Stable PbS colloidal quantum dot inks enable blade‑coating infrared solar cells

Xinzhao Zhao, Mingyu Li, Tianjun Ma, Jun Yan, Gomaa Mohamed Gomaa Khalaf, Chao Chen, Hsien-Yi Hsu, Haisheng Song, Jiang Tang

PDF(1871 KB)
PDF(1871 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (3) : 27. DOI: 10.1007/s12200-023-00085-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Stable PbS colloidal quantum dot inks enable blade‑coating infrared solar cells

Author information +
History +

Abstract

Infrared solar cells are more effective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region, thus also at broadening the absorption spectra and improving power conversion efficiency. PbS colloidal quantum dots (QDs) with tunable bandgap are ideal infrared photovoltaic materials. However, QD solar cell production suffers from small-area-based spin-coating fabrication methods and unstable QD ink. Herein, the QD ink stability mechanism was fully investigated according to Lewis acid–base theory and colloid stability theory. We further studied a mixed solvent system using dimethylformamide and butylamine, compatible with the scalable manufacture of method-blade coating. Based on the ink system, 100 cm2 of uniform and dense near-infrared PbS QDs (∼ 0.96 eV) film was successfully prepared by blade coating. The average efficiencies of above absorber-based devices reached 11.14% under AM1.5G illumination, and the 800 nm-filtered efficiency achieved 4.28%. Both were the top values among blade coating method based devices. The newly developed ink showed excellent stability, and the device performance based on the ink stored for 7 h was similar to that of fresh ink. The matched solvent system for stable PbS QD ink represents a crucial step toward large area blade coating photoelectric devices.

Graphical abstract

Keywords

PbS quantum dots / Solvent engineering / Colloid stability / Blade coating / Infrared solar cells

Cite this article

Download citation ▾
Xinzhao Zhao, Mingyu Li, Tianjun Ma, Jun Yan, Gomaa Mohamed Gomaa Khalaf, Chao Chen, Hsien-Yi Hsu, Haisheng Song, Jiang Tang. Stable PbS colloidal quantum dot inks enable blade‑coating infrared solar cells. Front. Optoelectron., 2023, 16(3): 27 https://doi.org/10.1007/s12200-023-00085-0

References

[1]
Kagan,C.R., Lifshitz, E., Sargent,E.H., Talapin,D.V.: Building devices from colloidal quantum dots. Science 353(6302), aac5523 (2016)
CrossRef Google scholar
[2]
Pradhan,S., Di Stasio, F., Bi,Y., Gupta,S., Christodoulou, S.: High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14(1), 72–79 (2019)
CrossRef Google scholar
[3]
Shen,H., Gao,Q., Zhang,Y., Lin, Y., Lin,Q.: Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13(3), 192–197 (2019)
CrossRef Google scholar
[4]
Abhishek,S., Ashley, R.M., Erin,M.S., Boris,D.C., David,T.M.: Quantum dot–induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016)
CrossRef Google scholar
[5]
Kagan,C.R.: Flexible colloidal nanocrystal electronics. Chem. Soc. Rev. 48(6), 1626–1641 (2019)
CrossRef Google scholar
[6]
Tang,X., Ackerman, M.M., Chen,M., Guyot-Sionnest,P.: Dualband infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photon. 13(4), 277–282 (2019)
CrossRef Google scholar
[7]
Gao,J., Fidler, A.F., Klimov,V.: I: Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots. Nat. Commun. 6(1), 8185 (2015)
CrossRef Google scholar
[8]
Tavakoli,M.M., Aashuri, H., Simchi,A., Kalytchuk,S., Fan,Z.: Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells. J. Phys. Chem. C 119(33), 18886–18895 (2015)
CrossRef Google scholar
[9]
Tavakoli,M.M., Simchi, A., Aashuri,H.: Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells. Mater. Chem. Phys. 156, 163–169 (2015)
CrossRef Google scholar
[10]
Tavakoli,M.M., Simchi, A., Fan,Z., Aashuri,H.: Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. Chem. Commun. 52(2), 323–326 (2016)
CrossRef Google scholar
[11]
Wang,Y., Lu,K., Han,L., Liu, Z., Shi,G.: In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 30(16), 1704871 (2018)
CrossRef Google scholar
[12]
Yuan,M., Liu,M., Sargent,E.H.: Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1(3), 1–9 (2016)
CrossRef Google scholar
[13]
Karani,A., Yang,L., Bai,S., Futscher, M.H., Snaith,H.J.: Perovskite/colloidal quantum dot tandem solar cells: theoretical modeling and monolithic structure. ACS Energy Lett. 3(4), 869–874 (2018)
CrossRef Google scholar
[14]
Liu,M., Voznyy, O., Sabatini,R., Garcia de Arquer,F.P., Munir, R.: Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017)
CrossRef Google scholar
[15]
Li,M., Chen,S., Zhao,X., Xiong, K., Wang,B.: Matching charge extraction contact for infrared pbs colloidal quantum dot solar cells. Small 18(1), 2105495 (2022)
CrossRef Google scholar
[16]
Zhao,Q., Han,R., Marshall,A.R., Wang,S., Wieliczka, B.M.: Colloidal quantum dot solar cells: progressive deposition techniques and future prospects on large-area fabrication. Adv. Mater. 34(17), 2107888 (2022)
CrossRef Google scholar
[17]
Sukharevska,N., Bederak, D., Goossens,V.M., Momand,J., Duim,H.: Scalable PbS quantum dot solar cell production by blade coating from stable inks. ACS Appl. Mater. Interfaces 13(4), 5195–5207 (2021)
CrossRef Google scholar
[18]
Fan,J.Z., Vafaie, M., Bertens,K., Sytnyk,M., Pina,J.M.: Micron thick colloidal quantum dot solids. Nano Lett. 20(7), 5284–5291 (2020)
CrossRef Google scholar
[19]
Lan,X., Voznyy, O., Garcia de Arquer,F.P., Liu,M., Xu, J.: 10.6% certified colloidal quantum dot solar cells via solventpolarity-engineered halide passivation. Nano Lett. 16(7), 4630–4634 (2016)
CrossRef Google scholar
[20]
Muneer,R., Hashmet, M.R., Pourafshary,P.: Fine migration control in sandstones: surface force analysis and application of dlvo theory. ACS Omega 5(49), 31624–31639 (2020)
CrossRef Google scholar
[21]
Choi,M.J., Kim,Y., Lim,H., Alarousu, E., Adhikari,A.: Tuning solute-redistribution dynamics for scalable fabrication of colloidal quantum-dot optoelectronics. Adv. Mater. 31(32), 1805886 (2019)
CrossRef Google scholar
[22]
Sliz,R., Lejay,M., Fan,J.Z., Choi, M.J., Kinge,S.: Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 13(10), 11988–11995 (2019)
CrossRef Google scholar
[23]
Li,M., Zhao,X., Zhang,A., Wang, B., Yang,Y.: Organic ligand complementary passivation to Colloidal-quantum-dot surface enables efficient infrared solar cells. Chem. Eng. J. 455, 140961 (2023)
CrossRef Google scholar
[24]
Rose,B.H., Weaver, H.T.: Determination of effective surface recombination velocity and minority-carrier lifetime in high-efficiency Si solar cells. J. Appl. Phys. 54(1), 238–247 (1983)
CrossRef Google scholar
[25]
Brown,P.R., Lunt,R.R., Zhao,N., Osedach, T.P., Wanger,D.D.: Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11(7), 2955–3961 (2011)
CrossRef Google scholar
[26]
Liao,W., Zhao,D., Yu,Y., Grice, C.R., Wang,C.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016)
CrossRef Google scholar
[27]
Xia,Y., Zhai,G., Zheng,Z., Lian, L., Liu,H.: Solution-processed solar-blind deep ultraviolet photodetectors based on strongly quantum confined ZnS quantum dots. J. Mater. Chem. C 6(42), 11266–11271 (2018)
CrossRef Google scholar
[28]
Zhang,J., Gao,J.: Diffusion-controlled synthesis of pbs and pbse quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 8(1), 614–622 (2014)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1871 KB)

Accesses

Citations

Detail

Sections
Recommended

/