matched aluminum nitride wave-guides and micro-ring resonators. Appl. Phys. Lett. 100(22), 223501 (2012)
CrossRef Google scholar
[43]
Liu, K., Yao, S., Ding, Y., Wang, Z., Guo, Y., Yan, J., Wang, J., Yang, C., Bao, C.: Fundamental linewidth of an AlN microcavity Raman laser. Opt. Lett. 47(17), 4295–4298 (2022)
CrossRef Google scholar
[44]
Powell, K., Li, L., Shams-Ansari, A., Wang, J., Meng, D., Sinclair, N., Deng, J., Lončar, M., Yi, X.: Integrated silicon carbide electro-optic modulator. Nat. Commun. 13(1), 1851 (2022)
CrossRef Google scholar
[45]
Wang, S., Zhan, M., Wang, G., Xuan, H., Zhang, W., Liu, C., Xu, C., Liu, Y., Wei, Z., Chen, X.: 4H-SiC: a new nonlinear mate-rial for midinfrared lasers. Laser Photonics Rev. 7(5), 831–838 (2013)
CrossRef Google scholar
[46]
Wang, C., Fang, Z., Yi, A., Yang, B., Wang, Z., Zhou, L., Shen, C., Zhu, Y., Zhou, Y., Bao, R., Li, Z., Chen, Y., Huang, K., Zhang, J., Cheng, Y., Ou, X.: High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl. 10(1), 139 (2021)
CrossRef Google scholar
[47]
Long, X.C., Myers, R.A., Brueck, S.R.J., Ramer, R., Zheng, K., Hersee, S.D.: GaN linear electro-optic effect. Appl. Phys. Lett. 67(10), 1349–1351 (1995)
CrossRef Google scholar
[48]
Sanford, N.A., Davydov, A.V., Tsvetkov, D.V., Dmitriev, A.V., Keller, S., Mishra, U.K., DenBaars, S.P., Park, S.S., Han, J.Y., Molnar, R.J.: Measurement of second order susceptibilities of GaN and AlGaN. J. Appl. Phys. 97(5), 053512 (2005)
CrossRef Google scholar
[49]
Nelson, D.F., Turner, E.H.: Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide. J. Appl. Phys. 39(7), 3337–3343 (1968)
CrossRef Google scholar
[50]
Shoji, I., Kondo, T., Kitamoto, A., Shirane, M., Ito, R.: Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14(9), 2268–2294 (1997)
CrossRef Google scholar
[51]
Berseth, C.A., Wuethrich, C., Reinhart, F.K.: The electro-optic coefficients of GaAs: measurements at 1.32 and 1.52 μm and study of their dispersion between 0.9 and 10 μm. J. Appl. Phys. 71(6), 2821–2825 (1992)
CrossRef Google scholar
[52]
Guha, B., Marsault, F., Cadiz, F., Morgenroth, L., Ulin, V., Berkovitz, V., Lemaître, A., Gomez, C., Amo, A., Combrié, S., Gérard, B., Leo, G., Favero, I.: Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106. Optica 4(2), 218–221 (2017)
CrossRef Google scholar
[53]
Boyd, R.W.: Nonlinear Optics. Academic press, London (2020)
[54]
Zhao, Y., Jang, J.K., Okawachi, Y., Gaeta, A.L.: Theory of χ(2)-microresonator-based frequency conversion. Opt. Lett. 46(21), 5393–5396 (2021)
CrossRef Google scholar
[55]
Saleh, B., Teich, M.: Fundamentals of Photonics. Wiley, Hoboken (2019)
[56]
Thomaschewski, M., Bozhevolnyi, S.I.: Pockels modulation in integrated nanophotonics. Appl. Phys. Rev. 9(2), 021311 (2022)
CrossRef Google scholar
[57]
Guo, X., Zou, C.L., Tang, H.X.: Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica 3(10), 1126–1131 (2016)
CrossRef Google scholar
[58]
Fathpour, S.: Heterogeneous nonlinear integrated photonics. IEEE J. Quantum Electron. 54(6), 1–16 (2018)
CrossRef Google scholar
[59]
Fürst, J.U., Strekalov, D.V., Elser, D., Lassen, M., Andersen, U.L., Marquardt, C., Leuchs, G.: Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104(15), 153901 (2010)
CrossRef Google scholar
[60]
Lin, J., Xu, Y., Ni, J., Wang, M., Fang, Z., Qiao, L., Fang, W., Cheng, Y.: Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl. 6(1), 014002 (2016)
CrossRef Google scholar
[61]
Luo, R., Jiang, H., Rogers, S., Liang, H., He, Y., Lin, Q.: On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25(20), 24531–24539 (2017)
CrossRef Google scholar
[62]
Lin, G., Fürst, J.U., Strekalov, D.V., Yu, N.: Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators. Appl. Phys. Lett. 103(18), 181107 (2013)
CrossRef Google scholar
[63]
Lin, J., Yao, N., Hao, Z., Zhang, J., Mao, W., Wang, M., Chu, W., Wu, R., Fang, Z., Qiao, L., Fang, W., Bo, F., Cheng, Y.: Broadband quasi-phase-matched harmonic generation in an onchip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett. 122(17), 173903 (2019)
CrossRef Google scholar
[64]
Xiong, C., Pernice, W., Ryu, K.K., Schuck, C., Fong, K.Y., Palacios, T., Tang, H.X.: Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express 19(11), 10462–10470 (2011)
CrossRef Google scholar
[65]
Chen, J., Sua, Y.M., Fan, H., Huang, Y.: Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum 1(1), 229–242 (2018)
CrossRef Google scholar
[66]
Luo, R., He, Y., Liang, H., Li, M., Ling, J., Lin, Q.: Optical parametric generation in a lithium niobate microring with modal phase matching. Phys. Rev. Appl. 11(3), 034026 (2019)
CrossRef Google scholar
[67]
Ilchenko, V.S., Matsko, A.B., Savchenkov, A.A., Maleki, L.: Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes. J. Opt. Soc. Am. B 20(6), 1304–1308 (2003)
CrossRef Google scholar
[68]
Niu, Y., Yan, X., Chen, J., Ma, Y., Zhou, Y., Chen, H., Wu, Y., Bai, Z.: Research progress on periodically poled lithium niobate for nonlinear frequency conversion. Infrared Phys. Technol. 125(3), 104243 (2022)
CrossRef Google scholar
[69]
Logan, A.D., Shree, S., Chakravarthi, S., Yama, N., Pederson, C., Hestroffer, K., Hatami, F., Fu, K.C.: Triply-resonant sum frequency conversion with gallium phosphide ring resonators. Opt. Express 31(2), 1516–1531 (2023)
CrossRef Google scholar
[70]
Lu, J., Surya, J.B., Liu, X., Bruch, A.W., Gong, Z., Xu, Y., Tang, H.X.: Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250000%/W. Optica 6(12), 1455–1460 (2019)
CrossRef Google scholar
[71]
Zhao, J., Rüsing, M., Roeper, M., Eng, L.M., Mookherjea, S.: Poling thin-film X-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. J. Appl. Phys. 127(19), 193104 (2020)
CrossRef Google scholar
[72]
Nagy, J.T., Reano, R.M.: Reducing leakage current during periodic poling of ion-sliced X-cut MgO doped lithium niobate thin films. Opt. Mater. Express 9(7), 3146–3155 (2019)
CrossRef Google scholar
[73]
Rüsing, M., Zhao, J., Mookherjea, S.: Second harmonic microscopy of poled X-cut thin film lithium niobate: understanding the contrast mechanism. J. Appl. Phys. 126(11), 114105 (2019)
CrossRef Google scholar
[74]
Chen, J., Ma, Z., Sua, Y.M., Li, Z., Tang, C., Huang, Y.: Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6(9), 1244–1245 (2019)
CrossRef Google scholar
[75]
Hao, Z., Zhang, L., Mao, W., Gao, A., Gao, X., Gao, F., Bo, F., Zhang, G., Xu, J.: Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photon. Res. 8(3), 311–317 (2020)
CrossRef Google scholar
[76]
Lu, J., Li, M., Zou, C., Al Sayem, A., Tang, H.X.: Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7(12), 1654–1659 (2020)
CrossRef Google scholar
[77]
Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S.: Micro- and nanodomain engineering in lithium niobate. Appl. Phys. Rev. 2(4), 040604 (2015)
CrossRef Google scholar
[78]
Boes, A., Chang, L., Langrock, C., Yu, M., Zhang, M., Lin, Q., Lončar, M., Fejer, M., Bowers, J., Mitchell, A.: Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379(6627), eabj4396 (2023)
CrossRef Google scholar
[79]
Qi, Y.F., Li, Y.: Integrated lithium niobate photonics. Nanophotonics 9(6), 1287–1320 (2020)
CrossRef Google scholar
[80]
Luo, Q., Hao, Z., Yang, C., Zhang, R., Zheng, D., Liu, S., Liu, H., Bo, F., Kong, Y., Zhang, G., Xu, J.: Microdisk lasers on an erbium-doped lithium-niobite chip. Sci. China Phys. Mech. Astron. 64(3), 234263 (2021)
CrossRef Google scholar
[81]
Liu, Y., Yan, X., Wu, J., Zhu, B., Chen, Y., Chen, X.: On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron. 64(3), 234262 (2021)
CrossRef Google scholar
[82]
Jia, Y., Wu, J., Sun, X., Yan, X., Xie, R., Wang, L., Chen, Y., Chen, F.: Integrated photonics based on rare-earth ion-doped thin-film lithium niobate. Laser Photonics Rev. 16(9), 2200059 (2022)
CrossRef Google scholar
[83]
Poberaj, G., Hu, H., Sohler, W., Günter, P.: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 6(4), 488–503 (2012)
CrossRef Google scholar
[84]
Sun, D., Zhang, Y., Wang, D., Song, W., Liu, X., Pang, J., Geng, D., Sang, Y., Liu, H.: Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9(1), 197 (2020)
CrossRef Google scholar
[85]
Kong, Y., Bo, F., Wang, W., Zheng, D., Liu, H., Zhang, G., Rupp, R., Xu, J.: Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater. 32(3), e1806452 (2020)
CrossRef Google scholar
[86]
Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A., Loncar, M.: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4(12), 1536–1537 (2017)
CrossRef Google scholar
[87]
Luke, K., Kharel, P., Reimer, C., He, L., Loncar, M., Zhang, M.: Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 28(17), 24452–24458 (2020)
CrossRef Google scholar
[88]
Liu, S., Zheng, Y., Chen, X.: Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett. 42(18), 3626–3629 (2017)
CrossRef Google scholar
[89]
Wolf, R., Jia, Y., Bonaus, S., Werner, C.S., Herr, S.J., Breunig, I., Buse, K., Zappe, H.: Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5(7), 872–875 (2018)
CrossRef Google scholar
[90]
Zhang, M., Wang, C., Hu, Y., Shams-Ansari, A., Ren, T., Fan, S., Lončar, M.: Electronically programmable photonic molecule. Nat. Photonics 13(1), 36–40 (2019)
CrossRef Google scholar
[91]
Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C., Lončar, M.: Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6(3), 380–384 (2019)
CrossRef Google scholar
[92]
Hu, Y., Yu, M., Sinclair, N., Zhu, D., Cheng, R., Wang, C., Lončar, M.: Mirror-induced reflection in the frequency domain. Nat. Commun. 13(1), 6293 (2022)
CrossRef Google scholar
[93]
Zhuang, R., He, J., Qi, Y., Li, Y.: High-Q thin film lithium niobate microrings fabricated with wet etching. Adv. Mater. 35(3), e2208113 (2023)
CrossRef Google scholar
[94]
Wu, R., Zhang, J., Yao, N., Fang, W., Qiao, L., Chai, Z., Lin, J., Cheng, Y.: Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43(17), 4116–4119 (2018)
CrossRef Google scholar
[95]
Fang, Z., Haque, S., Lin, J., Wu, R., Zhang, J., Wang, M., Zhou, J., Rafa, M., Lu, T., Cheng, Y.: Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator. Opt. Lett. 44(5), 1214–1217 (2019)
CrossRef Google scholar
[96]
Gao, R., Yao, N., Guan, J., Deng, L., Lin, J., Wang, M., Qiao, L., Fang, W., Cheng, Y.: Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett. 20(1), 011902 (2022)
CrossRef Google scholar
[97]
Ye, X., Liu, S., Chen, Y., Zheng, Y., Chen, X.: Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt. Lett. 45(2), 523–526 (2020)
CrossRef Google scholar
[98]
Lin, J., Xu, Y., Fang, Z., Wang, M., Song, J., Wang, N., Qiao, L., Fang, W., Cheng, Y.: Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep. 5(1), 8072 (2015)
CrossRef Google scholar
[99]
Wang, M., Xu, Y., Fang, Z., Liao, Y., Wang, P., Chu, W., Qiao, L., Lin, J., Fang, W., Cheng, Y.: On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Opt. Express 25(1), 124–129 (2017)
CrossRef Google scholar
[100]
Lin, J., Bo, F., Cheng, Y., Xu, J.: Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res. 8(12), 1910–1936 (2020)
CrossRef Google scholar
[101]
Zheng, Y., Chen, X.: Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X 6(1), 1889402 (2021)
CrossRef Google scholar
[102]
Xie, R.R., Li, G.Q., Chen, F., Long, G.L.: Microresonators in lithium niobate thin films. Adv. Opt. Mater. 9(19), 2100539 (2021)
CrossRef Google scholar
[103]
Jia, Y., Wang, L., Chen, F.: Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev. 8(1), 011307 (2021)
CrossRef Google scholar
[104]
Zhang, J., Pan, B., Liu, W., Dai, D., Shi, Y.: Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity. Opt. Express 30(12), 20839–20846 (2022)
CrossRef Google scholar
[105]
Zhang, M., Wang, C., Kharel, P., Zhu, D., Lončar, M.: Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8(5), 652–667 (2021)
CrossRef Google scholar
[106]
Sinatkas, G., Christopoulos, T., Tsilipakos, O., Kriezis, E.E.: Electro-optic modulation in integrated photonics. J. Appl. Phys. 130(1), 010901 (2021)
CrossRef Google scholar
[107]
Xu, M., Cai, X.: Advances in integrated ultra-wideband electrooptic modulators. Opt. Express 30(5), 7253–7274 (2022)
CrossRef Google scholar
[108]
Wang, C., Gonin, I., Grassellino, A., Kazakov, S., Romanenko, A., Yakovlev, V.P., Zorzetti, S.: High-efficiency microwave-optical quantum transduction based on a cavity electro-optic super-conducting system with long coherence time. npj Quantum Inf. 8(1), 149 (2022)
CrossRef Google scholar
[109]
Yu, M., Barton Iii, D., Cheng, R., Reimer, C., Kharel, P., He, L., Shao, L., Zhu, D., Hu, Y., Grant, H.R., Johansson, L., Okawachi, Y., Gaeta, A.L., Zhang, M., Lončar, M.: Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612(7939), 252–258 (2022)
CrossRef Google scholar
[110]
Huang, H., Balčytis, A., Dubey, A., Boes, A., Nguyen, T.G., Ren, G., Tan, M., Mitchell, A.: Spatio-temporal isolator in lithium niobate on insulator. Opto-Electron. Sci. 2(3), 220022 (2023)
CrossRef Google scholar
[111]
Shah, M., Briggs, I., Chen, P.K., Hou, S., Fan, L.: Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate. Opt. Lett. 48(8), 1978–1981 (2023)
CrossRef Google scholar
[112]
Wang, L., Wang, C., Wang, J., Bo, F., Zhang, M., Gong, Q., Lončar, M., Xiao, Y.F.: High-Q chaotic lithium niobate microdisk cavity. Opt. Lett. 43(12), 2917–2920 (2018)
CrossRef Google scholar
[113]
Ma, Z., Chen, J.Y., Li, Z., Tang, C., Sua, Y.M., Fan, H., Huang, Y.P.: Ultrabright quantum photon sources on chip. Phys. Rev. Lett. 125(26), 263602 (2020)
CrossRef Google scholar
[114]
Li, M., Zhang, Y.L., Tang, H.X., Dong, C.H., Guo, G.C., Zou, C.L.: Photon–photon quantum phase gate in a photonic molecule with χ(2) nonlinearity. Phys. Rev. Appl. 13(4), 044013 (2020)
[115]
Chen, J., Li, Z., Ma, Z., Tang, C., Fan, H., Sua, Y.M., Huang, Y.: Photon conversion and interaction in a quasi-phase-matched microresonator. Phys. Rev. Appl. 16(6), 064004 (2021)
CrossRef Google scholar
[116]
Saravi, S., Pertsch, T., Setzpfandt, F.: Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv. Opt. Mater. 9(22), 2100789 (2021)
CrossRef Google scholar
[117]
Shams-Ansari, A., Yu, M., Chen, Z., Reimer, C., Zhang, M., Picqué, N., Lončar, M.: Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy. Commun. Phys. 5(1), 88 (2022)
CrossRef Google scholar
[118]
Wang, C., Burek, M.J., Lin, Z., Atikian, H.A., Venkataraman, V., Huang, I.C., Stark, P., Lončar, M.: Integrated high quality factor lithium niobate microdisk resonators. Opt. Express 22(25), 30924–30933 (2014)
CrossRef Google scholar
[119]
Lin, J., Xu, Y., Fang, Z., Wang, M., Wang, N., Qiao, L., Fang, W., Cheng, Y.: Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Sci. China Phys. Mech. Astron. 58(11), 114209 (2015)
CrossRef Google scholar
[120]
Hao, Z., Zhang, L., Gao, A., Mao, W., Lyu, X., Gao, X., Bo, F., Gao, F., Zhang, G., Xu, J.: Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci. China Phys. Mech. Astron. 61(11), 114211 (2018)
CrossRef Google scholar
[121]
Zhang, L., Hao, Z., Luo, Q., Gao, A., Zhang, R., Yang, C., Gao, F., Bo, F., Zhang, G., Xu, J.: Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt. Lett. 45(12), 3353–3356 (2020)
CrossRef Google scholar
[122]
Kores, C.C., Canalias, C., Laurell, F.: Quasi-phase matching waveguides on lithium niobate and KTP for nonlinear frequency conversion: a comparison. APL Photonics 6(9), 091102 (2021)
CrossRef Google scholar
[123]
Chen, J.Y., Tang, C., Jin, M., Li, Z., Ma, Z., Fan, H., Kumar, S., Sua, Y.M., Huang, Y.P.: Efficient frequency doubling with active stabilization on chip. Laser Photonics Rev. 15(11), 2100091 (2021)
CrossRef Google scholar
[124]
Jiang, H., Liang, H., Luo, R., Chen, X., Chen, Y., Lin, Q.: Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett. 113(2), 021104 (2018)
CrossRef Google scholar
[125]
Li, M., Liang, H., Luo, R., He, Y., Lin, Q.: High-Q 2D lithium niobate photonic crystal slab nanoresonators. Laser Photonics Rev. 13(5), 1800228 (2019)
CrossRef Google scholar
[126]
Yuan, S., Wu, Y., Dang, Z., Zeng, C., Qi, X., Guo, G., Ren, X., Xia, J.: Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett. 127(15), 153901 (2021)
CrossRef Google scholar
[127]
Li, Y., Huang, Z., Qiu, W., Dong, J., Guan, H., Lu, H.: Recent progress of second harmonic generation based on thin film lithium niobate. Chin. Opt. Lett. 19(6), 060012 (2021). (Invited)
CrossRef Google scholar
[128]
Hao, Z., Wang, J., Ma, S., Mao, W., Bo, F., Gao, F., Zhang, G., Xu, J.: Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photon. Res. 5(6), 623–628 (2017)
CrossRef Google scholar
[129]
Hao, Z., Zhang, L., Wang, J., Bo, F., Gao, F., Zhang, G., Xu, J.: Sum-frequency generation of a laser and its background in an onchip lithium-niobate microdisk. Chin. Opt. Lett. 20(11), 111902 (2022)
CrossRef Google scholar
[130]
Fürst, J.U., Strekalov, D.V., Elser, D., Aiello, A., Andersen, U.L., Marquardt, C.H., Leuchs, G.: Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett. 105(26), 263904 (2010)
CrossRef Google scholar
[131]
Beckmann, T., Linnenbank, H., Steigerwald, H., Sturman, B., Haertle, D., Buse, K., Breunig, I.: Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators. Phys. Rev. Lett. 106(14), 143903 (2011)
CrossRef Google scholar
[132]
Yang, J., Wang, C.: Efficient terahertz generation scheme in a thin-film lithium niobate-silicon hybrid platform. Opt. Express 29(11), 16477–16486 (2021)
CrossRef Google scholar
[133]
Lu, J., Al Sayem, A., Gong, Z., Surya, J.B., Zou, C., Tang, H.X.: Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8(4), 539–544 (2021)
CrossRef Google scholar
[134]
Xu, B., Chen, L., Lin, J., Feng, L., Niu, R., Zhou, Z., Gao, R., Dong, C., Guo, G., Gong, Q., Cheng, Y., Xiao, Y., Ren, X.: Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci. China Phys. Mech. Astron. 65(9), 294262 (2022)
CrossRef Google scholar
[135]
Ikuta, R., Asano, M., Tani, R., Yamamoto, T., Imoto, N.: Frequency comb generation in a quadratic nonlinear waveguide resonator. Opt. Express 26(12), 15551–15558 (2018)
CrossRef Google scholar
[136]
Liu, S., Zheng, Y., Fang, Z., Ye, X., Cheng, Y., Chen, X.: Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes. Opt. Lett. 44(6), 1456–1459 (2019)
CrossRef Google scholar
[137]
Szabados, J., Puzyrev, D.N., Minet, Y., Reis, L., Buse, K., Villois, A., Skryabin, D.V., Breunig, I.: Frequency comb generation via cascaded second-order nonlinearities in microresonators. Phys. Rev. Lett. 124(20), 203902 (2020)
CrossRef Google scholar
[138]
Wolf, R., Breunig, I., Zappe, H., Buse, K.: Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express 25(24), 29927–29933 (2017)
CrossRef Google scholar
[139]
Javerzac-Galy, C., Plekhanov, K., Bernier, N.R., Toth, L.D., Feofanov, A.K., Kippenberg, T.J.: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94(5), 053815 (2016)
CrossRef Google scholar
[140]
Holzgrafe, J., Sinclair, N., Zhu, D., Shams-Ansari, A., Colangelo, M., Hu, Y., Zhang, M., Berggren, K.K., Lončar, M.: Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica 7(12), 1714–1720 (2020)
CrossRef Google scholar
[141]
Bahadori, M., Yang, Y., Hassanien, A.E., Goddard, L.L., Gong, S.: Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express 28(20), 29644–29661 (2020)
CrossRef Google scholar
[142]
Hu, Y., Yu, M., Zhu, D., Sinclair, N., Shams-Ansari, A., Shao, L., Holzgrafe, J., Puma, E., Zhang, M., Lončar, M.: On-chip electrooptic frequency shifters and beam splitters. Nature 599(7886), 587–593 (2021)
CrossRef Google scholar
[143]
Xu, Y., Sayem, A.A., Fan, L., Zou, C.L., Wang, S., Cheng, R., Fu, W., Yang, L., Xu, M., Tang, H.X.: Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12(1), 4453 (2021)
CrossRef Google scholar
[144]
Snigirev, V., Riedhauser, A., Lihachev, G., Churaev, M., Riemensberger, J., Wang, R.N., Siddharth, A., Huang, G., Möhl, C., Popoff, Y., Drechsler, U., Caimi, D., Hönl, S., Liu, J., Seidler, P., Kippenberg, T.J.: Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615(7952), 411–417 (2023)
CrossRef Google scholar
[145]
Guarino, A., Poberaj, G., Rezzonico, D., Degl’Innocenti, R., Günter, P.: Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics 1(7), 407–410 (2007)
CrossRef Google scholar
[146]
Wang, C., Zhang, M., Yu, M., Zhu, R., Hu, H., Loncar, M.: Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10(1), 978 (2019)
CrossRef Google scholar
[147]
Xia, K., Sardi, F., Sauerzapf, C., Kornher, T., Becker, H.W., Kis, Z., Kovacs, L., Dertli, D., Foglszinger, J., Kolesov, R., Wrachtrup, J.: Tunable microcavities coupled to rare-earth quantum emitters. Optica 9(4), 445–450 (2022)
CrossRef Google scholar
[148]
Lin, J., Farajollahi, S., Fang, Z., Yao, N., Gao, R., Guan, J., Deng, L., Lu, T., Wang, M., Zhang, H., Fang, W., Qiao, L., Cheng, Y.: Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv. Photonics 4(3), 036001 (2022)
CrossRef Google scholar
[149]
Lee, Y.S., Kim, G.D., Kim, W.J., Lee, S.S., Lee, W.G., Steier, W.H.: Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices. Opt. Lett. 36(7), 1119–1121 (2011)
CrossRef Google scholar
[150]
Chen, L., Xu, Q., Wood, M.G., Reano, R.M.: Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 1(2), 112–118 (2014)
CrossRef Google scholar
[151]
Wang, C., Zhang, M., Stern, B., Lipson, M., Lončar, M.: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–1555 (2018)
CrossRef Google scholar
[152]
Mahmoud, M., Cai, L., Bottenfield, C., Piazza, G.: Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform. IEEE Photonics J. 10(1), 1–10 (2018)
CrossRef Google scholar
[153]
Li, M., Ling, J., He, Y., Javid, U.A., Xue, S., Lin, Q.: Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11(1), 4123 (2020)
CrossRef Google scholar
[154]
Pan, B., Cao, H., Huang, Y., Wang, Z., Chen, K., Li, H., Yu, Z., Dai, D.: Compact electro-optic modulator on lithium niobate. Photon. Res. 10(3), 697–702 (2022)
CrossRef Google scholar
[155]
Wang, J., Bo, F., Wan, S., Li, W., Gao, F., Li, J., Zhang, G., Xu, J.: High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 23(18), 23072–23078 (2015)
CrossRef Google scholar
[156]
Fang, Z., Luo, H., Lin, J., Wang, M., Zhang, J., Wu, R., Zhou, J., Chu, W., Lu, T., Cheng, Y.: Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Opt. Lett. 44(24), 5953–5956 (2019)
CrossRef Google scholar
[157]
Wang, T.J., Peng, G.L., Chan, M.Y., Chen, C.H.: On-chip optical microresonators with high electro-optic tuning efficiency. J. Lightwave Technol. 38(7), 1851–1857 (2020)
CrossRef Google scholar
[158]
Krasnokutska, I., Tambasco, J.J., Peruzzo, A.: Tunable large free spectral range microring resonators in lithium niobate on insulator. Sci. Rep. 9(1), 11086 (2019)
CrossRef Google scholar
[159]
Feng, H., Zhang, K., Sun, W., Ren, Y., Zhang, Y., Zhang, W., Wang, C.: Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photon. Res. 10(10), 2366–2373 (2022)
CrossRef Google scholar
[160]
Xue, Y., Gan, R., Chen, K., Chen, G., Ruan, Z., Zhang, J., Liu, J., Dai, D., Guo, C., Liu, L.: Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica 9(10), 1131–1137 (2022)
CrossRef Google scholar
[161]
Bahadori, M., Goddard, L.L., Gong, S.: Fundamental electrooptic limitations of thin-film lithium niobate microring modulators. Opt. Express 28(9), 13731–13749 (2020)
CrossRef Google scholar
[162]
Pan, B., Liu, H., Xu, H., Huang, Y., Li, H., Yu, Z., Liu, L., Shi, Y., Dai, D.: Ultra-compact lithium niobate microcavity electrooptic modulator beyond 110 GHz. Chip 1(4), 100029 (2022)
CrossRef Google scholar
[163]
Yu, M., Wang, C., Zhang, M., Lončar, M.: Chip-based lithium-niobate frequency combs. IEEE Photonics Technol. Lett. 31(23), 1894–1897 (2019)
CrossRef Google scholar
[164]
Parriaux, A., Hammani, K., Millot, G.: Electro-optic frequency combs. Adv. Opt. Photonics 12(1), 223–287 (2020)
CrossRef Google scholar
[165]
Sun, H., Khalil, M., Wang, Z., Chen, L.R.: Recent progress in integrated electro-optic frequency comb generation. J. Semicond. 42(4), 041301 (2021)
CrossRef Google scholar
[166]
Hermans, A., Gasse, K.V., Kuyken, B.: On-chip optical comb sources. APL Photonics 7(10), 100901 (2022)
CrossRef Google scholar
[167]
Sun, Y., Wu, J., Tan, M., Xu, X., Li, Y., Morandotti, R., Mitchell, A., Moss, D.J.: Applications of optical microcombs. Adv. Opt. Photonics 15(1), 86–175 (2023)
CrossRef Google scholar
[168]
Liu, P., Ren, L., Wen, H., Shi, L., Zhang, X.: Progress in integrated electro-optic frequency combs. Hongwai Yu Jiguang Gongcheng 51(5), 20220381 (2022). (Invited)
CrossRef Google scholar
[169]
Zhuang, R., Ni, K., Wu, G., Hao, T., Lu, L., Li, Y., Zhou, Q.: Electro-optic frequency combs: theory, characteristics, and applications. Laser Photonics Rev. 17(6), 2200353 (2023)
CrossRef Google scholar
[170]
Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G., Schwefel, H.G.L.: Resonant electro-optic frequency comb. Nature 568(7752), 378–381 (2019)
CrossRef Google scholar
[171]
Buscaino, B., Zhang, M., Loncar, M., Kahn, J.M.: Design of efficient resonator-enhanced electro-optic frequency comb generators. J. Lightwave Technol. 38(6), 1400–1413 (2020)
CrossRef Google scholar
[172]
Hu, Y., Reimer, C., Shams-Ansari, A., Zhang, M., Loncar, M.: Realization of high-dimensional frequency crystals in electrooptic microcombs. Optica 7(9), 1189–1194 (2020)
CrossRef Google scholar
[173]
Xu, M., He, M., Zhu, Y., Liu, L., Chen, L., Yu, S., Cai, X.: Integrated thin film lithium niobate Fabry–Perot modulator. Chin. Opt. Lett. 19(6), 060003 (2021)
CrossRef Google scholar
[174]
Zhang, M., Buscaino, B., Wang, C., Shams-Ansari, A., Reimer, C., Zhu, R., Kahn, J.M., Lončar, M.: Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568(7752), 373–377 (2019)
CrossRef Google scholar
[175]
Hu, Y., Yu, M., Buscaino, B., Sinclair, N., Zhu, D., Cheng, R., Shams-Ansari, A., Shao, L., Zhang, M., Kahn, J.M., Lončar, M.: High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photonics 16(10), 679–685 (2022)
CrossRef Google scholar
[176]
Gong, Z., Shen, M., Lu, J., Surya, J.B., Tang, H.X.: Monolithic Kerr and electro-optic hybrid microcombs. Optica 9(9), 1060–1065 (2022)
CrossRef Google scholar
[177]
Xiong, C., Pernice, W.H.P., Sun, X., Schuck, C., Fong, Y., Tang, H.X.: Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14(9), 095014 (2012)
CrossRef Google scholar
[178]
Jung, H., Tang, H.X.: Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion. Nanophotonics 5(2), 263–271 (2016)
CrossRef Google scholar
[179]
Liu, X., Gong, Z., Bruch, A.W., Surya, J.B., Lu, J., Tang, H.X.: Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun. 12(1), 5428 (2021)
CrossRef Google scholar
[180]
Watanabe, N., Kimoto, T., Suda, J.: The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C. J. Appl. Phys. 104(10), 106101 (2008)
CrossRef Google scholar
[181]
Gaeta, A.L., Lipson, M., Kippenberg, T.J.: Photonic-chip-based frequency combs. Nat. Photonics 13(3), 158–169 (2019)
CrossRef Google scholar
[182]
Pernice, W.H.P., Xiong, C., Tang, H.X.: High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics. Opt. Express 20(11), 12261–12269 (2012)
CrossRef Google scholar
[183]
Yan, J., Wang, J., Cong, P., Sun, L., Liu, N., Liu, Z., Zhao, C., Li, J.: Improved performance of UV-LED by p-AlGaN with graded composition. Phys. Status Solidi C 8(2), 461–463 (2011)
CrossRef Google scholar
[184]
Fan, R., Hao, Z., Chen, Z., Hu, J., Wang, L.: High quality AlN with a thin interlayer grown on a sapphire substrate by plasma-assisted molecular beam epitaxy. Chin. Phys. Lett. 27(6), 068101 (2010)
CrossRef Google scholar
[185]
Shin, W.J., Wang, P., Sun, Y., Paul, S., Liu, J., Kira, M., Soltani, M., Mi, Z.: Enhanced Pockels effect in AlN microring resonator modulators based on AlGaN/AlN multiple quantum wells. ACS Photonics 10(1), 34–42 (2023)
CrossRef Google scholar
[186]
Xiong, C., Pernice, W.H.P., Tang, H.X.: Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12(7), 3562–3568 (2012)
CrossRef Google scholar
[187]
Zhu, S., Lo, G.Q.: Aluminum nitride electro-optic phase shifter for backend integration on silicon. Opt. Express 24(12), 12501–12506 (2016)
CrossRef Google scholar
[188]
Fan, L., Zou, C.L., Cheng, R., Guo, X., Han, X., Gong, Z., Wang, S., Tang, H.X.: Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4(8), eaar4994 (2018)
CrossRef Google scholar
[189]
Surya, J.B., Guo, X., Zou, C.L., Tang, H.X.: Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address a rubidium two-photon clock transition. Opt. Lett. 43(11), 2696–2699 (2018)
CrossRef Google scholar
[190]
Bruch, A.W., Liu, X., Guo, X., Surya, J.B., Gong, Z., Zhang, L., Wang, J., Yan, J., Tang, H.X.: 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113(13), 131102 (2018)
CrossRef Google scholar
[191]
Guo, X., Zou, C.L., Jung, H., Tang, H.X.: On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117(12), 123902 (2016)
CrossRef Google scholar
[192]
Guo, X., Zou, C.L., Schuck, C., Jung, H., Cheng, R., Tang, H.X.: Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6(5), e16249 (2016)
CrossRef Google scholar
[193]
Bruch, A.W., Liu, X., Surya, J.B., Zou, C.L., Tang, H.X.: Onchip χ(2) microring optical parametric oscillator. Optica 6(10), 1361–1366 (2019)
CrossRef Google scholar
[194]
Wang, J.Q., Yang, Y.H., Li, M., Hu, X.X., Surya, J.B., Xu, X.B., Dong, C.H., Guo, G.C., Tang, H.X., Zou, C.L.: Efficient frequency conversion in a degenerate χ(2) microresonator. Phys. Rev. Lett. 126(13), 133601 (2021)
CrossRef Google scholar
[195]
Szabados, J., Sturman, B., Breunig, I.: Frequency comb generation threshold via second-harmonic excitation in χ(2) optical microresonators. APL Photonics 5(11), 116102 (2020)
CrossRef Google scholar
[196]
Puzyrev, D.N., Pankratov, V.V., Villois, A., Skryabin, D.V.: Bright-soliton frequency combs and dressed states in χ(2) microresonators. Phys. Rev. A 104(1), 013520 (2021)
CrossRef Google scholar
[197]
Lin, G., Song, Q.: Kerr frequency comb interaction with Raman, Brillouin, and second order nonlinear effects. Laser Photonics Rev. 16(1), 2100184 (2022)
CrossRef Google scholar
[198]
Jung, H., Guo, X., Zhu, N., Papp, S.B., Diddams, S.A., Tang, H.X.: Phase-dependent interference between frequency doubled comb lines in a χ(2) phase-matched aluminum nitride microring. Opt. Lett. 41(16), 3747–3750 (2016)
CrossRef Google scholar
[199]
Jung, H., Stoll, R., Guo, X., Fischer, D., Tang, H.X.: Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1(6), 396–399 (2014)
CrossRef Google scholar
[200]
Liu, X., Sun, C., Xiong, B., Wang, L., Wang, J., Han, Y., Hao, Z., Li, H., Luo, Y., Yan, J., Wei, T., Zhang, Y., Wang, J.: Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities. Appl. Phys. Lett. 113(17), 171106 (2018)
CrossRef Google scholar
[201]
Guo, X., Zou, C.L., Jung, H., Gong, Z., Bruch, A., Jiang, L., Tang, H.X.: Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl. 10(1), 014012 (2018)
CrossRef Google scholar
[202]
Gong, Z., Bruch, A.W., Yang, F., Li, M., Lu, J., Surya, J.B., Zou, C.L., Tang, H.X.: Quadratic strong coupling in AlN Kerr cavity solitons. Opt. Lett. 47(4), 746–749 (2022)
CrossRef Google scholar
[203]
Bruch, A.W., Liu, X., Gong, Z., Surya, J.B., Li, M., Zou, C.L., Tang, H.X.: Pockels soliton microcomb. Nat. Photonics 15(1), 21–27 (2021)
CrossRef Google scholar
[204]
Guo, X., Zou, C.L., Jiang, L., Tang, H.X.: All-optical control of linear and nonlinear energy transfer via the zeno effect. Phys. Rev. Lett. 120(20), 203902 (2018)
CrossRef Google scholar
[205]
Cui, C., Zhang, L., Fan, L.: In situ control of effective Kerr non-linearity with Pockels integrated photonics. Nat. Phys. 18(5), 497–501 (2022)
CrossRef Google scholar
[206]
Wang, J.Q., Yang, Y.H., Li, M., Zhou, H., Xu, X.B., Zhang, J.Z., Dong, C.H., Guo, G.C., Zou, C.L.: Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation. Nat. Commun. 13(1), 6223 (2022)
CrossRef Google scholar
[207]
Wu, I.J., Guo, G.Y.: Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 78(3), 035447 (2008)
CrossRef Google scholar
[208]
Yan, F.F., Yi, A.L., Wang, J.F., Li, Q., Yu, P., Zhang, J.X., Gali, A., Wang, Y., Xu, J.S., Ou, X., Li, C.F., Guo, G.C.: Room-temperature coherent control of implanted defect spins in silicon carbide. npj Quantum Inf. 6(1), 38 (2020)
CrossRef Google scholar
[209]
Skryabin, D.V., Pankratov, V.V., Villois, A., Puzyrev, D.N.: Photon–photon polaritons in χ(2) microresonators. Phys. Rev. Res. 3(1), L012017 (2021)
CrossRef Google scholar
[210]
Babin, C., Stöhr, R., Morioka, N., Linkewitz, T., Steidl, T., Wörnle, R., Liu, D., Hesselmeier, E., Vorobyov, V., Denisenko, A., Hentschel, M., Gobert, C., Berwian, P., Astakhov, G.V., Knolle, W., Majety, S., Saha, P., Radulaski, M., Son, N.T., Ul-Hassan, J., Kaiser, F., Wrachtrup, J.: Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21(1), 67–73 (2022)
CrossRef Google scholar
[211]
Castelletto, S., Peruzzo, A., Bonato, C., Johnson, B.C., Radulaski, M., Ou, H., Kaiser, F., Wrachtrup, J.: Silicon carbide photonics bridging quantum technology. ACS Photonics 9(5), 1434–1457 (2022)
CrossRef Google scholar
[212]
Fan, T., Moradinejad, H., Wu, X., Eftekhar, A.A., Adibi, A.: High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform. Opt. Express 26(20), 25814–25826 (2018)
CrossRef Google scholar
[213]
Zheng, Y., Pu, M., Yi, A., Chang, B., You, T., Huang, K., Kamel, A.N., Henriksen, M.R., Jørgensen, A.A., Ou, X., Ou, H.: High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator. Opt. Express 27(9), 13053–13060 (2019)
CrossRef Google scholar
[214]
Wu, X., Fan, T., Eftekhar, A.A., Hosseinnia, A.H., Adibi, A.: High-Q ultrasensitive integrated photonic sensors based on slot-ring resonator on a 3C-SiC-on-insulator platform. Opt. Lett. 46(17), 4316–4319 (2021)
CrossRef Google scholar
[215]
Fan, T., Wu, X., Eftekhar, A.A., Bosi, M., Moradinejad, H., Woods, E.V., Adibi, A.: High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform. Opt. Lett. 45(1), 153–156 (2020)
CrossRef Google scholar
[216]
Wang, C., Li, J., Yi, A., Fang, Z., Zhou, L., Wang, Z., Niu, R., Chen, Y., Zhang, J., Cheng, Y., Liu, J., Dong, C.H., Ou, X.: Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light Sci. Appl. 11(1), 341 (2022)
CrossRef Google scholar
[217]
Tang, X., Irvine, K.G., Zhang, D., Spencer, M.G.: Linear electro-optic effect in cubic silicon carbide. Appl. Phys. Lett. 59(16), 1938–1939 (1991)
CrossRef Google scholar
[218]
Wu, X., Fan, T., Eftekhar, A.A., Adibi, A.: High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform. Opt. Lett. 44(20), 4941–4944 (2019)
CrossRef Google scholar
[219]
Wang, R., Li, J., Cai, L., Li, Q.: Investigation of the electrooptic effect in high-Q 4H-SiC microresonators. Opt. Lett. 48(6), 1482–1485 (2023)
CrossRef Google scholar
[220]
Fan, T., Wu, X., Vangapandu, S.R.M., Hosseinnia, A.H., Eftekhar, A.A., Adibi, A.: Racetrack microresonator based electro-optic phase shifters on a 3C silicon-carbide-on-insulator platform. Opt. Lett. 46(9), 2135–2138 (2021)
CrossRef Google scholar
[221]
Yamada, S., Song, B.S., Jeon, S., Upham, J., Tanaka, Y., Asano, T., Noda, S.: Second-harmonic generation in a siliconcarbide-based photonic crystal nanocavity. Opt. Lett. 39(7), 1768–1771 (2014)
CrossRef Google scholar
[222]
Song, B.S., Asano, T., Jeon, S., Kim, H., Chen, C., Kang, D.D., Noda, S.: Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide. Optica 6(8), 991–995 (2019)
CrossRef Google scholar
[223]
Kim, H., Noda, S., Song, B.S., Asano, T.: Determination of nonlinear optical efficiencies of ultrahigh-Q photonic crystal nanocavities with structural imperfections. ACS Photonics 8(10), 2839–2845 (2021)
CrossRef Google scholar
[224]
Lukin, D.M., Dory, C., Guidry, M.A., Yang, K.Y., Mishra, S.D., Trivedi, R., Radulaski, M., Sun, S., Vercruysse, D., Ahn, G.H., Vučković, J.: 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 14(5), 330–334 (2020)
CrossRef Google scholar
[225]
Li, D., Jiang, K., Sun, X., Guo, C.: AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 10(1), 43–110 (2018)
CrossRef Google scholar
[226]
Zhao, L., Liu, C., Wang, K.: Progress of GaN-based optoelectronic devices integrated with optical resonances. Small 18(14), e2106757 (2022)
CrossRef Google scholar
[227]
Zhu, G., Qin, F., Li, X., Sun, Y., Gao, F., Tian, M., Ji, B., Wang, Y.: Research progress of gallium nitride microdisk cavity laser. Front. Mater. 9, 845885 (2022)
CrossRef Google scholar
[228]
Bruch, A.W., Xiong, K., Jung, H., Guo, X., Zhang, C., Han, J., Tang, H.X.: Electrochemically sliced low loss AlGaN optical microresonators. Appl. Phys. Lett. 110(2), 021111 (2017)
CrossRef Google scholar
[229]
Dharanipathy, U., VicoTriviño, N., Yan, C., Diao, Z., Carlin, J.F., Grandjean, N., Houdré, R.: Near-infrared characterization of gallium nitride photonic-crystal waveguides and cavities. Opt. Lett. 37(22), 4588–4590 (2012)
CrossRef Google scholar
[230]
Stolz, A., Cho, E., Dogheche, E., Androussi, Y., Troadec, D., Pavlidis, D., Decoster, D.: Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy. Appl. Phys. Lett. 98(16), 161903 (2011)
CrossRef Google scholar
[231]
Westreich, O., Katz, M., Paltiel, Y., Ternyak, O., Sicron, N.: Low propagation loss in GaN/AlGaN-based ridge waveguides. Phys. Status Solidi A Appl. Mater. Sci. 212(5), 1043–1048 (2015)
CrossRef Google scholar
[232]
Bruch, A.W., Xiong, C., Leung, B., Poot, M., Han, J., Tang, H.X.: Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films. Appl. Phys. Lett. 107(14), 141113 (2015)
CrossRef Google scholar
[233]
Stassen, E., Pu, M., Semenova, E., Zavarin, E., Lundin, W., Yvind, K.: High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics. Opt. Lett. 44(5), 1064–1067 (2019)
CrossRef Google scholar
[234]
Mohamed, M.S., Simbula, A., Carlin, J.F., Minkov, M., Gerace, D., Savona, V., Grandjean, N., Galli, M., Houdré, R.: Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon. APL Photonics 2(3), 031301 (2017)
CrossRef Google scholar
[235]
Vyas, K., Espinosa, D.H.G., Hutama, D., Jain, S.K., Mahjoub, R., Mobini, E., Awan, K.M., Lundeen, J., Dolgaleva, K.: Group III–V semiconductors as promising nonlinear integrated photonic platforms. Adv. Phys. X 7(1), 2097020 (2022)
CrossRef Google scholar
[236]
Mitchell, M., Hryciw, A.C., Barclay, P.E.: Cavity optomechanics in gallium phosphide microdisks. Appl. Phys. Lett. 104(14), 141104 (2014)
CrossRef Google scholar
[237]
Schneider, K., Welter, P., Baumgartner, Y., Hahn, H., Czornomaz, L., Seidler, P.: Gallium phosphide-on-silicon dioxide photonic devices. J. Lightwave Technol. 36(14), 2994–3002 (2018)
CrossRef Google scholar
[238]
Billet, M., Reis, L., Léger, Y., Cornet, C., Raineri, F., Sagnes, I., Pantzas, K., Beaudoin, G., Roelkens, G., Leo, F., Kuyken, B.: Gallium phosphide-on-insulator integrated photonic structures fabricated using micro-transfer printing. Opt. Mater. Express 12(9), 3731–3737 (2022)
CrossRef Google scholar
[239]
Hönl, S., Popoff, Y., Caimi, D., Beccari, A., Kippenberg, T.J., Seidler, P.: Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity. Nat. Commun. 13(1), 2065 (2022)
CrossRef Google scholar
[240]
Rivoire, K., Lin, Z., Hatami, F., Masselink, W.T., Vucković, J.: Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt. Express 17(25), 22609–22615 (2009)
CrossRef Google scholar
[241]
Rivoire, K., Lin, Z., Hatami, F., Vučković, J.: Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities. Appl. Phys. Lett. 97(4), 043103 (2010)
CrossRef Google scholar
[242]
Lake, D.P., Mitchell, M., Jayakumar, H., dos Santos, L.F., Curic, D., Barclay, P.E.: Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks. Appl. Phys. Lett. 108(3), 031109 (2016)
CrossRef Google scholar
[243]
Logan, A.D., Gould, M., Schmidgall, E.R., Hestroffer, K., Lin, Z., Jin, W., Majumdar, A., Hatami, F., Rodriguez, A.W., Fu, K.C.: 400%/W second harmonic conversion efficiency in 14 μm-diameter gallium phosphide-on-oxide resonators. Opt. Express 26(26), 33687–33699 (2018)
CrossRef Google scholar
[244]
Dietrich, C.P., Fiore, A., Thompson, M.G., Kamp, M., Höfling, S.: GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev. 10(6), 870–894 (2016)
CrossRef Google scholar
[245]
Xie, W., Xiang, C., Chang, L., Jin, W., Peters, J., Bowers, J.E.: Silicon-integrated nonlinear III–V photonics. Photon. Res. 10(2), 535–541 (2022)
CrossRef Google scholar
[246]
Pu, M., Ottaviano, L., Semenova, E., Yvind, K.: Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3(8), 823–826 (2016)
CrossRef Google scholar
[247]
Zheng, Y., Pu, M., Sahoo, H.K., Semenova, E., Yvind, K.: High-quality-factor AlGaAs-on-sapphire microring resonators. J. Lightwave Technol. 37(3), 868–874 (2019)
CrossRef Google scholar
[248]
Xie, W., Chang, L., Shu, H., Norman, J.C., Peters, J.D., Wang, X., Bowers, J.E.: Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express 28(22), 32894–32906 (2020)
CrossRef Google scholar
[249]
Steiner, T.J., Castro, J.E., Chang, L., Dang, Q., Xie, W., Norman, J., Bowers, J.E., Moody, G.: Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum 2(1), 010337 (2021)
CrossRef Google scholar
[250]
Kim, C., Ye, C., Zheng, Y., Semenova, E., Yvind, K., Pu, M.: Design and fabrication of AlGaAs-on-insulator microring resonators for nonlinear photonics. IEEE J. Sel. Top. Quantum Electron. 29(1), 1–13 (2022)
CrossRef Google scholar
[251]
Shu, H., Chang, L., Tao, Y., Shen, B., Xie, W., Jin, M., Netherton, A., Tao, Z., Zhang, X., Chen, R., Bai, B., Qin, J., Yu, S., Wang, X., Bowers, J.E.: Microcomb-driven silicon photonic systems. Nature 605(7910), 457–463 (2022)
CrossRef Google scholar
[252]
Bai, B., Yang, Q., Shu, H., Chang, L., Yang, F., Shen, B., Tao, Z., Wang, J., Xu, S., Xie, W., Zou, W., Hu, W., Bowers, J.E., Wang, X.: Microcomb-based integrated photonic processing unit. Nat. Commun. 14(1), 66 (2023)
CrossRef Google scholar
[253]
Yang, Z., Sipe, J.E.: Generating entangled photons via enhanced spontaneous parametric downconversion in AlGaAs microring resonators. Opt. Lett. 32(22), 3296–3298 (2007)
CrossRef Google scholar
[254]
Yang, Z., Chak, P., Bristow, A.D., van Driel, H.M., Iyer, R., Aitchison, J.S., Smirl, A.L., Sipe, J.E.: Enhanced second-harmonic generation in AlGaAs microring resonators. Opt. Lett. 32(7), 826–828 (2007)
CrossRef Google scholar
[255]
Li, L., Sun, J., Chen, T.: Second-harmonic generation in AlGaAs/AlxOy artificial birefringent microring resonators. IEEE Photonics Technol. Lett. 23(8), 465–467 (2011)
CrossRef Google scholar
[256]
Gandomkar, M., Ahmadi, V.: Thermo-optical switching enhanced with second harmonic generation in microring resonators. Opt. Lett. 36(19), 3825–3827 (2011)
CrossRef Google scholar
[257]
Mariani, S., Andronico, A., Mauguin, O., Lemaître, A., Favero, I., Ducci, S., Leo, G.: AlGaAs microdisk cavities for second-harmonic generation. Opt. Lett. 38(19), 3965–3968 (2013)
CrossRef Google scholar
[258]
Mariani, S., Andronico, A., Lemaître, A., Favero, I., Ducci, S., Leo, G.: Second-harmonic generation in AlGaAs microdisks in the telecom range. Opt. Lett. 39(10), 3062–3065 (2014)
CrossRef Google scholar
[259]
Stassen, E., Galili, M., Oxenløwe, L.K., Yvind, K.: Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAs-on-insulator microresonators. APL Photonics 4(10), 100804 (2019)
CrossRef Google scholar
[260]
Kuo, P.S., Bravo-Abad, J., Solomon, G.S.: Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nat. Commun. 5(1), 3109 (2014)
CrossRef Google scholar
[261]
Rivoire, K., Buckley, S., Vučković, J.: Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion. Opt. Express 19(22), 22198–22207 (2011)
CrossRef Google scholar
[262]
Roland, I., Borne, A., Ravaro, M., De Oliveira, R., Suffit, S., Filloux, P., Lemaître, A., Favero, I., Leo, G.: Frequency doubling and parametric fluorescence in a four-port aluminum gallium arsenide photonic chip. Opt. Lett. 45(10), 2878–2881 (2020)
CrossRef Google scholar
[263]
Chang, L., Boes, A., Pintus, P., Peters, J.D., Kennedy, M.J., Guo, X., Volet, N., Yu, S., Papp, S.B., Bowers, J.E.: Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics 4(3), 036103 (2019)
CrossRef Google scholar
[264]
Chiles, J., Nader, N., Stanton, E.J., Herman, D., Moody, G., Zhu, J., Connor Skehan, J., Guha, B., Kowligy, A., Gopinath, J.T., Srinivasan, K., Diddams, S.A., Coddington, I., Newbury, N.R., Shainline, J.M., Nam, S.W., Mirin, R.P.: Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica 6(9), 1246–1254 (2019)
CrossRef Google scholar
[265]
Chang, L., Xie, W., Shu, H., Yang, Q.F., Shen, B., Boes, A., Peters, J.D., Jin, W., Xiang, C., Liu, S., Moille, G., Yu, S.P., Wang, X., Srinivasan, K., Papp, S.B., Vahala, K., Bowers, J.E.: Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11(1), 1331 (2020)
CrossRef Google scholar
[266]
Chang, L., Boes, A., Pintus, P., Xie, W., Peters, J.D., Kennedy, M.J., Jin, W., Guo, X.W., Yu, S.P., Papp, S.B., Bowers, J.E.: Low loss (Al)GaAs on an insulator waveguide platform. Opt. Lett. 44(16), 4075–4078 (2019)
CrossRef Google scholar
[267]
Parisi, M., Morais, N., Ricciardi, I., Mosca, S., Hansson, T., Wabnitz, S., Leo, G., Rosa, M.D.: AlGaAs waveguide microresonators for efficient generation of quadratic frequency combs. J. Opt. Soc. Am. B 34(9), 1842–1847 (2017)
CrossRef Google scholar
[268]
Monat, C., Su, Y.: Hybrid photonics beyond silicon. APL Photonics 5(2), 020402 (2020)
CrossRef Google scholar
[269]
Kaur, P., Boes, A., Ren, G., Nguyen, T.G., Roelkens, G., Mitchell, A.: Hybrid and heterogeneous photonic integration. APL Photonics 6(6), 061102 (2021)
CrossRef Google scholar
[270]
Liu, X., Yan, X., Liu, Y., Li, H., Chen, Y., Chen, X.: Tunable single-mode laser on thin film lithium niobate. Opt. Lett. 46(21), 5505–5508 (2021)
CrossRef Google scholar
[271]
Op de Beeck, C., Mayor, F.M., Cuyvers, S., Poelman, S., Herrmann, J.F., Atalar, O., McKenna, T.P., Haq, B., Jiang, W., Witmer, J.D., Roelkens, G., Safavi-Naeini, A.H., Van Laer, R., Kuyken, B.: III/V-on-lithium niobate amplifiers and lasers. Optica 8(10), 1288–1289 (2021)
CrossRef Google scholar
[272]
Li, M., Chang, L., Wu, L., Staffa, J., Ling, J., Javid, U.A., Xue, S., He, Y., Lopez-Rios, R., Morin, T.J., Wang, H., Shen, B., Zeng, S., Zhu, L., Vahala, K.J., Bowers, J.E., Lin, Q.: Integrated Pockels laser. Nat. Commun. 13(1), 5344 (2022)
CrossRef Google scholar
[273]
Shams-Ansari, A., Renaud, D., Cheng, R., Shao, L., He, L., Zhu, D., Yu, M., Grant, H.R., Johansson, L., Zhang, M., Lončar, M.: Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9(4), 408–411 (2022)
CrossRef Google scholar
[274]
Komljenovic, T., Davenport, M., Hulme, J., Liu, A.Y., Santis, C.T., Spott, A., Srinivasan, S., Stanton, E.J., Zhang, C., Bowers, J.E.: Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34(1), 20–35 (2016)
CrossRef Google scholar
[275]
Komljenovic, T., Huang, D., Pintus, P., Tran, M.A., Davenport, M.L., Bowers, J.E.: Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE 106(12), 2246–2257 (2018)
CrossRef Google scholar
[276]
Elshaari, A.W., Pernice, W., Srinivasan, K., Benson, O., Zwiller, V.: Hybrid integrated quantum photonic circuits. Nat. Photonics 14(5), 285–298 (2020)
CrossRef Google scholar
[277]
Krastanov, S., Heuck, M., Shapiro, J.H., Narang, P., Englund, D.R., Jacobs, K.: Room-temperature photonic logical qubits via second-order nonlinearities. Nat. Commun. 12(1), 191 (2021)
CrossRef Google scholar
[278]
Wang, C., Li, Z., Kim, M.H., Xiong, X., Ren, X.F., Guo, G.C., Yu, N., Lončar, M.: Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8(1), 2098 (2017)
CrossRef Google scholar
[279]
Ciattoni, A., Marini, A., Rizza, C., Conti, C.: Phase-matching-free parametric oscillators based on two-dimensional semiconductors. Light Sci. Appl. 7(1), 5 (2018)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1830 KB)

Accesses

Citations

Detail

Sections
Recommended

/