Stable PbS colloidal quantum dot inks enable blade‑coating infrared solar cells
Xinzhao Zhao, Mingyu Li, Tianjun Ma, Jun Yan, Gomaa Mohamed Gomaa Khalaf, Chao Chen, Hsien-Yi Hsu, Haisheng Song, Jiang Tang
Stable PbS colloidal quantum dot inks enable blade‑coating infrared solar cells
Infrared solar cells are more effective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region, thus also at broadening the absorption spectra and improving power conversion efficiency. PbS colloidal quantum dots (QDs) with tunable bandgap are ideal infrared photovoltaic materials. However, QD solar cell production suffers from small-area-based spin-coating fabrication methods and unstable QD ink. Herein, the QD ink stability mechanism was fully investigated according to Lewis acid–base theory and colloid stability theory. We further studied a mixed solvent system using dimethylformamide and butylamine, compatible with the scalable manufacture of method-blade coating. Based on the ink system, 100 cm2 of uniform and dense near-infrared PbS QDs (∼ 0.96 eV) film was successfully prepared by blade coating. The average efficiencies of above absorber-based devices reached 11.14% under AM1.5G illumination, and the 800 nm-filtered efficiency achieved 4.28%. Both were the top values among blade coating method based devices. The newly developed ink showed excellent stability, and the device performance based on the ink stored for 7 h was similar to that of fresh ink. The matched solvent system for stable PbS QD ink represents a crucial step toward large area blade coating photoelectric devices.
PbS quantum dots / Solvent engineering / Colloid stability / Blade coating / Infrared solar cells
[1] |
Kagan,C.R., Lifshitz, E., Sargent,E.H., Talapin,D.V.: Building devices from colloidal quantum dots. Science 353(6302), aac5523 (2016)
CrossRef
Google scholar
|
[2] |
Pradhan,S., Di Stasio, F., Bi,Y., Gupta,S., Christodoulou, S.: High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14(1), 72–79 (2019)
CrossRef
Google scholar
|
[3] |
Shen,H., Gao,Q., Zhang,Y., Lin, Y., Lin,Q.: Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13(3), 192–197 (2019)
CrossRef
Google scholar
|
[4] |
Abhishek,S., Ashley, R.M., Erin,M.S., Boris,D.C., David,T.M.: Quantum dot–induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016)
CrossRef
Google scholar
|
[5] |
Kagan,C.R.: Flexible colloidal nanocrystal electronics. Chem. Soc. Rev. 48(6), 1626–1641 (2019)
CrossRef
Google scholar
|
[6] |
Tang,X., Ackerman, M.M., Chen,M., Guyot-Sionnest,P.: Dualband infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photon. 13(4), 277–282 (2019)
CrossRef
Google scholar
|
[7] |
Gao,J., Fidler, A.F., Klimov,V.: I: Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots. Nat. Commun. 6(1), 8185 (2015)
CrossRef
Google scholar
|
[8] |
Tavakoli,M.M., Aashuri, H., Simchi,A., Kalytchuk,S., Fan,Z.: Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells. J. Phys. Chem. C 119(33), 18886–18895 (2015)
CrossRef
Google scholar
|
[9] |
Tavakoli,M.M., Simchi, A., Aashuri,H.: Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells. Mater. Chem. Phys. 156, 163–169 (2015)
CrossRef
Google scholar
|
[10] |
Tavakoli,M.M., Simchi, A., Fan,Z., Aashuri,H.: Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. Chem. Commun. 52(2), 323–326 (2016)
CrossRef
Google scholar
|
[11] |
Wang,Y., Lu,K., Han,L., Liu, Z., Shi,G.: In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 30(16), 1704871 (2018)
CrossRef
Google scholar
|
[12] |
Yuan,M., Liu,M., Sargent,E.H.: Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1(3), 1–9 (2016)
CrossRef
Google scholar
|
[13] |
Karani,A., Yang,L., Bai,S., Futscher, M.H., Snaith,H.J.: Perovskite/colloidal quantum dot tandem solar cells: theoretical modeling and monolithic structure. ACS Energy Lett. 3(4), 869–874 (2018)
CrossRef
Google scholar
|
[14] |
Liu,M., Voznyy, O., Sabatini,R., Garcia de Arquer,F.P., Munir, R.: Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017)
CrossRef
Google scholar
|
[15] |
Li,M., Chen,S., Zhao,X., Xiong, K., Wang,B.: Matching charge extraction contact for infrared pbs colloidal quantum dot solar cells. Small 18(1), 2105495 (2022)
CrossRef
Google scholar
|
[16] |
Zhao,Q., Han,R., Marshall,A.R., Wang,S., Wieliczka, B.M.: Colloidal quantum dot solar cells: progressive deposition techniques and future prospects on large-area fabrication. Adv. Mater. 34(17), 2107888 (2022)
CrossRef
Google scholar
|
[17] |
Sukharevska,N., Bederak, D., Goossens,V.M., Momand,J., Duim,H.: Scalable PbS quantum dot solar cell production by blade coating from stable inks. ACS Appl. Mater. Interfaces 13(4), 5195–5207 (2021)
CrossRef
Google scholar
|
[18] |
Fan,J.Z., Vafaie, M., Bertens,K., Sytnyk,M., Pina,J.M.: Micron thick colloidal quantum dot solids. Nano Lett. 20(7), 5284–5291 (2020)
CrossRef
Google scholar
|
[19] |
Lan,X., Voznyy, O., Garcia de Arquer,F.P., Liu,M., Xu, J.: 10.6% certified colloidal quantum dot solar cells via solventpolarity-engineered halide passivation. Nano Lett. 16(7), 4630–4634 (2016)
CrossRef
Google scholar
|
[20] |
Muneer,R., Hashmet, M.R., Pourafshary,P.: Fine migration control in sandstones: surface force analysis and application of dlvo theory. ACS Omega 5(49), 31624–31639 (2020)
CrossRef
Google scholar
|
[21] |
Choi,M.J., Kim,Y., Lim,H., Alarousu, E., Adhikari,A.: Tuning solute-redistribution dynamics for scalable fabrication of colloidal quantum-dot optoelectronics. Adv. Mater. 31(32), 1805886 (2019)
CrossRef
Google scholar
|
[22] |
Sliz,R., Lejay,M., Fan,J.Z., Choi, M.J., Kinge,S.: Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 13(10), 11988–11995 (2019)
CrossRef
Google scholar
|
[23] |
Li,M., Zhao,X., Zhang,A., Wang, B., Yang,Y.: Organic ligand complementary passivation to Colloidal-quantum-dot surface enables efficient infrared solar cells. Chem. Eng. J. 455, 140961 (2023)
CrossRef
Google scholar
|
[24] |
Rose,B.H., Weaver, H.T.: Determination of effective surface recombination velocity and minority-carrier lifetime in high-efficiency Si solar cells. J. Appl. Phys. 54(1), 238–247 (1983)
CrossRef
Google scholar
|
[25] |
Brown,P.R., Lunt,R.R., Zhao,N., Osedach, T.P., Wanger,D.D.: Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11(7), 2955–3961 (2011)
CrossRef
Google scholar
|
[26] |
Liao,W., Zhao,D., Yu,Y., Grice, C.R., Wang,C.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016)
CrossRef
Google scholar
|
[27] |
Xia,Y., Zhai,G., Zheng,Z., Lian, L., Liu,H.: Solution-processed solar-blind deep ultraviolet photodetectors based on strongly quantum confined ZnS quantum dots. J. Mater. Chem. C 6(42), 11266–11271 (2018)
CrossRef
Google scholar
|
[28] |
Zhang,J., Gao,J.: Diffusion-controlled synthesis of pbs and pbse quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 8(1), 614–622 (2014)
CrossRef
Google scholar
|
/
〈 | 〉 |