High glutamine increases stroke risk by inducing the endothelial-to-mesenchymal transition in moyamoya disease

Qiheng He1, Junsheng Li1, Chuming Tao1, Chaofan Zeng1, Chenglong Liu1, Zhiyao Zheng1,2,3, Siqi Mou1, Wei Liu1, Bojian Zhang1, Xiaofan Yu1, Yuanren Zhai1, Jia Wang1,4, Qian Zhang1, Yan Zhang1, Dong Zhang5(), Jizong Zhao1,4(), Peicong Ge1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (5) : e525. DOI: 10.1002/mco2.525
ORIGINAL ARTICLE

High glutamine increases stroke risk by inducing the endothelial-to-mesenchymal transition in moyamoya disease

  • Qiheng He1, Junsheng Li1, Chuming Tao1, Chaofan Zeng1, Chenglong Liu1, Zhiyao Zheng1,2,3, Siqi Mou1, Wei Liu1, Bojian Zhang1, Xiaofan Yu1, Yuanren Zhai1, Jia Wang1,4, Qian Zhang1, Yan Zhang1, Dong Zhang5(), Jizong Zhao1,4(), Peicong Ge1()
Author information +
History +

Abstract

At present, there is limited research on the mechanisms underlying moyamoya disease (MMD). Herein, we aimed to determine the role of glutamine in MMD pathogenesis, and 360 adult patients were prospectively enrolled. Human brain microvascular endothelial cells (HBMECs) were subjected to Integrin Subunit Beta 4 (ITGB4) overexpression or knockdown and atorvastatin. We assessed factors associated with various signaling pathways in the context of the endothelial-to-mesenchymal transition (EndMT), and the expression level of related proteins was validated in the superficial temporal arteries of patients. We found glutamine levels were positively associated with a greater risk of stroke (OR = 1.599, p = 0.022). After treatment with glutamine, HBMECs exhibited enhanced proliferation, migration, and EndMT, all reversed by ITGB4 knockdown. In ITGB4-transfected HBMECs, the MAPK–ERK–TGF–β/BMP pathway was activated, with Smad4 knockdown reversing the EndMT. Furthermore, atorvastatin suppressed the EndMT by inhibiting Smad1/5 phosphorylation and promoting Smad4 ubiquitination in ITGB4-transfected HBMECs. We also found the protein level of ITGB4 was upregulated in the superficial temporal arteries of patients with MMD. In conclusion, our study suggests that glutamine may be an independent risk factor for hemorrhage or infarction in patients with MMD and targeting ITGB4 could potentially be therapeutic approaches for MMD.

Keywords

endothelial-to-mesenchymal transition / glutamine / Integrin Subunit Beta 4 / moyamoya / Smad / stroke

Cite this article

Download citation ▾
Qiheng He, Junsheng Li, Chuming Tao, Chaofan Zeng, Chenglong Liu, Zhiyao Zheng, Siqi Mou, Wei Liu, Bojian Zhang, Xiaofan Yu, Yuanren Zhai, Jia Wang, Qian Zhang, Yan Zhang, Dong Zhang, Jizong Zhao, Peicong Ge. High glutamine increases stroke risk by inducing the endothelial-to-mesenchymal transition in moyamoya disease. MedComm, 2024, 5(5): e525 https://doi.org/10.1002/mco2.525

References

1 M Ihara, Y Yamamoto, Y Hattori, et al. Moyamoya disease: diagnosis and interventions. Lancet Neurol. 2022;21(8):747-758. doi:
2 Q He, P Ge, X Ye, et al. Hyperhomocysteinemia is a predictor for poor postoperative angiogenesis in adult patients with moyamoya disease. Front Neurol. 2022;13:902474. doi:
3 RM Scott, ER Smith. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360(12):1226-1237. doi:
4 S Kuroda, K Houkin. Moyamoya disease: current concepts and future perspectives. Lancet Neurol. 2008;7(11):1056-1066. doi:
5 K Uchino, SC Johnston, KJ Becker, DL Tirschwell. Moyamoya disease in Washington State and California. Neurology. 2005;65(6):956-958. doi:
6 T Kim, CW Oh, JS Bang, JE Kim, WS Cho. Moyamoya disease: treatment and outcomes. J Stroke. 2016;18(1):21-30. doi:
7 RM Scott, JL Smith, RL Robertson, JR Madsen, SG Soriano, MA Rockoff. Long-term outcome in children with moyamoya syndrome after cranial revascularization by pial synangiosis. J Neurosurg. 2004;100(2):142-149. doi:. Suppl Pediatrics.
8 H Zhang, L Zheng, L Feng. Epidemiology, diagnosis and treatment of moyamoya disease. Exp Ther Med. 2019;17(3):1977-1984. doi:
9 JS Kim. Moyamoya disease: epidemiology, clinical features, and diagnosis. J Stroke. 2016;18(1):2-11. doi:
10 VN Nguyen, M Motiwala, T Elarjani, et al. Direct, indirect, and combined extracranial-to-intracranial bypass for adult moyamoya disease: an updated systematic review and meta-analysis. Stroke. 2022;53(12):3572-3582. doi:
11 M Fujimura, T Tominaga, S Kuroda, et al. Japanese guidelines for the management of moyamoya disease: guidelines from the research committee on Moyamoya disease and Japan Stroke Society. Neurol Med Chir (Tokyo). 2022;62(4):165-170. doi:
12 L Zhu, K Ploessl, R Zhou, D Mankoff, HF Kung. Metabolic imaging of glutamine in cancer. J Nucl Med. 2017;58(4):533-537. doi:
13 NJ Faergeman, J Knudsen. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J. 1997;323(1):1-12. Pt. doi:
14 LM Phan, S-CJ Yeung, MH Lee. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 2014;11(1):1-19. doi:
15 BJ Altman, ZE Stine, CV Dang. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619-634. doi:
16 R DeBerardinis, TJO Cheng. Q's next: the diverse functions of glutamine in metabolism. Cell Biol Cancer. 2010;29(3):313-324. doi:
17 JM Mates, JA Campos-Sandoval, JL Santos-Jimenez, J Marquez. Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Lett. 2019;467: 29-39. doi:
18 JK Salabei, PK Lorkiewicz, CR Holden, et al. Glutamine regulates cardiac progenitor cell metabolism and proliferation. Stem Cells. 2015;33(8):2613-2627. doi:
19 C Qin, S Yang, YH Chu, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):215. doi:
20 Y Zheng, FB Hu, M Ruiz-Canela, et al. Metabolites of glutamate metabolism are associated with incident cardiovascular events in the PREDIMED PREvencion con DIeta MEDiterranea (PREDIMED) Trial. J Am Heart Assoc. 2016;5(9):e003755. doi:
21 X Liu, Y Zheng, M Guasch-Ferre, et al. High plasma glutamate and low glutamine-to-glutamate ratio are associated with type 2 diabetes: case-cohort study within the PREDIMED trial. Nutr Metab Cardiovasc Dis. 2019;29(10):1040-1049. doi:
22 TM Jeitner, K Battaile, AJ Cooper. Critical evaluation of the changes in glutamine synthetase activity in models of cerebral stroke. Neurochem Res. 2015;40(12):2544-2556. doi:
23 X Song, Z Gong, K Liu, J Kou, B Liu, K Liu. Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol. 2020;34:101559. doi:
24 J Kovacic, S Dimmeler, R Harvey, et al. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(2):190-209. doi:
25 M Saitoh. Involvement of partial EMT in cancer progression. J Biochem. 2018;164(4):257-264. doi:
26 AD Grigore, MK Jolly, D Jia, MC Farach-Carson, H Levine. Tumor budding: the name is EMT. Partial EMT. J Clin Med. 2016;5(5):51. doi:
27 KM Welch-Reardon, N Wu, CC Hughes. A role for partial endothelial-mesenchymal transitions in angiogenesis? Arterioscler Thromb Vasc Biol. 2015;35(2):303-308. doi:
28 Q He, R Huo, J Wang, et al. Exosomal miR-3131 derived from endothelial cells with KRAS mutation promotes EndMT by targeting PICK1 in brain arteriovenous malformations. CNS Neurosci Ther. 2023;29(5):1312-1324. doi:
29 R Cuttano, N Rudini, L Bravi, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med. 2016;8(1):6-24. doi:
30 LD Shoemaker, AK McCormick, BM Allen, SD Chang. Evidence for endothelial-to-mesenchymal transition in human brain arteriovenous malformations. Clin Transl Med. 2020;10(2):e99. doi:
31 L Bravi, M Malinverno, F Pisati, et al. Endothelial cells lining sporadic cerebral cavernous malformation cavernomas undergo endothelial-to-mesenchymal transition. Stroke. 2016;47(3):886-890. doi:
32 H Li, Y Nam, R Huo, et al. De novo germline and somatic variants convergently promote endothelial-to-mesenchymal transition in simplex brain arteriovenous malformation. Circ Res. 2021;129(9):825-839. doi:
33 L Yuan, H Liu, X Du, et al. Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol. 2023;151(2):431-446.e16. doi:
34 H Schinke, E Shi, Z Lin, et al. A transcriptomic map of EGFR-induced epithelial-to-mesenchymal transition identifies prognostic and therapeutic targets for head and neck cancer. Mol Cancer. 2022;21(1):178. doi:
35 AA Samatar, PI Poulikakos. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov. 2014;13(12):928-942. doi:
36 K Miyazawa, M Shinozaki, T Hara, T Furuya, K Miyazono. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells. 2002;7(12):1191-1204. doi:
37 Z Fan, H Jiang, Z Wang, J Qu. Atorvastatin partially inhibits the epithelial-mesenchymal transition in A549 cells induced by TGF-β1 by attenuating the upregulation of SphK1. Oncol Rep. 2016;36(2):1016-1022. doi:
38 M Zhao, L Mishra, C Deng. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 2018;14(2):111-123. doi:
39 Y Zhang, K Fan, Q Sun, et al. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Res. 2012;40(18):9286-9297. doi:
40 P Xu, X Lin, X Feng. Posttranslational regulation of Smads. Cold Spring Harb Perspect Biol. 2016;8(12):a022087. doi:
41 A Bhardwaj, R Banh, W Zhang, S Sidhu, B Neel. RNF213MMD-associated SNPs encode dominant-negative alleles that globally impair ubiquitylation. Life Sci Allian. 2022;5(5):e202000807. doi:
42 J Son, C Lyssiotis, H Ying, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101-105. doi:
43 J Ritterhoff, S Young, O Villet, et al. Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ Res. 2020;126(2):182-196. doi:
44 J Zhang, NN Pavlova, CB Thompson. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017;36(10):1302-1315. doi:
45 LK Boroughs, RJ DeBerardinis. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17(4):351-359. doi:
46 WH Yang, Y Qiu, O Stamatatos, T Janowitz, MJ Lukey. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 2021;7(8):790-804. doi:
47 E Bernfeld, DA Foster. Glutamine as an essential amino acid for KRas-driven cancer cells. Trends Endocrinol Metab. 2019;30(6):357-368. doi:
48 M Smedberg, J Helleberg, A Norberg, I Tjader, O Rooyackers, J Wernerman. Plasma glutamine status at intensive care unit admission: an independent risk factor for mortality in critical illness. Crit Care. 2021;25(1):240. doi:
49 L Ma, G Fu, R Liu, et al. Phenylacetyl glutamine: a novel biomarker for stroke recurrence warning. BMC Neurol. 2023;23(1):74. doi:
50 G Lian, JR Gnanaprakasam, T Wang, et al. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. eLife. 2018;7:e36158. doi:
51 MO Johnson, MM Wolf, MZ Madden, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell. 2018;175(7):1780-1795.e19. doi:
52 G Shen, H Zhang, P Jia, et al. GOLM1 stimulation of glutamine metabolism promotes osteoporosis via inhibiting osteogenic differentiation of BMSCs. Cell Physiol Biochem. 2018;50(5):1916-1928. doi:
53 S Koyama, A Yamashita, Y Matsuura, et al. Intracellular glutamine level determines vascular smooth muscle cell-derived thrombogenicity. Atherosclerosis. 2021;328: 62-73. doi:
54 CM Weber, B Moiz, SM Zic, V Alpizar Vargas,A Li, AM Clyne. Induced pluripotent stem cell-derived cells model brain microvascular endothelial cell glucose metabolism. Fluids Barriers CNS. 2022;19(1):98. doi:
55 S Ruan, M Lin, Y Zhu, et al. Integrin beta4-targeted cancer immunotherapies inhibit tumor growth and decrease metastasis. Cancer Res. 2020;80(4):771-783. doi:
56 X Du, Y Yang, M Yang, et al. ITGB4 deficiency induces mucus hypersecretion by upregulating MUC5AC in RSV-infected airway epithelial cells. Int J Biol Sci. 2022;18(1):349-359. doi:
57 JS Sung, CW Kang, S Kang, et al. ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts. Oncogene. 2020;39(3):664-676. doi:
58 J Masuda, J Ogata, CJS Yutani. Smooth muscle cell proliferation and localization of macrophages and T cells in the occlusive intracranial major arteries in moyamoya disease. Stroke. 1993;24(12):1960-1967. doi:
59 V Roy, JP Ross, R Pepin, et al. Moyamoya disease susceptibility gene RNF213 regulates endothelial barrier function. Stroke. 2022;53(4):1263-1275. doi:
60 WJ Lee, SK Jeong, KS Han, et al. Impact of endothelial shear stress on the bilateral progression of unilateral Moyamoya disease. Stroke. 2020;51(3):775-783. doi:
61 OY Bang, JW Chung, SJ Kim, et al. Caveolin-1, ring finger protein 213, and endothelial function in Moyamoya disease. Int J Stroke. 2016;11(9):999-1008. doi:
62 J Lu, J Wang, Z Lin, et al. MMP-9 as a biomarker for predicting hemorrhagic strokes in Moyamoya disease. Front Neurol. 2021;12:721118. doi:
63 KG Blecharz-Lang, V Prinz, M Burek, et al. Gelatinolytic activity of autocrine matrix metalloproteinase-9 leads to endothelial de-arrangement in Moyamoya disease. J Cereb Blood Flow Metab. 2018;38(11):1940-1953. doi:
64 AS Bayoumi, JP Teoh, T Aonuma, et al. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res. 2017;113(13):1603-1614. doi:
65 G Sanchez-Duffhues, A Garcia de Vinuesa, V van de Pol, et al. Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J Pathol. 2019;247(3):333-346. doi:
66 A Chang, Y Fu, V Garside, et al. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21(2):288-300. doi:
67 S Afrin, M Ali, M El Sabeh, Q Yang, A Al-Hendy, M Borahay. Simvastatin inhibits stem cell proliferation in human leiomyoma via TGF-β3 and Wnt/β-catenin pathways. J Cell Mol Med. 2022;26(5):1684-1698. doi:
68 S Sonobe, M Fujimura, K Niizuma, et al. Temporal profile of the vascular anatomy evaluated by 9.4-T magnetic resonance angiography and histopathological analysis in mice lacking RNF213: a susceptibility gene for moyamoya disease. Brain Res. 2014;1552: 64-71. doi:
69 A Kanoke, M Fujimura, K Niizuma, et al. Temporal profile of the vascular anatomy evaluated by 9.4-tesla magnetic resonance angiography and histological analysis in mice with the R4859K mutation of RNF213, the susceptibility gene for moyamoya disease. Brain Res. 2015;1624: 497-505. doi:
70 Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Wills, Health Labour Sciences Research Grant for Research on Measures for Infractable D. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol Med Chir (Tokyo). 2012;52(5):245-266. doi:
71 P Ge, Q Zhang, X Ye, et al. Modifiable risk factors associated with Moyamoya disease: a case-control study. Stroke. 2020;51(8):2472-2479. doi:
72 W Fu, R Huo, Z Yan, et al. Mesenchymal behavior of the endothelium promoted by SMAD6 downregulation is associated with brain arteriovenous malformation microhemorrhage. Stroke. 2020;51(7):2197-2207. doi:
PDF

Accesses

Citations

Detail

Sections
Recommended

/