May 2024, Volume 5 Issue 5
    

  • Select all
  • ORIGINAL ARTICLE
    Jiwei Zhang, Fen Ma, Zhe Li, Yuan Li, Xun Sun, Mingxu Song, Fan Yang, Enjiang Wu, Xiaohui Wei, Zhengtao Wang, Li Yang
    PDF

    This study systematically analyzed the molecular mechanism and function of nuclear factor kappa B subunit 2 (NFKB2) in colorectal cancer (CRC) to investigate the potential of NFKB2 as a therapeutic target for CRC. Various experimental techniques, including RNA sequencing, proteome chip assays, and small molecule analysis, were used to obtain a deeper understanding of the regulation of NFKB2 in CRC. The results revealed that NFKB2 was upregulated in a significant proportion of patients with advanced hepatic metastasis of CRC. NFKB2 played an important role in promoting tumor growth through CD8+ T-cell exhaustion. Moreover, NFKB2 directly interacted with signal transducer and activator of transcription 2 (STAT2), leading to increased phosphorylation of STAT2 and the upregulation of programmed death ligand 1 (PD-L1). Applying a small molecule inhibitor of NFKB2 (Rg5) led to a reduction in PD-L1 expression and improved response to programmed death-1 blockade-based immunotherapy. In conclusion, the facilitated NFKB2-STAT2/PD-L1 axis may suppress immune surveillance in CRC and targeting NFKB2 may enhance the efficacy of immunotherapeutic strategies. Our results provide novel insights into the molecular mechanisms underlying the contribution of NFKB2 in CRC immune escape.

  • HIGHLIGHTS
    Yongye Huang, Sihui Zhang, Min Wu
    PDF
  • ORIGINAL ARTICLE
    Qiheng He, Junsheng Li, Chuming Tao, Chaofan Zeng, Chenglong Liu, Zhiyao Zheng, Siqi Mou, Wei Liu, Bojian Zhang, Xiaofan Yu, Yuanren Zhai, Jia Wang, Qian Zhang, Yan Zhang, Dong Zhang, Jizong Zhao, Peicong Ge
    PDF

    At present, there is limited research on the mechanisms underlying moyamoya disease (MMD). Herein, we aimed to determine the role of glutamine in MMD pathogenesis, and 360 adult patients were prospectively enrolled. Human brain microvascular endothelial cells (HBMECs) were subjected to Integrin Subunit Beta 4 (ITGB4) overexpression or knockdown and atorvastatin. We assessed factors associated with various signaling pathways in the context of the endothelial-to-mesenchymal transition (EndMT), and the expression level of related proteins was validated in the superficial temporal arteries of patients. We found glutamine levels were positively associated with a greater risk of stroke (OR = 1.599, p = 0.022). After treatment with glutamine, HBMECs exhibited enhanced proliferation, migration, and EndMT, all reversed by ITGB4 knockdown. In ITGB4-transfected HBMECs, the MAPK–ERK–TGF–β/BMP pathway was activated, with Smad4 knockdown reversing the EndMT. Furthermore, atorvastatin suppressed the EndMT by inhibiting Smad1/5 phosphorylation and promoting Smad4 ubiquitination in ITGB4-transfected HBMECs. We also found the protein level of ITGB4 was upregulated in the superficial temporal arteries of patients with MMD. In conclusion, our study suggests that glutamine may be an independent risk factor for hemorrhage or infarction in patients with MMD and targeting ITGB4 could potentially be therapeutic approaches for MMD.

  • LETTER
    Yi Gu, Xiaocheng Lu, Zuoren Yu, Jian Yao, Hongzhuan Sheng
    PDF
  • ORIGINAL ARTICLE
    Jingnan Sun, Zengmai Xie, Yike Sun, Anruo Shen, Renren Li, Xiao Yuan, Bai Lu, Yunxia Li
    PDF

    Alzheimer's disease (AD) constitutes a neurodegenerative disorder marked by a progressive decline in cognitive function and memory capacity. The accurate diagnosis of this condition predominantly relies on cerebrospinal fluid (CSF) markers, notwithstanding the associated burdens of pain and substantial financial costs endured by patients. This study encompasses subjects exhibiting varying degrees of cognitive impairment, encompassing individuals with subjective cognitive decline, mild cognitive impairment, and dementia, constituting a total sample size of 82 participants. The primary objective of this investigation is to explore the relationships among brain atrophy measurements derived from magnetic resonance imaging, atypical electroencephalography (EEG) patterns, behavioral assessment scales, and amyloid β-protein (Aβ) indicators. The findings of this research reveal that individuals displaying reduced Aβ1-42/Aβ-40 levels exhibit significant atrophy in the frontotemporal lobe, alongside irregularities in various parameters related to EEG frequency characteristics, signal complexity, inter-regional information exchange, and microstates. The study additionally endeavors to estimate Aβ1-42/Aβ-40 content through the application of a random forest algorithm, amalgamating structural data, electrophysiological features, and clinical scales, achieving a remarkable predictive precision of 91.6%. In summary, this study proposes a cost-effective methodology for acquiring CSF markers, thereby offering a valuable tool for the early detection of AD.

  • ORIGINAL ARTICLE
    Mingxing Mo, Li Yin, Tian Wang, Ziquan Lv, Yadi Guo, Jiangang Shen, Huanji Zhang, Ning Liu, Qiuling Wang, Suli Huang, Hui Huang
    PDF

    Vascular calcification is a strong predictor of cardiovascular events. Essential metals play critical roles in maintaining human health. However, the association of essential metal levels with risk of aortic arch calcification (AoAC) remains unclear. We measured the plasma concentrations of nine essential metals in a cross-sectional population and evaluated their individual and combined effects on AoAC risk using multiple statistical methods. We also explored the mediating role of fasting glucose. In the logistic regression model, higher quartiles of magnesium and copper were associated with the decreased AoAC risk, while higher quartile of manganese was associated with higher AoAC risk. The least absolute shrinkage and selection operator penalized regression analysis identified magnesium, manganese, calcium, cobalt, and copper as key metals associated with AoAC risk. The weighted quantile sum regression suggested a combined effect of metal mixture. A linear and positive dose–response relationship was found between manganese and AoAC in males. Moreover, blood glucose might mediate a proportion of 9.38% of the association between manganese exposure and AoAC risk. In summary, five essential metal levels were associated with AoAC and showed combined effect. Fasting glucose might play a significant role in mediating manganese exposure-associated AoAC risk.

  • ORIGINAL ARTICLE
    Yiming Luo, Zhi Li, He Zhu, Junli Lu, Zhen Lei, Chen Su, Furong Liu, Hongwei Zhang, Qibo Huang, Shenqi Han, Dean Rao, Tiantian Wang, Xiaoping Chen, Hong Cao, Zhiwei Zhang, Wenjie Huang, Huifang Liang
    PDF

    Cholangiocarcinoma (CCA) is characterized by rapid onset and high chance of metastasis. Therefore, identification of novel therapeutic targets is imperative. E26 transformation-specific homologous factor (EHF), a member of the E26 transformation-specific transcription factor family, plays a pivotal role in epithelial cell differentiation and cancer progression. However, its precise role in CCA remains unclear. In this study, through in vitro and in vivo experiments, we demonstrated that EHF plays a profound role in promoting CCA by transcriptional activation of glioma-associated oncogene homolog 1 (GLI1). Moreover, EHF significantly recruited and activated tumor-associated macrophages (TAMs) through the C-C motif chemokine 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis, thereby remodeling the tumor microenvironment. In human CCA tissues, EHF expression was positively correlated with GLI1 and CCL2 expression, and patients with co-expression of EHF/GLI1 or EHF/CCL2 had the most adverse prognosis. Furthermore, the combination of the GLI1 inhibitor, GANT58, and CCR2 inhibitor, INCB3344, substantially reduced the occurrence of EHF-mediated CCA. In summary, our findings suggest that EHF is a potential prognostic biomarker for patients with CCA, while also advocating the therapeutic approach of combined targeting of GLI1 and CCL2/CCR2-TAMs to inhibit EHF-driven CCA development.

  • ORIGINAL ARTICLE
    Yihua Huang, Yuanyuan Zhao, Yan Huang, Yunpeng Yang, Yaxiong Zhang, Shaodong Hong, Hongyun Zhao, Shen Zhao, Ting Zhou, Gang Chen, Huaqiang Zhou, Yuxiang Ma, Ningning Zhou, Li Zhang, Wenfeng Fang
    PDF

    There remains an unmet need for targeted therapies against advanced non-small-cell lung cancer (NSCLC) with HER2 mutations. To improve the antitumor activity of single anti-HER2 agent, this prospective, single-arm clinical trial (NCT05016544) examined the safety profile and efficacy of anti-HER2 antibody inetetamab and pan-HER TKI pyrotinib in HER2-posivite advanced NSCLC patients. Enrolled patients received inetetamab every 3 weeks and pyrotinib once per day (pyrotinib, dose-escalation part, 240 mg, 320 mg; dose-expansion part, 320 mg). Primary endpoints were dose-limiting toxicity (DLT) dosage and safety. Secondary endpoints included progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR). A total of 48 patients were enrolled. During the dose-escalation period, no DLT occurred. Diarrhea was the most commonly reported treatment-related adverse event (TRAE). Grade 3 TRAEs occurred in seven patients. The median PFS (mPFS) was 5.5 months [95% confidence interval (CI): 4.4–8.6 months]. The confirmed ORR and DCR reached 25% (11/44) and 84.1% (37/44), respectively. Responses were shown in patients with distinct HER2 aberrations. In summary, inetetamab in combination with pyrotinib demonstrated acceptable safety and antitumor activity among patients with advanced HER2-mutant NSCLC.

  • ORIGINAL ARTICLE
    Weiqi Hong, Hong Lei, Dandan Peng, Yuhe Huang, Cai He, Jingyun Yang, Yanan Zhou, Jian Liu, Xiangyu Pan, Haiying Que, Aqu Alu, Li Chen, Jiayuan Ai, Furong Qin, Binhan Wang, Danyi Ao, Zhen Zeng, Ying Hao, Yu Zhang, Xiya Huang, Chunjun Ye, MinYang Fu, Xuemei He, Zhenfei Bi, Xuejiao Han, Min Luo, Hongbo Hu, Wei Cheng, Haohao Dong, Jian Lei, Lu Chen, Xikun Zhou, Wei Wang, Guangwen Lu, Guobo Shen, Li Yang, Jinliang Yang, Jiong Li, Zhenling Wang, Xiangrong Song, Qiangming Sun, Shuaiyao Lu, Youchun Wang, Ping Cheng, Xiawei Wei
    PDF

    Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

  • REVIEW
    Ping Jin, Xirui Duan, Lei Li, Ping Zhou, Cheng-Gang Zou, Ke Xie
    PDF

    Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A “one-two-punch” therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.

  • ORIGINAL ARTICLE
    Shiyu Zhang, Xingyu Xiong, Nan Xie, Weitao Zheng, Yongjun Li, Tianhai Lin, Qiang Wei, Ping Tan
    PDF

    There is considerable interest in the potential of stereotactic body radiation therapy (SBRT) combined with systemic therapy such as tyrosine kinase inhibitors (TKIs) or immune checkpoint inhibitors (ICIs). However, its efficacy and safety remain unclear. The purpose of this study was to evaluate the efficacy and safety of conducting SBRT during ICI or TKI treatment in different disease settings for patients with metastatic renal cell carcinoma (mRCC). A total of 16 studies were ultimately included. Under the random effects model, the pooled 1-year local control rate (1-yr LCR) and objective response rate (ORR) were 90% (95% confidence interval [CI]: 80%–95%, I2 = 67%) and 52% (95% CI: 37%–67%, I2 = 90%), respectively. SBRT concomitant with different systemic therapy yield significant different 1-yr LCR (p < 0.01) and ORR (p = 0.02). Regarding survival benefits, the pooled 1-year progression-free survival (1-yr PFS) and 1-year overall survival (1-yr OS) rates were 45% (95% CI: 29%–62%, I2 = 91%) and 85% (95% CI: 76%–91%, I2 = 66%), respectively. 1-yr PFS and 1-yr OS in different disease settings demonstrated significant difference (p < 0.01). As for toxicity, the pooled incidence of grade 3–4 adverse events was 14% (95% CI: 5%–26%, I2 = 90%). This study highlights the feasibility of utilizing these strategies in mRCC patients, especially those with a low metastatic tumor burden.

  • HIGHLIGHT
    Yuwei Ding, Ying Yuan, Shanshan Weng
    PDF

    The first-line therapy pattern transition of metastatic HER2-positive gastric cancer is shifting. The KEYNOTE-811 study demonstrated that the addition of immunotherapy to the standard treatment of HER2-targeted therapy and chemotherapy showed good results in terms of PFS, especially in subgroup patients with PD-L1 CPS≥1. In the future, the first-line therapy pattern of metastatic HER2-positive gastric cancer will be radically changed based on ongoing randomized controlled clinical trials.

  • REVIEW
    Weiwei Qian, Lvying Yang, Tianlong Li, Wanlin Li, Jian Zhou, Shenglong Xie
    PDF

    Threatening public health, pulmonary disease (PD) encompasses diverse lung injuries like chronic obstructive PD, pulmonary fibrosis, asthma, pulmonary infections due to pathogen invasion, and fatal lung cancer. The crucial involvement of RNA epigenetic modifications in PD pathogenesis is underscored by robust evidence. These modifications not only shape cell fates but also finely modulate the expression of genes linked to disease progression, suggesting their utility as biomarkers and targets for therapeutic strategies. The critical RNA modifications implicated in PDs are summarized in this review, including N6-methylation of adenosine, N1-methylation of adenosine, 5-methylcytosine, pseudouridine (5-ribosyl uracil), 7-methylguanosine, and adenosine to inosine editing, along with relevant regulatory mechanisms. By shedding light on the pathology of PDs, these summaries could spur the identification of new biomarkers and therapeutic strategies, ultimately paving the way for early PD diagnosis and treatment innovation.

  • ORIGINAL ARTICLE
    Hongjin Qu, Xiong Shi, Ying Xu, Hongran Qin, Junshi Li, Shanlin Cai, Jianpeng Zhao, Bingbing Wan, Yanyong Yang, Bailong Li
    PDF

    Identifying new targets for overcoming radioresistance is crucial for improving the efficacy of lung cancer radiotherapy, given that tumor cell resistance is a leading cause of treatment failure. Recent research has spotlighted the significance of Musashi2 (MSI2) in cancer biology. In this study, we first demonstrated that MSI2 plays a key function in regulating the radiosensitivity of lung cancer. The expression of MSI2 is negatively correlated with overall survival in cancer patients, and the knockdown of MSI2 inhibits tumorigenesis and increases radiosensitivity of lung cancer cells. Cellular radiosensitivity, which is closely linked to DNA damage, is influenced by MSI2 interaction with ataxia telangiectasia mutated and Rad3-related kinase (ATR) and checkpoint kinase 1 (CHK1) post-irradiation; moreover, knockdown of MSI2 inhibits the ATR-mediated DNA damage response pathway. RNA-binding motif protein 17 (RBM17), which is implicated in DNA damage repair, exhibits increased interaction with MSI2 post-irradiation. We found that knockdown of RBM17 disrupted the interaction between MSI2 and ATR post-irradiation and increased the radiosensitivity of lung cancer cells. Furthermore, we revealed the potential mechanism of MSI2 recruitment into the nucleus with the assistance of RBM17 to activate ATR to promote radioresistance. This study provides novel insights into the potential application of MSI2 as a new target in lung cancer radiotherapy.

  • REVIEW
    Kunyu Wang, Hanyao Huang, Qi Zhan, Haoran Ding, Yi Li
    PDF

    Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.

  • ORIGINAL ARTICLE
    Yu Zhang, Ying-Bin Wang, Gui-Hua Yao, Hong Tang, Li-Xin Chen, Li-Xue Yin, Tian-Gang Zhu, Jian-Jun Yuan, Wei Han, Jun Yang, Xian-Hong Shu, Ya Yang, Yu-Lin Wei, Yan-Li Guo, Wei-Dong Ren, Dong-Mei Gao, Gui-Lin Lu, Ji Wu, Hong-Ning Yin, Yu-Ming Mu, Jia-Wei Tian, Li-Jun Yuan, Xiao-Jing Ma, Hong-Yan Dai, Yun-Chuan Ding, Ming-Yan Ding, Qing Zhou, Hao Wang, Di Xu, Mei Zhang, Yun Zhang
    PDF

    Three-dimensional (3D) echocardiography is an emerging technique for assessing right ventricular (RV) volume and function, but 3D-RV normal values from a large Chinese population are still lacking. The aim of the present study was to establish normal values of 3D-RV volume and function in healthy Chinese volunteers. A total of 1117 Han Chinese volunteers from 28 laboratories in 20 provinces of China were enrolled, and 3D-RV images of 747 volunteers with optimal image quality were ultimately analyzed by a core laboratory. Both vendor-dependent and vendor-independent software platforms were used to analyze the 3D-RV images. We found that men had larger RV volumes than women did in the whole population, even after indexing to body surface area, and older individuals had smaller RV volumes. The normal RV volume was significantly smaller than that recommended by the American Society of Echocardiography/European Association of Cardiovascular Imaging guidelines in both sexes. There were significant differences in 3D-RV measurements between the two vendor ultrasound systems and the different software platforms. The echocardiographic measurements in normal Chinese adults II study revealed normal 3D-RV volume and function in a large Chinese population, and there were significant differences between the sexes, ages, races, and vendor groups. Thus, normal 3D-RV values should be stratified by sex, age, race, and vendor.

  • HIGHLIGHT
    Yuning Wang, Guo Zhao, Shuhang Wang, Ning Li
    PDF
  • ORIGINAL ARTICLE
    Yuxuan Zhang, Qingxin Shi, Peiyun Wang, Chujun Huang, Shuqing Tang, Miaojin Zhou, Qian Hu, Lingqian Wu, Desheng Liang
    PDF

    The generation of chimeric antigen receptor-modified natural killer (CAR-NK) cells using induced pluripotent stem cells (iPSCs) has emerged as one of the paradigms for manufacturing off-the-shelf universal immunotherapy. However, there are still some challenges in enhancing the potency, safety, and multiple actions of CAR-NK cells. Here, iPSCs were site-specifically integrated at the ribosomal DNA (rDNA) locus with interleukin 24 (IL24) and CD19-specific chimeric antigen receptor (CAR19), and successfully differentiated into iPSC-derived NK (iNK) cells, followed by expansion using magnetic beads in vitro. Compared with the CAR19-iNK cells, IL24 armored CAR19-iNK (CAR19-IL24-iNK) cells showed higher cytotoxic capacity and amplification ability in vitro and inhibited tumor progression more effectively with better survival in a B-cell acute lymphoblastic leukaemia (B-ALL) (Nalm-6 (Luc1))-bearing mouse model. Interestingly, RNA-sequencing analysis showed that IL24 may enhance iNK cell function through nuclear factor kappa B (NFκB) pathway-related genes while exerting a direct effect on tumor cells. This study proved the feasibility and potential of combining IL24 with CAR-iNK cell therapy, suggesting a novel and promising off-the-shelf immunotherapy strategy.

  • ORIGINAL ARTICLE
    Heng Liang, Jiani Zhan, Yunqiu Chen, Zikang Xing, Zhen Ning Tony He, Yuying Liu, Xuewen Li, Yijia Chen, Zhiyao Li, Chunxiang Kuang, Dan Yang, Qing Yang
    PDF

    Indoleamine 2,3-dioxygenase 1 (IDO1), the key enzyme in the catabolism of the essential amino acid tryptophan (Trp) through kynurenine pathway, induces immune tolerance and is considered as a critical immune checkpoint, but its impacts as a metabolism enzyme on glucose and lipid metabolism are overlooked. We aim to clarify the potential role of IDO1 in aerobic glycolysis in pancreatic cancer (PC). Analysis of database revealed the positive correlation in PC between the expressions of IDO1 and genes encoding important glycolytic enzyme hexokinase 2 (HK2), pyruvate kinase (PK), lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1). It was found that IDO1 could modulate glycolysis and glucose uptake in PC cells, Trp deficiency caused by IDO1 overexpression enhanced glucose uptake by stimulating GLUT1 translocation to the plasma membrane of PC cells. Besides, Trp deficiency caused by IDO1 overexpression suppressed the apoptosis of PC cells via promoting glycolysis, which reveals the presence of IDO1–glycolysis–apoptosis axis in PC. IDO1 inhibitors could inhibit glycolysis, promote apoptosis, and exhibit robust therapeutic efficacy when combined with GLUT1 inhibitor in PC mice. Our study reveals the function of IDO1 in the glucose metabolism of PC and provides new insights into the therapeutic strategy for PC.

  • ORIGINAL ARTICLE
    Xiaohang Zhou, Hui Sun, Junling Ren, Guangli Yan, Le Yang, Honglian Zhang, Haitao Lu, Xinghua Li, Toshiaki Makino, Fengting Yin, Jing Li, Xijun Wang
    PDF

    Mineral crude drug has revolutionized the treatment landscape in precision oncology niche that leads to the improvement in therapeutic efficiency on various tumor subtypes. Mangxiao (MX), a mineral crude drug in traditional Chinese medicine, has been used for treating gastrointestinal diseases for thousands of years. However, the action mechanisms are still ambiguous. Here, we attempt to explore inhibitory roles and associated pharmacological mechanisms of MX upon colorectal cancer (CRC) in APCMin/+ male mice by integrating metabolomics, 16S rDNA sequencing analyses, and metagenomic-based microbiota analysis. We found that MX can significantly inhibit the occurrence of CRC through the regulation of the dysregulated gut microbe metabolism. Furthermore, the correlation analysis of metabolomes and 16S rDNA revealed that MX could restore the disorders of gut microbes by specifically enriching the abundance of Lactobacilli to improve bile acid metabolism, which further activated the farnesoid X receptor (FXR) in CRC mice, then the improvement of gut dysbiosis could inhibit the development of CRC. Collectively, our effort confirmed MX has the capacity to intervene the development of CRC and further discovered that it targets Lactobacillus–bile acid–intestinal FXR axis, which can be regarded as a candidate medicine for future drug discovery and development against CRC.

  • ORIGINAL ARTICLE
    Quanxiao Li, Yu Kong, Yuxuan Zhong, Ailing Huang, Tianlei Ying, Yanling Wu
    PDF

    Single-domain antibody–drug conjugates (sdADCs) have been proven to have deeper solid tumor penetration and intratumor accumulation capabilities due to their smaller size compared with traditional IgG format ADCs. However, one of the key challenges for improving clinical outcomes of sdADCs is their abbreviated in vivo half-life. In this study, we innovatively fused an antihuman serum albumin (αHSA) nanobody to a sdADCs targeting oncofetal antigen 5T4, conferring serum albumin binding to enhance the pharmacokinetic profiles of sdADCs. The fusion protein was conjugated with monomethyl auristatin E (MMAE) at s224c site mutation. The conjugate exhibited potent cytotoxicity against various tumor cells. Compared with the nonalbumin-binding counterparts, the conjugate exhibited a 10-fold extended half-life in wild-type mice and fivefold prolonged serum half-life in BxPC-3 xenograft tumor models as well as enhanced tumor accumulation and retention in mice. Consequently, n501–αHSA–MMAE showed potent antitumor effects, which were comparable to n501–MMAE in pancreatic cancer BxPC-3 xenograft tumor models; however, in human ovarian teratoma PA-1 xenograft tumor models, n501–αHSA–MMAE significantly improved antitumor efficacy. Moreover, the conjugate showed mitigated hepatotoxicity. In summary, our results suggested that fusion to albumin-binding moiety as a viable strategy can enhance the therapeutic potential of sdADCs through optimized pharmacokinetics.

  • REVIEW
    Ganglei Li, Qinfan Yao, Peixi Liu, Hongfei Zhang, Yingjun Liu, Sichen Li, Yuan Shi, Zongze Li, Wei Zhu
    PDF

    RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.

  • ORIGINAL ARTICLE
    Yimei Wang, Qiyue Zhang, Xiaoting Deng, Ying Wang, Xin Tian, Shiyu Zhang, Yingqiang Shen, Xikun Zhou, Xin Zeng, Qianming Chen, Lu Jiang, Jing Li
    PDF

    Oral lichen planus (OLP) is a common chronic inflammatory disease of the oral mucosa, the mechanism of its inflammatory progression has not yet been fully elucidated. PA28γ plays a significant role in a variety of immune-related diseases. However, the exact role of PA28γ in the pathogenesis of OLP remains unclear. Here, we demonstrated that PA28γ is overexpressed in epithelial cells and inflammatory cells of OLP tissues but has no significant relationship with OLP subtypes. Functionally, keratinocytes with high PA28γ expression could induce dendritic cell (DC) maturation and promote the T-cell differentiation into Th1 cells in response to the immune response. In addition, we found that a high level of PA28γ expression is associated with high numbers of infiltrating mature DCs and activated T-cells in OLP tissues. Mechanistically, keratinocytes with high PA28γ expression could promote the secretion of C–C motif chemokine (CCL)5, blocking CCL5 or/and its receptor CD44 could inhibit the induction of T-cell differentiation by keratinocytes with high PA28γ expression. In conclusion, we reveal that keratinocytes with high expression of PA28γ in OLP can induce DC maturation and promote T-cell differentiation through the CCL5-CD44 pathway, providing previously unidentified mechanistic insights into the mechanism of inflammatory progression in OLP.

  • ORIGINAL ARTICLE
    Ruonan Shao, Shuang Liu, Wenjian Liu, Cailu Song, Lingrui Liu, Lewei Zhu, Fu Peng, Yue Lu, Hailin Tang
    PDF

    The proteasome inhibitor bortezomib (BTZ) is the first-line therapy for multiple myeloma (MM). BTZ resistance largely limits its clinical application in MM. Interleukin-33 (IL-33) exerts antitumor effects through various mechanisms, including enhancing antitumor immunity and promoting the apoptosis of cancer cells. Here, the synergistic anti-MM effect of IL-33 and BTZ was verified, and the underlying mechanisms were elucidated. Bioinformatic analysis indicated that IL-33 expression levels were downregulated in MM, and that BTZ-treated MM patients with high IL-33 levels had better prognosis than those with low IL-33 levels. Moreover, the patients with high IL-33 levels had a better treatment response to BTZ. Further immune analysis suggested that IL-33 can enhance the anti-MM immunity. IL-33 and BTZ synergistically inhibited proliferation and induced apoptosis of MM cells, which was mediated by the excessive accumulation of cellular reactive oxygen species (ROS). Furthermore, increased ROS hindered the nuclear translocation of NF-κB-p65, thereby decreasing the transcription of target stemness-related genes (SOX2, MYC, and OCT3/4). These effects induced by the combination therapy could be reversed by eliminating ROS by N-acetylcysteine. In conclusion, our results indicated that IL-33 enhanced the sensitivity of MM to BTZ through ROS-mediated inhibition of nuclear factor kappa-B (NF-κB) signal and stemness properties.

  • HIGHLIGHTS
    Nian-Nian Zhong, Bing Liu, Lin-Lin Bu
    PDF