Critical roles and clinical perspectives of RNA methylation in cancer

Ganglei Li1,2,3,4,5, Qinfan Yao6, Peixi Liu1,2,3,4,5, Hongfei Zhang1,2,3,4,5, Yingjun Liu1,2,3,4,5, Sichen Li1,2,3,4,5, Yuan Shi1,2,3,4,5, Zongze Li1,2,3,4,5, Wei Zhu1,2,3,4,5()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (5) : e559. DOI: 10.1002/mco2.559
REVIEW

Critical roles and clinical perspectives of RNA methylation in cancer

  • Ganglei Li1,2,3,4,5, Qinfan Yao6, Peixi Liu1,2,3,4,5, Hongfei Zhang1,2,3,4,5, Yingjun Liu1,2,3,4,5, Sichen Li1,2,3,4,5, Yuan Shi1,2,3,4,5, Zongze Li1,2,3,4,5, Wei Zhu1,2,3,4,5()
Author information +
History +

Abstract

RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.

Keywords

cancer immunity / cancer metabolism / clinical application / RNA metabolism / RNA modification

Cite this article

Download citation ▾
Ganglei Li, Qinfan Yao, Peixi Liu, Hongfei Zhang, Yingjun Liu, Sichen Li, Yuan Shi, Zongze Li, Wei Zhu. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm, 2024, 5(5): e559 https://doi.org/10.1002/mco2.559

References

1 R Holliday. Epigenetics: a historical overview. Epigenetics. 2006;1(2):76-80.
2 G Cavalli, E Heard. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571(7766):489-499.
3 ZH Harvey, Y Chen, DF Jarosz. Protein-based inheritance: epigenetics beyond the chromosome. Mol Cell. 2018;69(2):195-202.
4 R Holliday, JE Pugh. DNA modification mechanisms and gene activity during development. Science. 1975;187(4173):226-232.
5 DL Nanney. Epigenetic control systems. Proc Natl Acad Sci USA. 1958;44(7):712-717.
6 AD Riggs. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9-25.
7 WE Cohn. Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: isolation, structure, and chemical characteristics. J Biol Chem. 1960;235: 1488-1498.
8 L Liu, H Li, D Hu, et al. Insights into N6-methyladenosine and programmed cell death in cancer. Mol Cancer. 2022;21(1):32.
9 J Ma, H Liu, Y Mao, L Zhang. LRTCLS: low-rank tensor completion with Laplacian smoothing regularization for unveiling the post-transcriptional machinery of N6-methylation (m6A)-mediated diseases. Brief Bioinform. 2022;23(5).
10 IA Roundtree, ME Evans, T Pan, C He. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187-1200.
11 S Li, CE Mason. The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet. 2014;15: 127-150.
12 I Barbieri, T Kouzarides. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20(6):303-322.
13 C Xue, Q Chu, Q Zheng, et al. Role of main RNA modifications in cancer: n(6)-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther. 2022;7(1):142.
14 X Wang, Z Lu, A Gomez, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117-120.
15 CR Alarcón, H Lee, H Goodarzi, N Halberg, SF Tavazoie. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519(7544):482-485.
16 E Solomon, J Borrow, AD Goddard. Chromosome aberrations and cancer. Science. 1991;254(5035):1153-1160.
17 C Wu, M Li, H Meng, et al. Analysis of status and countermeasures of cancer incidence and mortality in China. Sci China Life Sci. 2019;62(5):640-647.
18 C Mattiuzzi, G Lippi. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217-222.
19 G Kroemer, J Pouyssegur. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008;13(6):472-482.
20 D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
21 Z Li, H Zhang. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016;73(2):377-392.
22 WH Koppenol, PL Bounds, CV Dang. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325-337.
23 O Warburg. On respiratory impairment in cancer cells. Science. 1956;124(3215):269-270.
24 X Cai, C Liang, M Zhang, et al. N6-methyladenosine modification and metabolic reprogramming of digestive system malignancies. Cancer Lett. 2022;544:215815.
25 F Zhang, H Liu, M Duan, et al. Crosstalk among m(6)A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol. 2022;15(1):84.
26 Y An, H Duan. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21(1):14.
27 S Mocellin, D Nitti. Therapeutics targeting tumor immune escape: towards the development of new generation anticancer vaccines. Med Res Rev. 2008;28(3):413-444.
28 SR Walsh, B Simovic, L Chen, et al. Endogenous T cells prevent tumor immune escape following adoptive T cell therapy. J Clin Invest. 2019;129(12):5400-5410.
29 X Lei, Y Lei, JK Li, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470: 126-133.
30 R Rui, L Zhou, S He. Cancer immunotherapies: advances and bottlenecks. Front Immunol. 2023;14:1212476.
31 DS Chen, I Mellman. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321-330.
32 SS Onkar, NM Carleton, PC Lucas, et al. The great immune escape: understanding the divergent immune response in breast cancer subtypes. Cancer Discov. 2023;13(1):23-40.
33 J Tobias, P Steinberger, M Drini?, U Wiedermann. Emerging targets for anticancer vaccination: pD-1. ESMO Open. 2021;6(5):100278.
34 JS O'Donnell, MWL Teng, MJ Smyth. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151-167.
35 RD Schreiber, LJ Old, MJ Smyth. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565-1570.
36 KC Kao, S Vilbois, CH Tsai, PC Ho. Metabolic communication in the tumour-immune microenvironment. Nat Cell Biol. 2022;24(11):1574-1583.
37 Z Zhang, C Zhang, Y Luo, et al. RNA N(6) -methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: current landscape and therapeutic potential. Clin Transl Med. 2021;11(9):e525.
38 C Quan, O Belaydi, J Hu, et al. N(6)-methyladenosine in cancer immunotherapy: an undervalued therapeutic target. Front Immunol. 2021;12:697026.
39 X Li, S Ma, Y Deng, P Yi, J Yu. Targeting the RNA m(6)A modification for cancer immunotherapy. Mol Cancer. 2022;21(1):76.
40 H Chen, Y Pan, Q Zhou, et al. METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 2022;163(4):891-907.
41 Y Bao, J Zhai, H Chen, et al. Targeting m(6)A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 2023;72(8):1497-1509.
42 S Yang, J Wei, YH Cui, et al. m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 2019;10(1):2782.
43 M Frye, BT Harada, M Behm, C He. RNA modifications modulate gene expression during development. Science. 2018;361(6409):1346-1349.
44 P Song, S Tayier, Z Cai, G Jia. RNA methylation in mammalian development and cancer. Cell Biol Toxicol. 2021;37(6):811-831.
45 L Cui, R Ma, J Cai, et al. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther. 2022;7(1):334.
46 S Zaccara, RJ Ries, SR Jaffrey. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608-624.
47 H Ma, X Wang, J Cai, et al. N(6-)Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019;15(1):88-94.
48 VV Ignatova, P Stolz, S Kaiser, et al. The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev. 2020;34(9-10):715-729.
49 Q Lan, PY Liu, JL Bell, et al. The emerging roles of RNA m(6)A methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance. Cancer Res. 2021;81(13):3431-3440.
50 P Wang, KA Doxtader, Y Nam. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016;63(2):306-317.
51 D Han, J Liu, C Chen, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270-274.
52 H Du, Y Zhao, J He, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.
53 H Shi, X Wang, Z Lu, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27(3):315-328.
54 W Xiao, S Adhikari, U Dahal, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61(4):507-519.
55 PJ Hsu, Y Zhu, H Ma, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017;27(9):1115-1127.
56 DB Dunn. The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta. 1961;46: 198-200.
57 H Jin, C Huo, T Zhou, S Xie. m(1)A RNA modification in gene expression regulation. Genes (Basel). 2022;13(5).
58 S Ozanick, A Krecic, J Andersland, JT Anderson. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans. Rna. 2005;11(8):1281-1290.
59 WC Clark, ME Evans, D Dominissini, G Zheng, T Pan. tRNA base methylation identification and quantification via high-throughput sequencing. Rna. 2016;22(11):1771-1784.
60 AE Cozen, E Quartley, AD Holmes, E Hrabeta-Robinson, EM Phizicky, TM Lowe. ARM-seq: alkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods. 2015;12(9):879-884.
61 T Suzuki. The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol. 2021;22(6):375-392.
62 S Oerum, C Dégut, P Barraud, C Tisné. m1A post-transcriptional modification in tRNAs. Biomolecules. 2017;7(1).
63 Y Motorin, M Helm. RNA nucleotide methylation: 2021 update. Wiley Interdiscip Rev RNA. 2022;13(1):e1691.
64 M Saikia, Y Fu, M Pavon-Eternod, C He, T Pan. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. Rna. 2010;16(7):1317-1327.
65 T Suzuki, Y Yashiro, I Kikuchi, et al. Complete chemical structures of human mitochondrial tRNAs. Nat Commun. 2020;11(1):4269.
66 M Helm, H Brulé, F Degoul, et al. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res. 1998;26(7):1636-1643.
67 T Suzuki, A Nagao, T Suzuki. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet. 2011;45: 299-329.
68 S Sharma, DLJ Lafontaine. View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem Sci. 2015;40(10):560-575.
69 KE Sloan, AS Warda, S Sharma, KD Entian, DLJ Lafontaine, MT Bohnsack. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 2017;14(9):1138-1152.
70 PV Sergiev, NA Aleksashin, AA Chugunova, YS Polikanov, OA Dontsova. Structural and evolutionary insights into ribosomal RNA methylation. Nat Chem Biol. 2018;14(3):226-235.
71 C Peifer, S Sharma, P Watzinger, S Lamberth, P K?tter, KD Entian. Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res. 2013;41(2):1151-1163.
72 CT Chan, M Dyavaiah, MS DeMott, K Taghizadeh, PC Dedon, TJ Begley. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 2010;6(12):e1001247.
73 JP Ballesta, E Cundliffe. Site-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactum. J Bacteriol. 1991;173(22):7213-7218.
74 D Dominissini, S Nachtergaele, S Moshitch-Moshkovitz, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441-446.
75 MA Machnicka, K Milanowska, O Osman Oglou, et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res. 2013;41: D262-267. Database issue.
76 X Li, X Xiong, M Zhang, et al. Base-resolution mapping reveals distinct m(1)A methylome in nuclear- and mitochondrial-encoded transcripts. Mol Cell. 2017;68(5):993-1005. e9.
77 M Safra, A Sas-Chen, R Nir, et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature. 2017;551(7679):251-255.
78 X Li, X Xiong, K Wang, et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol. 2016;12(5):311-316.
79 X Xiong, X Li, C Yi. N(1)-methyladenosine methylome in messenger RNA and non-coding RNA. Curr Opin Chem Biol. 2018;45: 179-186.
80 H Shi, P Chai, R Jia, X Fan. Novel insight into the regulatory roles of diverse RNA modifications: re-defining the bridge between transcription and translation. Mol Cancer. 2020;19(1):78.
81 J Anderson, L Phan, R Cuesta, et al. The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev. 1998;12(23):3650-3662.
82 J Anderson, L Phan, AG Hinnebusch. The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2000;97(10):5173-5178.
83 L Droogmans, M Roovers, JM Bujnicki, et al. Cloning and characterization of tRNA (m1A58) methyltransferase (TrmI) from Thermus thermophilus HB27, a protein required for cell growth at extreme temperatures. Nucleic Acids Res. 2003;31(8):2148-2156.
84 E Vilardo, C Nachbagauer, A Buzet, A Taschner, J Holzmann, W Rossmanith. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase–extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 2012;40(22):11583-11593.
85 S Sharma, P Watzinger, P K?tter, KD Entian. Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2013;41(10):5428-5443.
86 T Waku, Y Nakajima, W Yokoyama, et al. NML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent manner. J Cell Sci. 2016;129(12):2382-2393.
87 Y Chen, S Yang, S Peng, et al. N1-methyladenosine detection with CRISPR-Cas13a/C2c2. Chem Sci. 2019;10(10):2975-2979.
88 L Xu, C Zhang, H Yin, et al. RNA modifications act as regulators of cell death. RNA Biol. 2021;18(12):2183-2193.
89 SH Boo, YK Kim. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020;52(3):400-408.
90 C Wei, A Gershowitz, B Moss. N6, O2'-dimethyladenosine a novel methylated ribonucleoside next to the 5' terminal of animal cell and virus mRNAs. Nature. 1975;257(5523):251-253.
91 L Zhang, Y Zhang, S Zhang, et al. Translational regulation by eIFs and RNA modifications in cancer. Genes (Basel). 2022;13(11).
92 H Sun, M Zhang, K Li, D Bai, C Yi. Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase. Cell Res. 2019;29(1):80-82.
93 K Boulias, D Toczyd?owska-Socha, BR Hawley, et al. Identification of the m(6)Am methyltransferase PCIF1 reveals the location and functions of m(6)Am in the transcriptome. Mol Cell. 2019;75(3):631-643. e8.
94 S Akichika, S Hirano, Y Shichino, et al. Cap-specific terminal N (6)-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science. 2019;363(6423).
95 H Chen, L Gu, EA Orellana, et al. METTL4 is an snRNA m(6)Am methyltransferase that regulates RNA splicing. Cell Res. 2020;30(6):544-547.
96 YT Goh, CWQ Koh, DY Sim, X Roca, WSS Goh. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res. 2020;48(16):9250-9261.
97 G Jia, Y Fu, X Zhao, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885-887.
98 J Mauer, X Luo, A Blanjoie, et al. Reversible methylation of m(6)A(m) in the 5' cap controls mRNA stability. Nature. 2017;541(7637):371-375.
99 J Mauer, M Sindelar, V Despic, et al. FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat Chem Biol. 2019;15(4):340-347.
100 E Sendinc, D Valle-Garcia, A Dhall, et al. PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell. 2019;75(3):620-630. e9.
101 W Zhuo, M Sun, K Wang, et al. m(6)Am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation. Cell Discov. 2022;8(1):48.
102 L Zhang, J Chen, J Ma, H Liu. HN-CNN: a heterogeneous network based on convolutional neural network for m(7) G site disease association prediction. 2021:655284.
103 LS Zhang, C Liu, H Ma, et al. Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol Cell. 2019;74(6):1304-1316. e8.
104 S Muthukrishnan, GW Both, Y Furuichi, AJ Shatkin. 5'-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature. 1975;255(5503):33-37.
105 L Malbec, T Zhang, YS Chen, et al. Dynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translation. Cell Res. 2019;29(11):927-941.
106 DH Gauss, F Grüter, M Sprinzl. Compilation of tRNA sequences. Nucleic Acids Res. 1979;6(1):r1-r19.
107 W Cheng, A Gao, H Lin, W Zhang. Novel roles of METTL1/WDR4 in tumor via m(7)G methylation. Mol Ther Oncolytics. 2022;26: 27-34.
108 L Pandolfini, I Barbieri, AJ Bannister, et al. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol Cell. 2019;74(6):1278-1290.e9.
109 RA Cartlidge, A Knebel, M Peggie, A Alexandrov, EM Phizicky, P Cohen. The tRNA methylase METTL1 is phosphorylated and inactivated by PKB and RSK in vitro and in cells. Embo J. 2005;24(9):1696-1705.
110 S Lin, Q Liu, VS Lelyveld, J Choe, JW Szostak, RI Gregory. Mettl1/Wdr4-Mediated m(7)G tRNA methylome is required for normal mrna translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71(2):244-255. e5.
111 Y Deng, Z Zhou, W Ji, S Lin, M Wang. METTL1-mediated m(7)G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Res Ther. 2020;11(1):306.
112 J Michaud, J Kudoh, A Berry, et al. Isolation and characterization of a human chromosome 21q22.3 gene (WDR4) and its mouse homologue that code for a WD-repeat protein. Genomics. 2000;68(1):71-79.
113 DX Li, DC Feng, XM Wang, et al. M7G-related molecular subtypes can predict the prognosis and correlate with immunotherapy and chemotherapy responses in bladder cancer patients. Eur J Med Res. 2023;28(1):55.
114 N Thongdee, J Jaroensuk, S Atichartpongkul, et al. TrmB, a tRNA m7G46 methyltransferase, plays a role in hydrogen peroxide resistance and positively modulates the translation of katA and katB mRNAs in Pseudomonas aeruginosa. Nucleic Acids Res. 2019;47(17):9271-9281.
115 VM Ruiz-Arroyo, R Raj, K Babu, O Onolbaatar, PH Roberts, Y Nam. Structures and mechanisms of tRNA methylation by METTL1-WDR4. Nature. 2023;613(7943):383-390.
116 Y Luo, Y Yao, P Wu, X Zi, N Sun, J He. The potential role of N(7)-methylguanosine (m7G) in cancer. J Hematol Oncol. 2022;15(1):63.
117 S Haag, J Kretschmer, MT Bohnsack. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. Rna. 2015;21(2):180-187.
118 JB Trotman, AJ Giltmier, C Mukherjee, DR Schoenberg. RNA guanine-7 methyltransferase catalyzes the methylation of cytoplasmically recapped RNAs. Nucleic Acids Res. 2017;45(18):10726-10739.
119 T Gonatopoulos-Pournatzis, S Dunn, R Bounds, VH Cowling. RAM/Fam103a1 is required for mRNA cap methylation. Mol Cell. 2011;44(4):585-596.
120 JC Mars, M Ghram, B Culjkovic-Kraljacic, KLB Borden. The Cap-binding complex CBC and the eukaryotic translation factor eIF4E: co-conspirators in Cap-dependent RNA maturation and translation. Cancers (Basel). 2021;13(24).
121 Z Zhao, Y Qing, L Dong, et al. QKI shuttles internal m7G-modified transcripts into stress granules and modulates mRNA metabolism. Cell. 2023;186(15):3208-3226. e27. doi:. Epub 2023 Jun 27.
122 J Ofengand, M Del Campo, Y Kaya. Mapping pseudouridines in RNA molecules. Methods. 2001;25(3):365-373.
123 L Jobert, HK Skjeldam, B Dalhus, et al. The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control. Mol Cell. 2013;49(2):339-345.
124 AM Kiss, BE Jády, E Bertrand, T Kiss. Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol. 2004;24(13):5797-5807.
125 AC Rintala-Dempsey, U Kothe. Eukaryotic stand-alone pseudouridine synthases—RNA modifying enzymes and emerging regulators of gene expression? RNA Biol. 2017;14(9):1185-1196.
126 WV Gilbert, TA Bell, C Schaening. Messenger RNA modifications: form, distribution, and function. Science. 2016;352(6292):1408-1412.
127 P Morais, H Adachi, YT Yu. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front Cell Dev Biol. 2021;9:789427.
128 X Chen, Y Xiong, Y Liu, Y Chen, S Bi, X Zhu. m5CPred-SVM: a novel method for predicting m5C sites of RNA. BMC Bioinformatics. 2020;21(1):489.
129 L Trixl, A Lusser. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA. 2019;10(1):e1510.
130 YS Chen, WL Yang, YL Zhao, YG Yang. Dynamic transcriptomic m(5) C and its regulatory role in RNA processing. Wiley Interdiscip Rev RNA. 2021;12(4):e1639.
131 T Amort, D Rieder, A Wille, et al. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol. 2017;18(1):1.
132 G Bourgeois, M Ney, I Gaspar, et al. Eukaryotic rRNA modification by yeast 5-methylcytosine-methyltransferases and human proliferation-associated antigen p120. PLoS One. 2015;10(7):e0133321.
133 S Nakano, T Suzuki, L Kawarada, H Iwata, K Asano, T Suzuki. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat Chem Biol. 2016;12(7):546-551.
134 MD Metodiev, H Sp?hr, P Loguercio Polosa, et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 2014;10(2):e1004110.
135 C Heissenberger, L Liendl, F Nagelreiter, et al. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res. 2019;47(22):11807-11825.
136 S Haag, AS Warda, J Kretschmer, MA Günnigmann, C H?bartner, MT Bohnsack. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. Rna. 2015;21(9):1532-1543.
137 J Liu, T Huang, Y Zhang, et al. Sequence- and structure-selective mRNA m(5)C methylation by NSUN6 in animals. Natl Sci Rev. 2021;8(6):nwaa273.
138 F Tuorto, R Liebers, T Musch, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19(9):900-905.
139 W Huang, MD Lan, CB Qi, et al. Formation and determination of the oxidation products of 5-methylcytosine in RNA. Chem Sci. 2016;7(8):5495-5502.
140 RM Kohli, Y Zhang. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502(7472):472-479.
141 S Haag, KE Sloan, N Ranjan, et al. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. Embo J. 2016;35(19):2104-2119.
142 H Yang, Y Wang, Y Xiang, et al. FMRP promotes transcription-coupled homologous recombination via facilitating TET1-mediated m5C RNA modification demethylation. Proc Natl Acad Sci USA. 2022;119(12):e2116251119.
143 T Wen, T Li, Y Xu, Y Zhang, H Pan, Y Wang. The role of m6A epigenetic modifications in tumor coding and non-coding RNA processing. Cell Commun Signal. 2023;21(1):355.
144 S Murakami, SR Jaffrey. Hidden codes in mRNA: control of gene expression by m(6)A. Mol Cell. 2022;82(12):2236-2251.
145 G Jia, Y Fu, C He. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 2013;29(2):108-115.
146 SM Carroll, P Narayan, FM Rottman. N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Mol Cell Biol. 1990;10(9):4456-4465.
147 BS Zhao, IA Roundtree, C He. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31-42.
148 X Zhao, Y Yang, BF Sun, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24(12):1403-1419.
149 N Liu, Q Dai, G Zheng, C He, M Parisien, T Pan. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518(7540):560-564.
150 J K?nig, K Zarnack, G Rot, et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol. 2010;17(7):909-915.
151 LS Zhang, QP Xiong, S Pe?a Perez, et al. ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nat Cell Biol. 2021;23(7):684-691.
152 G Zheng, JA Dahl, Y Niu, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18-29.
153 C Tang, R Klukovich, H Peng, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells. Proc Natl Acad Sci USA. 2018;115(2):E325-e333.
154 X Yang, Y Yang, BF Sun, et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27(5):606-625.
155 X Wang, BS Zhao, IA Roundtree, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388-1399.
156 RJ Jackson, CU Hellen, TV Pestova. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11(2):113-127.
157 KD Meyer, DP Patil, J Zhou, et al. 5' UTR m(6)A promotes cap-independent translation. Cell. 2015;163(4):999-1010.
158 F Liu, W Clark, G Luo, et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell. 2016;167(3):816-828. e16.
159 Y Lee, J Choe, OH Park, YK Kim. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet. 2020;36(3):177-188.
160 SH Boo, H Ha, YK Kim. m(1)A and m(6)A modifications function cooperatively to facilitate rapid mRNA degradation. Cell Rep. 2022;40(10):111317.
161 OH Park, H Ha, Y Lee, et al. Endoribonucleolytic cleavage of m(6)A-Containing RNAs by RNase P/MRP complex. Mol Cell. 2019;74(3):494-507. e8.
162 EA Orellana, Q Liu, E Yankova, et al. METTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021;81(16):3323-3338. e14.
163 Y Chen, H Lin, L Miao, J He. Role of N7-methylguanosine (m(7)G) in cancer. Trends Cell Biol. 2022;32(10):819-824.
164 L He, H Li, A Wu, Y Peng, G Shu, G Yin. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18(1):176.
165 KD Meyer, SR Jaffrey. The dynamic epitranscriptome: n6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014;15(5):313-326.
166 T Pan. N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci. 2013;38(4):204-209.
167 Y Yue, J Liu, C He. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29(13):1343-1355.
168 H Jo, K Shim, D Jeoung. Roles of RNA methylations in cancer progression, autophagy, and anticancer drug resistance. Int J Mol Sci. 2023;24(4).
169 H Huang, Y Wang, M Kandpal, et al. FTO-dependent N (6)-methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling. Cancer Res. 2020;80(16):3200-3214.
170 Y Pan, P Ma, Y Liu, W Li, Y Shu. Multiple functions of m(6)A RNA methylation in cancer. J Hematol Oncol. 2018;11(1):48.
171 S Lin, M Kuang. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nat Rev Gastroenterol Hepatol. 2024.
172 XY Chen, J Zhang, JS Zhu. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019;18(1):103.
173 OM Golosovskaia. Ventilation and gas exchange reactions to physical loading (60 W) in chronic pneumonia. Ter Arkh. 1975;47(3):63-69.
174 M Chen, L Wei, CT Law, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254-2270.
175 Y Chen, Y Zhao, J Chen, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6)A-guided epigenetic inhibition of LYPD1. Mol Cancer. 2020;19(1):123.
176 H Weng, H Huang, H Wu, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell. 2018;22(2):191-205. e9.
177 Y Chen, X Zuo, Q Wei, et al. Upregulation of LRRC8A by m(5)C modification-mediated mRNA stability suppresses apoptosis and facilitates tumorigenesis in cervical cancer. Int J Biol Sci. 2023;19(2):691-704.
178 X Chen, A Li, BF Sun, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21(8):978-990.
179 SJ Chen, J Zhang, T Zhou, et al. Epigenetically upregulated NSUN2 confers ferroptosis resistance in endometrial cancer via m(5)C modification of SLC7A11 mRNA. Redox Biol. 2024;69:102975.
180 Y Shi, Y Feng, Q Wang, G Dong, W Xia, F Jiang. The role of tRNA-centered translational regulatory mechanisms in cancer. Cancers (Basel). 2023;16(1).
181 PC Dedon, TJ Begley. Dysfunctional tRNA reprogramming and codon-biased translation in cancer. Trends Mol Med. 2022;28(11):964-978.
182 L Wang, S Lin. Emerging functions of tRNA modifications in mRNA translation and diseases. J Genet Genomics. 2023;50(4):223-232.
183 M Holcik, N Sonenberg. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 2005;6(4):318-327.
184 R Cagnetta, JG Flanagan, N Sonenberg. Control of selective mRNA translation in neuronal subcellular compartments in health and disease. J Neurosci. 2023;43(44):7247-7263.
185 L Fabbri, A Chakraborty, C Robert, S Vagner. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer. 2021;21(9):558-577.
186 D Silvera, SC Formenti, RJ Schneider. Translational control in cancer. Nat Rev Cancer. 2010;10(4):254-266.
187 AM El-Naggar, PH Sorensen. Translational control of aberrant stress responses as a hallmark of cancer. J Pathol. 2018;244(5):650-666.
188 D Ruggero. Translational control in cancer etiology. Cold Spring Harb Perspect Biol. 2013;5(2).
189 A Rubio, GD Garland, A Sfakianos, RF Harvey, AE Willis. Aberrant protein synthesis and cancer development: the role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol. 2022;86(3):151-165. Pt.
190 Z Chen, W Zhu, S Zhu, et al. METTL1 promotes hepatocarcinogenesis via m(7) G tRNA modification-dependent translation control. Clin Transl Med. 2021;11(12):e661.
191 Z Dai, H Liu, J Liao, et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021;81(16):3339-3355. e8.
192 P Zhao, L Xia, D Chen, et al. METTL1 mediated tRNA m(7)G modification promotes leukaemogenesis of AML via tRNA regulated translational control. Exp Hematol Oncol. 2024;13(1):8.
193 J Chen, K Li, J Chen, et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun (Lond). 2022;42(3):223-244.
194 J Li, H Zhang, H Wang. N(1)-methyladenosine modification in cancer biology: current status and future perspectives. Comput Struct Biotechnol J. 2022;20: 6578-6585.
195 Y Gao, H Wang, H Li, et al. Integrated analyses of m(1)A regulator-mediated modification patterns in tumor microenvironment-infiltrating immune cells in colon cancer. Oncoimmunology. 2021;10(1):1936758.
196 Y Cámara, J Asin-Cayuela, CB Park, et al. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab. 2011;13(5):527-539.
197 B Wang, L Niu, Z Wang, Z Zhao. RNA m1A methyltransferase TRMT6 predicts poorer prognosis and promotes malignant behavior in glioma. Front Mol Biosci. 2021;8:692130.
198 F Macari, Y El-Houfi, G Boldina, et al. TRM6/61 connects PKCα with translational control through tRNAi(Met) stabilization: impact on tumorigenesis. Oncogene. 2016;35(14):1785-1796.
199 Y Zhao, Q Zhao, PJ Kaboli, et al. m1A regulated genes modulate PI3K/AKT/mTOR and ErbB pathways in gastrointestinal cancer. Transl Oncol. 2019;12(10):1323-1333.
200 K Shimada, T Fujii, K Tsujikawa, S Anai, K Fujimoto, N Konishi. ALKBH3 contributes to survival and angiogenesis of human urothelial carcinoma cells through NADPH oxidase and tweak/Fn14/VEGF signals. Clin Cancer Res. 2012;18(19):5247-5255.
201 MB Uddin, Z Wang, C Yang. The m(6)A RNA methylation regulates oncogenic signaling pathways driving cell malignant transformation and carcinogenesis. Mol Cancer. 2021;20(1):61.
202 H Liu, Z He, SL April, et al. Biochemical re-programming of human dermal stem cells to neurons by increasing mitochondrial membrane potential. Cell Death Differ. 2019;26(6):1048-1061.
203 CM Metallo, MG Vander Heiden. Understanding metabolic regulation and its influence on cell physiology. Mol Cell. 2013;49(3):388-398.
204 RJ DeBerardinis, CB Thompson. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012;148(6):1132-1144.
205 MG Vander Heiden. Exploiting tumor metabolism: challenges for clinical translation. J Clin Invest. 2013;123(9):3648-3651.
206 K H?nigova, J Navratil, B Peltanova, HH Polanska, M Raudenska, M Masarik. Metabolic tricks of cancer cells. Biochim Biophys Acta Rev Cancer. 2022;1877(3):188705.
207 O Warburg, F Wind, E Negelein. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519-530.
208 O Warburg. On the origin of cancer cells. Science. 1956;123(3191):309-314.
209 RJ DeBerardinis, NS Chandel. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200.
210 E Yang, X Wang, Z Gong, M Yu, H Wu, D Zhang. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242.
211 C Corbet, A Pinto, R Martherus, JP Santiago de Jesus, F Polet, O Feron. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab. 2016;24(2):311-323.
212 ZE Stine, ZE Walton, BJ Altman, AL Hsieh, CV Dang. MYC, metabolism, and cancer. Cancer Discov. 2015;5(10):1024-1039.
213 NN Pavlova, CB Thompson. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27-47.
214 Y Ma, SM Temkin, AM Hawkridge, et al. Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett. 2018;435: 92-100.
215 JC García-Ca?averas, A Lahoz. Tumor microenvironment-derived metabolites: a guide to find new metabolic therapeutic targets and biomarkers. Cancers (Basel). 2021;13(13).
216 J Bi, S Wu, W Zhang, PS Mischel. Targeting cancer's metabolic co-dependencies: a landscape shaped by genotype and tissue context. Biochim Biophys Acta Rev Cancer. 2018;1870(1):76-87.
217 I Martínez-Reyes, NS Chandel. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669-680.
218 B Faubert, A Solmonson, RJ DeBerardinis. Metabolic reprogramming and cancer progression. Science. 2020;368(6487).
219 ZJ Reitman, H Yan. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst. 2010;102(13):932-941.
220 PS Ward, CB Thompson. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21(3):297-308.
221 C Choudhary, BT Weinert, Y Nishida, E Verdin, M Mann. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536-550.
222 C Cheng, P Ru, F Geng, et al. Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell. 2015;28(5):569-581.
223 S Katada, A Imhof, P Sassone-Corsi. Connecting threads: epigenetics and metabolism. Cell. 2012;148(1-2):24-28.
224 J Yao, A Hagiwara, TC Oughourlian, et al. Diagnostic and prognostic value of pH- and oxygen-sensitive magnetic resonance imaging in glioma: a retrospective study. Cancers (Basel). 2022;14(10).
225 M Egeblad, ES Nakasone, Z Werb. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884-901.
226 P Dey, AC Kimmelman, RA DePinho. Metabolic codependencies in the tumor microenvironment. Cancer Discov. 2021;11(5):1067-1081.
227 JC García-Ca?averas, L Chen, JD Rabinowitz. The tumor metabolic microenvironment: lessons from lactate. Cancer Res. 2019;79(13):3155-3162.
228 A Le, AN Lane, M Hamaker, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15(1):110-121.
229 J Liao, PP Liu, G Hou, et al. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling. Mol Cancer. 2017;16(1):51.
230 MO Yuneva, TW Fan, TD Allen, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15(2):157-170.
231 SM Davidson, T Papagiannakopoulos, BA Olenchock, et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 2016;23(3):517-528.
232 I Kaymak, KS Williams, JR Cantor, RG Jones. Immunometabolic interplay in the tumor microenvironment. Cancer Cell. 2021;39(1):28-37.
233 SM Fendt, C Frezza, A Erez. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 2020;10(12):1797-1807.
234 JR Mayers, ME Torrence, LV Danai, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science. 2016;353(6304):1161-1165.
235 F Ciscato, R Filadi, I Masgras, et al. Hexokinase 2 displacement from mitochondria-associated membranes prompts Ca(2+) -dependent death of cancer cells. EMBO Rep. 2020;21(7):e49117.
236 H Nakano, I Minami, D Braas, et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife. 2017;6.
237 KC Patra, N Hay. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347-354.
238 Y Hatefi. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54: 1015-1069.
239 M Saraste. Oxidative phosphorylation at the fin de siècle. Science. 1999;283(5407):1488-1493.
240 Y Li, R Zhang, S Liu, et al. The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evol Biol. 2017;17(1):269.
241 D Zala, MV Hinckelmann, H Yu, et al. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell. 2013;152(3):479-491.
242 HS Han, G Kang, JS Kim, BH Choi, SH Koo. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 2016;48(3):e218.
243 S Ganapathy-Kanniappan, JF Geschwind. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12: 152.
244 S Petersen, G Wolf, U Bockmühl, K Gellert, M Dietel, I Petersen. Allelic loss on chromosome 10q in human lung cancer: association with tumour progression and metastatic phenotype. Br J Cancer. 1998;77(2):270-276.
245 M Upadhyay, J Samal, M Kandpal, OV Singh, P Vivekanandan. The Warburg effect: insights from the past decade. Pharmacol Ther. 2013;137(3):318-330.
246 PE Porporato, N Filigheddu, JMB Pedro, G Kroemer, L Galluzzi. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265-280.
247 WX Zong, JD Rabinowitz, E White. Mitochondria and cancer. Mol Cell. 2016;61(5):667-676.
248 LD Osellame, TS Blacker, MR Duchen. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26(6):711-723.
249 VR Fantin, J St-Pierre, P Leder. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425-434.
250 Y Hu, W Lu, G Chen, et al. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 2012;22(2):399-412.
251 W Lu, Y Hu, G Chen, et al. Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol. 2012;10(5):e1001326.
252 PP Hsu, DM Sabatini. Cancer cell metabolism: warburg and beyond. Cell. 2008;134(5):703-707.
253 SC Lin, DG Hardie. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299-313.
254 M Tian, H Zhang, Y Nakasone, K Mogi, K Endo. Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation in a PET study. Eur J Nucl Med Mol Imaging. 2004;31(1):5-12.
255 M Kunkel, TE Reichert, P Benz, et al. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer. 2003;97(4):1015-1024.
256 Y Zhou, S Wang, W Wu, et al. Sustained activation of EGFR-ERK1/2 signaling limits the response to tigecycline-induced mitochondrial respiratory deficiency in liver cancer. EBioMedicine. 2023;87:104397.
257 L Sun, Y Liu, N Yang, et al. Gold nanoparticles inhibit tumor growth via targeting the Warburg effect in a c-Myc-dependent way. Acta Biomater. 2023;158: 583-598.
258 LC D'Souza, A Shekher, KB Challagundla, A Sharma, SC Gupta. Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin Cancer Biol. 2022;87: 127-136.
259 F Kruiswijk, CF Labuschagne, KH Vousden. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16(7):393-405.
260 RI Fink, P Wallace, G Brechtel, JM Olefsky. Evidence that glucose transport is rate-limiting for in vivo glucose uptake. Metabolism. 1992;41(8):897-902.
261 GJ Cote, RF Gagel. Dexamethasone differentially affects the levels of calcitonin and calcitonin gene-related peptide mRNAs expressed in a human medullary thyroid carcinoma cell line. J Biol Chem. 1986;261(33):15524-15528.
262 T Murakami, T Nishiyama, T Shirotani, et al. Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. J Biol Chem. 1992;267(13):9300-9306.
263 J Feng, J Li, L Wu, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2020;39(1):126.
264 RJ DeBerardinis, JJ Lum, G Hatzivassiliou, CB Thompson. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11-20.
265 JA Losman. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013;27(8):836-852.
266 ME Figueroa, O Abdel-Wahab, C Lu, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553-567.
267 M Yang, T Soga, PJ Pollard. Oncometabolites: linking altered metabolism with cancer. J Clin Invest. 2013;123(9):3652-3658.
268 IP Tomlinson, NA Alam, AJ Rowan, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406-410.
269 BE Baysal, RE Ferrell, JE Willett-Brozick, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287(5454):848-851.
270 JA van der Knaap, CP Verrijzer. Undercover: gene control by metabolites and metabolic enzymes. Genes Dev. 2016;30(21):2345-2369.
271 WG Kaelin, SL McKnight. Influence of metabolism on epigenetics and disease. Cell. 2013;153(1):56-69.
272 S Mirabilii, MR Ricciardi, A Tafuri. mTOR regulation of metabolism in hematologic malignancies. Cells. 2020;9(2).
273 AM Hosios, VC Hecht, LV Danai, et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell. 2016;36(5):540-549.
274 M Kodama, K Oshikawa, H Shimizu, et al. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nat Commun. 2020;11(1):1320.
275 BJ Altman, ZE Stine, CV Dang. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619-634.
276 H Eagle. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med. 1955;102(5):595-600.
277 T Gong, C Zheng, X Ou, et al. Glutamine metabolism in cancers: targeting the oxidative homeostasis. Front Oncol. 2022;12:994672.
278 P Sitthideatphaiboon, A Galan-Cobo, MV Negrao, et al. STK11/LKB1 mutations in NSCLC are associated with KEAP1/NRF2-dependent radiotherapy resistance targetable by glutaminase inhibition. Clin Cancer Res. 2021;27(6):1720-1733.
279 A Cadoret, C Ovejero, B Terris, et al. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene. 2002;21(54):8293-8301.
280 J Zhang, NN Pavlova, CB Thompson. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. Embo J. 2017;36(10):1302-1315.
281 RJ DeBerardinis, A Mancuso, E Daikhin, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104(49):19345-19350.
282 DR Wise, CB Thompson. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427-433.
283 P Vaupel, F Kallinowski, P Okunieff. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989;49(23):6449-6465.
284 A Csibi, G Lee, SO Yoon, et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol. 2014;24(19):2274-2280.
285 W Hu, C Zhang, R Wu, Y Sun, A Levine, Z Feng. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA. 2010;107(16):7455-7460.
286 A Csibi, SM Fendt, C Li, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 2013;153(4):840-854.
287 S Suzuki, T Tanaka, MV Poyurovsky, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA. 2010;107(16):7461-7466.
288 I Garcia-Cao, MS Song, RM Hobbs, et al. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 2012;149(1):49-62.
289 P Gao, I Tchernyshyov, TC Chang, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239):762-765.
290 DR Wise, RJ DeBerardinis, A Mancuso, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008;105(48):18782-18787.
291 Y Xiang, ZE Stine, J Xia, et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest. 2015;125(6):2293-2306.
292 NP Curthoys, M Watford. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15: 133-159.
293 W Liu, A Le, C Hancock, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA. 2012;109(23):8983-8988.
294 JT Cunningham, MV Moreno, A Lodi, SM Ronen, D Ruggero. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell. 2014;157(5):1088-1103.
295 C Commisso, SM Davidson, RG Soydaner-Azeloglu, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633-637.
296 F Weinberg, R Hamanaka, WW Wheaton, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 2010;107(19):8788-8793.
297 D Gaglio, CM Metallo, PA Gameiro, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011;7: 523.
298 J Son, CA Lyssiotis, H Ying, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101-105.
299 mTORC1 regulates glutamine metabolism. Cancer Discov. 2013;3(7):Of25.
300 Y Yin, H Hua, M Li, et al. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Res. 2016;26(1):46-65.
301 I Ben-Sahra, JJ Howell, JM Asara, BD Manning. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science. 2013;339(6125):1323-1328.
302 X Li, M Wenes, P Romero, SC Huang, SM Fendt, PC Ho. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019;16(7):425-441.
303 P Nicklin, P Bergman, B Zhang, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521-534.
304 GL Semenza. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408.
305 H Okuyama, H Endo, T Akashika, K Kato, M Inoue. Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res. 2010;70(24):10213-10223.
306 DR Wise, PS Ward, JE Shay, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA. 2011;108(49):19611-19616.
307 M Schindl, SF Schoppmann, H Samonigg, et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res. 2002;8(6):1831-1837.
308 JA Bertout, SA Patel, MC Simon. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8(12):967-975.
309 RD Guzy, B Hoyos, E Robin, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401-408.
310 E Currie, A Schulze, R Zechner, TC Walther. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153-161.
311 S Schoors, U Bruning, R Missiaen, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 2015;520(7546):192-197.
312 M Yi, J Li, S Chen, et al. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res. 2018;37(1):118.
313 F R?hrig, A Schulze. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732-749.
314 N Zaidi, L Lupien, NB Kuemmerle, WB Kinlaw, JV Swinnen, K Smans. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res. 2013;52(4):585-589.
315 R Ventura, K Mordec, J Waszczuk, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2015;2(8):808-824.
316 AM Kleinfeld, C Okada. Free fatty acid release from human breast cancer tissue inhibits cytotoxic T-lymphocyte-mediated killing. J Lipid Res. 2005;46(9):1983-1990.
317 ES Pizer, FD Wood, HS Heine, FE Romantsev, GR Pasternack, FP Kuhajda. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res. 1996;56(6):1189-1193.
318 MT Snaebjornsson, S Janaki-Raman, A Schulze. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31(1):62-76.
319 T Porstmann, CR Santos, B Griffiths, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008;8(3):224-236.
320 T Porstmann, B Griffiths, YL Chung, et al. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 2005;24(43):6465-6481.
321 PA Carroll, D Diolaiti, L McFerrin, et al. Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell. 2015;27(2):271-285.
322 JJ Kamphorst, JR Cross, J Fan, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA. 2013;110(22):8882-8887.
323 AC Boese, S Kang. Mitochondrial metabolism-mediated redox regulation in cancer progression. Redox Biol. 2021;42:101870.
324 CH Ly, GS Lynch, JG Ryall. A metabolic roadmap for somatic stem cell fate. Cell Metab. 2020;31(6):1052-1067.
325 I Martínez-Reyes, NS Chandel. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102.
326 Z Yang, M He, J Austin, J Pfleger, M Abdellatif. Histone H3K9 butyrylation is regulated by dietary fat and stress via an Acyl-CoA dehydrogenase short chain-dependent mechanism. Mol Metab. 2021;53:101249.
327 E Gottlieb, IP Tomlinson. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer. 2005;5(11):857-866.
328 JK Killian, SY Kim, M Miettinen, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 2013;3(6):648-657.
329 C Lu, PS Ward, GS Kapoor, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474-478.
330 H Yang, D Ye, KL Guan, Y Xiong. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res. 2012;18(20):5562-5571.
331 C Loriot, N Burnichon, N Gadessaud, et al. Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J Clin Endocrinol Metab. 2012;97(6):E954-962.
332 AG Foti, H Herschman, JF Cooper. A solid-phase radioimmunoassay for human prostatic acid phosphatase. Cancer Res. 1975;35(9):2446-2452.
333 S Chang, S Yim, H Park. The cancer driver genes IDH1/2, JARID1C/KDM5C, and UTX/ KDM6A: crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism. Exp Mol Med. 2019;51(6):1-17.
334 LB Sullivan, DY Gui, MG Vander Heiden. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer. 2016;16(11):680-693.
335 L Dang, DW White, S Gross, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739-744.
336 PS Ward, J Patel, DR Wise, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17(3):225-234.
337 A Terunuma, N Putluri, P Mishra, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014;124(1):398-412.
338 M Xiao, H Yang, W Xu, et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26(12):1326-1338.
339 L Valcarcel-Jimenez, E Gaude, V Torrano, C Frezza, A Carracedo. Mitochondrial metabolism: yin and yang for tumor progression. Trends Endocrinol Metab. 2017;28(10):748-757.
340 P Zhu, MJ Tan, RL Huang, et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):h2O2 ratio and confers anoikis resistance to tumors. Cancer Cell. 2011;19(3):401-415.
341 E Giannoni, F Buricchi, G Grimaldi, et al. Redox regulation of anoikis: reactive oxygen species as essential mediators of cell survival. Cell Death Differ. 2008;15(5):867-878.
342 P Marchetti, Q Fovez, N Germain, R Khamari, J Kluza. Mitochondrial spare respiratory capacity: mechanisms, regulation, and significance in non-transformed and cancer cells. Faseb J. 2020;34(10):13106-13124.
343 J Baeza, MJ Smallegan, JM Denu. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem Sci. 2016;41(3):231-244.
344 T Wai, T Langer. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab. 2016;27(2):105-117.
345 S Wang, P Chai, R Jia, R Jia. Novel insights on m(6)A RNA methylation in tumorigenesis: a double-edged sword. Mol Cancer. 2018;17(1):101.
346 T Wang, S Kong, M Tao, S Ju. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 2020;19(1):88.
347 J Li, L Liang, Y Yang, X Li, Y Ma. N(6)-methyladenosine as a biological and clinical determinant in colorectal cancer: progression and future direction. Theranostics. 2021;11(6):2581-2593.
348 W Li, Y Gao, X Jin, et al. Comprehensive analysis of N6-methylandenosine regulators and m6A-related RNAs as prognosis factors in colorectal cancer. Mol Ther Nucleic Acids. 2022;27: 598-610.
349 H Chen, S Gao, W Liu, et al. RNA N(6)-Methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology. 2021;160(4):1284-1300. e16.
350 K Zhang, T Zhang, Y Yang, et al. N(6)-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming. Theranostics. 2022;12(10):4802-4817.
351 Y Zhang, L Xu, Z Ren, et al. LINC01615 maintains cell survival in adaptation to nutrient starvation through the pentose phosphate pathway and modulates chemosensitivity in colorectal cancer. Cell Mol Life Sci. 2022;80(1):20.
352 C Shen, B Xuan, T Yan, et al. m(6)A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 2020;19(1):72.
353 J Xiong, J He, J Zhu, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022;82(9):1660-1677. e10.
354 Y Zheng, Y Wang, Y Liu, et al. N6-Methyladenosine modification of PTTG3P contributes to colorectal cancer proliferation via YAP1. Front Oncol. 2021;11:669731.
355 Y Wang, JH Lu, QN Wu, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 2019;18(1):174.
356 Y Li, L He, Y Wang, Y Tan, F Zhang. N(6)-methyladenosine methyltransferase KIAA1429 elevates colorectal cancer aerobic glycolysis via HK2-dependent manner. Bioengineered. 2022;13(5):11923-11932.
357 B Chen, Y Hong, R Gui, et al. N6-methyladenosine modification of circ_0003215 suppresses the pentose phosphate pathway and malignancy of colorectal cancer through the miR-663b/DLG4/G6PD axis. Cell Death Dis. 2022;13(9):804.
358 S Lu, L Han, X Hu, et al. N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: implication in colorectal cancer. J Hematol Oncol. 2021;14(1):188.
359 H Li, C Li, B Zhang, H Jiang. Lactoferrin suppresses the progression of colon cancer under hyperglycemia by targeting WTAP/m(6)A/NT5DC3/HKDC1 axis. J Transl Med. 2023;21(1):156.
360 Y Lin, X Wei, Z Jian, X Zhang. METTL3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma. Cancer Med. 2020;9(8):2859-2867.
361 N Yang, T Wang, Q Li, et al. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α. J Cell Physiol. 2021;236(5):3863-3880.
362 Y Qin, CJ Wang, HL Ye, et al. WWP2 overexpression inhibits the antitumor effects of doxorubicin in hepatocellular carcinoma. Cell Biol Int. 2022;46(10):1682-1692.
363 J Cai, Z Chen, Y Zhang, et al. CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m(6)A modification in hepatocellular carcinoma. Mol Ther Oncolytics. 2022;24: 755-771.
364 Z Li, Y Peng, J Li, et al. N(6)-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun. 2020;11(1):2578.
365 R Zhou, W Ni, C Qin, et al. A functional loop between YTH domain family protein YTHDF3 mediated m(6)A modification and phosphofructokinase PFKL in glycolysis of hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41(1):334.
366 Y Ye, M Wang, G Wang, et al. lncRNA miR4458HG modulates hepatocellular carcinoma progression by activating m6A-dependent glycolysis and promoting the polarization of tumor-associated macrophages. Cell Mol Life Sci. 2023;80(4):99.
367 Q Wang, H Xie, H Peng, J Yan, L Han, G Ye. ZC3H13 inhibits the progression of hepatocellular carcinoma through m(6)A-PKM2-mediated glycolysis and enhances chemosensitivity. J Oncol. 2021;2021:1328444.
368 L Zhao, M Kang, X Liu, et al. UBR7 inhibits HCC tumorigenesis by targeting Keap1/Nrf2/Bach1/HK2 and glycolysis. J Exp Clin Cancer Res. 2022;41(1):330.
369 L Du, Y Li, M Kang, et al. USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization. Cancer Res. 2021;81(14):3822-3834.
370 Q Wang, C Chen, Q Ding, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69(7):1193-1205.
371 W Xu, Y Lai, Y Pan, et al. m6A RNA methylation-mediated NDUFA4 promotes cell proliferation and metabolism in gastric cancer. Cell Death Dis. 2022;13(8):715.
372 TP Xu, T Yu, MY Xie, et al. LOC101929709 promotes gastric cancer progression by aiding LIN28B to stabilize c-MYC mRNA. Gastric Cancer. 2023;26(2):169-186.
373 F Luo, K Lin. N(6)-methyladenosine (m(6)A) reader IGF2BP1 accelerates gastric cancer aerobic glycolysis in c-Myc-dependent manner. Exp Cell Res. 2022;417(1):113176.
374 Y Zhang, X Zhou, X Cheng, et al. PRKAA1, stabilized by FTO in an m6A-YTHDF2-dependent manner, promotes cell proliferation and glycolysis of gastric cancer by regulating the redox balance. Neoplasma. 2022;69(6):1338-1348.
375 D Yang, S Chang, F Li, et al. m(6) A transferase KIAA1429-stabilized LINC00958 accelerates gastric cancer aerobic glycolysis through targeting GLUT1. IUBMB Life. 2021;73(11):1325-1333.
376 H Yu, K Zhao, H Zeng, et al. N(6)-methyladenosine (m(6)A) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability. Biomed Pharmacother. 2021;133:111075.
377 JX Lin, NZ Lian, YX Gao, et al. m6A methylation mediates LHPP acetylation as a tumour aerobic glycolysis suppressor to improve the prognosis of gastric cancer. Cell Death Dis. 2022;13(5):463.
378 Y Hou, Q Zhang, W Pang, et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ. 2021;28(11):3105-3124.
379 S Huang, Z Wu, Y Cheng, W Wei, L Hao. Insulin-like growth factor 2 mRNA binding protein 2 promotes aerobic glycolysis and cell proliferation in pancreatic ductal adenocarcinoma via stabilizing GLUT1 mRNA. Acta Biochim Biophys Sin (Shanghai). 2019;51(7):743-752.
380 Y Xu, M Song, Z Hong, et al. The N6-methyladenosine METTL3 regulates tumorigenesis and glycolysis by mediating m6A methylation of the tumor suppressor LATS1 in breast cancer. J Exp Clin Cancer Res. 2023;42(1):10.
381 B Ou, Y Liu, X Yang, X Xu, Y Yan, J Zhang. C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1. Cell Death Dis. 2021;12(8):737.
382 X Yao, W Li, L Li, et al. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis. Cell Death Dis. 2022;13(3):258.
383 H Liu, H Lyu, G Jiang, et al. ALKBH5-mediated m6A demethylation of GLUT4 mRNA promotes glycolysis and resistance to HER2-targeted therapy in breast cancer. Cancer Res. 2022;82(21):3974-3986.
384 Q Wang, X Guo, L Li, et al. N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020;11(10):911.
385 C Hu, T Liu, C Han, et al. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m(6)A-MYC expression. Int J Biol Sci. 2022;18(2):507-521.
386 C Liu, Y Li, C Dong, L Qu, Y Zuo. E6E7 regulates the HK2 expression in cervical cancer via GSK3β/FTO signal. Arch Biochem Biophys. 2022;729:109389.
387 C Zhang, L Chen, Y Liu, et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Theranostics. 2021;11(8):3676-3693.
388 H Yu, X Yang, J Tang, et al. ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2α-mediated glycolysis. Mol Ther Nucleic Acids. 2021;23: 27-41.
389 J Liu, JF Yuan, YZ Wang. METTL3-stabilized lncRNA SNHG7 accelerates glycolysis in prostate cancer via SRSF1/c-Myc axis. Exp Cell Res. 2022;416(1):113149.
390 Y Qing, L Dong, L Gao, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis. Mol Cell. 2021;81(5):922-939. e9.
391 J Huang, W Sun, Z Wang, et al. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J Exp Clin Cancer Res. 2022;41(1):42.
392 W Wang, F Shao, X Yang, et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N(6)-methyladenosine-dependent YTHDF binding. Nat Commun. 2021;12(1):3803.
393 X Yang, F Shao, D Guo, et al. WNT/β-catenin-suppressed FTO expression increases m(6)A of c-Myc mRNA to promote tumor cell glycolysis and tumorigenesis. Cell Death Dis. 2021;12(5):462.
394 XD Li, MJ Wang, JL Zheng, YH Wu, X Wang, XB Jiang. Long noncoding RNA just proximal to X-inactive specific transcript facilitates aerobic glycolysis and temozolomide chemoresistance by promoting stability of PDK1 mRNA in an m6A-dependent manner in glioblastoma multiforme cells. Cancer Sci. 2021;112(11):4543-4552.
395 JZ Wang, W Zhu, J Han, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun (Lond). 2021;41(7):560-575.
396 C Tong, W Wang, C He. m1A methylation modification patterns and metabolic characteristics in hepatocellular carcinoma. BMC Gastroenterol. 2022;22(1):93.
397 Y Wu, Z Chen, G Xie, et al. RNA m(1)A methylation regulates glycolysis of cancer cells through modulating ATP5D. Proc Natl Acad Sci USA. 2022;119(28):e2119038119.
398 H Weng, F Huang, Z Yu, et al. The m(6)A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 2022;40(12):1566-1582. e10.
399 P Chen, XQ Liu, X Lin, LY Gao, S Zhang, X Huang. Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism. Mol Ther Oncolytics. 2021;20: 228-239.
400 S Han, L Zhu, Y Zhu, et al. Targeting ATF4-dependent pro-survival autophagy to synergize glutaminolysis inhibition. Theranostics. 2021;11(17):8464-8479.
401 Y Xiao, KN Thakkar, H Zhao, et al. The m(6)A RNA demethylase FTO is a HIF-independent synthetic lethal partner with the VHL tumor suppressor. Proc Natl Acad Sci USA. 2020;117(35):21441-21449.
402 Z Li, F Li, Y Peng, J Fang, J Zhou. Identification of three m6A-related mRNAs signature and risk score for the prognostication of hepatocellular carcinoma. Cancer Med. 2020;9(5):1877-1889.
403 Y Yang, J Cai, X Yang, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022;30(6):2342-2353.
404 H Peng, B Chen, W Wei, et al. N(6)-methyladenosine (m(6)A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation. Nat Metab. 2022;4(8):1041-1054.
405 Y Liu, L Sun, H Guo, et al. Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib. Oncogene. 2023;42(5):374-388.
406 X Zuo, Z Chen, W Gao, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol. 2020;13(1):5.
407 D Sun, T Zhao, Q Zhang, M Wu, Z Zhang. Fat mass and obesity-associated protein regulates lipogenesis via m(6) A modification in fatty acid synthase mRNA. Cell Biol Int. 2021;45(2):334-344.
408 A Chen, X Chen, S Cheng, et al. FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(5):538-548.
409 H Kang, Z Zhang, L Yu, Y Li, M Liang, L Zhou. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation. J Cell Biochem. 2018;119(7):5676-5685.
410 Z Chen, L Wu, J Zhou, et al. N6-methyladenosine-induced ERRγ triggers chemoresistance of cancer cells through upregulation of ABCB1 and metabolic reprogramming. Theranostics. 2020;10(8):3382-3396.
411 W Guo, C Zhang, P Feng, et al. M6A methylation of DEGS2, a key ceramide-synthesizing enzyme, is involved in colorectal cancer progression through ceramide synthesis. Oncogene. 2021;40(40):5913-5924.
412 X Duan, L Yang, L Wang, et al. m6A demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer. Cell Biosci. 2022;12(1):60.
413 H Guo, B Wang, K Xu, et al. m(6)A reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1. Front Oncol. 2020;10:553045.
414 Y Cheng, Z Gao, T Zhang, et al. Decoding m(6)A RNA methylome identifies PRMT6-regulated lipid transport promoting AML stem cell maintenance. Cell Stem Cell. 2023;30(1):69-85. e7.
415 L Zhen, W Pan. ALKBH5 inhibits the SIRT3/ACC1 axis to regulate fatty acid metabolism via an m6A-IGF2BP1-dependent manner in cervical squamous cell carcinoma. Clin Exp Pharmacol Physiol. 2023;50(5):380-392.
416 P Liu, B Fan, B Othmane, et al. m(6)A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Theranostics. 2022;12(14):6291-6307.
417 R Fang, X Chen, S Zhang, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun. 2021;12(1):177.
418 Y Liu, Y Zhao, R Wu, et al. mRNA m5C controls adipogenesis by promoting CDKN1A mRNA export and translation. RNA Biol. 2021;18(sup2):711-721.
419 Y Liu, Y Yang, R Wu, et al. mRNA m(5)C inhibits adipogenesis and promotes myogenesis by respectively facilitating YBX2 and SMO mRNA export in ALYREF-m(5)C manner. Cell Mol Life Sci. 2022;79(9):481.
420 M Yang, R Wei, S Zhang, et al. NSUN2 promotes osteosarcoma progression by enhancing the stability of FABP5 mRNA via m(5)C methylation. Cell Death Dis. 2023;14(2):125.
421 Y Wang, J Wang, X Li, et al. N(1)-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun. 2021;12(1):6314.
422 L Sun, A Wan, Z Zhou, et al. RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut. 2021;70(9):1698-1712.
423 Y Zhou, Q Wang, H Deng, et al. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m(6)A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics. Cell Death Dis. 2022;13(1):72.
424 NH Green, DL Galvan, SS Badal, et al. MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene. 2019;38(34):6211-6225.
425 C Zhuang, C Zhuang, X Luo, et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J Cell Mol Med. 2019;23(3):2163-2173.
426 X Liu, G Gonzalez, X Dai, et al. Adenylate kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m(6)A-based epitranscriptomic mechanism. Mol Ther. 2020;28(12):2593-2604.
427 J Ye, Z Wang, X Chen, et al. YTHDF1-enhanced iron metabolism depends on TFRC m(6)A methylation. Theranostics. 2020;10(26):12072-12089.
428 R Huang, L Yang, Z Zhang, et al. RNA m(6)A demethylase ALKBH5 protects against pancreatic ductal adenocarcinoma via targeting regulators of iron metabolism. Front Cell Dev Biol. 2021;9:724282.
429 S Xie, W Chen, K Chen, et al. Emerging roles of RNA methylation in gastrointestinal cancers. Cancer Cell Int. 2020;20(1):585.
430 Q Zhang, X Sun, J Sun, et al. RNA m(5)C regulator-mediated modification patterns and the cross-talk between tumor microenvironment infiltration in gastric cancer. Front Immunol. 2022;13:905057.
431 Q Guan, H Lin, L Miao, et al. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol. 2022;15(1):13.
432 L Yao, H Yin, M Hong, et al. RNA methylation in hematological malignancies and its interactions with other epigenetic modifications. Leukemia. 2021;35(5):1243-1257.
433 MN Diao, XJ Zhang, YF Zhang. The critical roles of m6A RNA methylation in lung cancer: from mechanism to prognosis and therapy. Br J Cancer. 2023;129(1):8-23.
434 Y Zhang, X Geng, Q Li, et al. m6A modification in RNA: biogenesis, functions and roles in gliomas. J Exp Clin Cancer Res. 2020;39(1):192.
435 I Orsolic, A Carrier, M Esteller. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet. 2023;39(1):74-88.
436 P Zheng, N Li, X Zhan. Ovarian cancer subtypes based on the regulatory genes of RNA modifications: novel prediction model of prognosis. Front Endocrinol (Lausanne). 2022;13:972341.
437 L Wang, S Gao. Identification of 5-methylcytosine-related signature for predicting prognosis in ovarian cancer. Biol Res. 2021;54(1):18.
438 D Li, Z Shi, X Liu, et al. Identification and development of a novel risk model based on cuproptosis-associated RNA methylation regulators for predicting prognosis and characterizing immune status in hepatocellular carcinoma. Hepatol Int. 2023;17(1):112-130.
439 H Wang, Y Zhang, L Chen, et al. Identification of clinical prognostic features of esophageal cancer based on m6A regulators. Front Immunol. 2022;13:950365.
440 Y Liu, D Yang, T Liu, J Chen, J Yu, P Yi. N6-methyladenosine-mediated gene regulation and therapeutic implications. Trends Mol Med. 2023;29(6):454-467.
441 S Zhu, JZ Wang, D Chen, et al. An oncopeptide regulates m(6)A recognition by the m(6)A reader IGF2BP1 and tumorigenesis. Nat Commun. 2020;11(1):1685.
442 W Wei, ZY Zhang, B Shi, et al. METTL16 promotes glycolytic metabolism reprogramming and colorectal cancer progression. J Exp Clin Cancer Res. 2023;42(1):151.
443 SK Hindupur, M Colombi, SR Fuhs, et al. The protein histidine phosphatase LHPP is a tumour suppressor. Nature. 2018;555(7698):678-682.
444 S Liu, W Gao, Y Lu, et al. As a novel tumor suppressor, LHPP promotes apoptosis by inhibiting the PI3K/AKT signaling pathway in oral squamous cell carcinoma. Int J Biol Sci. 2022;18(2):491-506.
445 D Lin, L Li, WB Chen, et al. LHPP, a risk factor for major depressive disorder, regulates stress-induced depression-like behaviors through its histidine phosphatase activity. Mol Psychiatry. 2023;28(2):908-918.
446 Y Jia, Q Yan, Y Zheng, et al. Long non-coding RNA NEAT1 mediated RPRD1B stability facilitates fatty acid metabolism and lymph node metastasis via c-Jun/c-Fos/SREBP1 axis in gastric cancer. J Exp Clin Cancer Res. 2022;41(1):287.
447 B Ketterer, B Coles, DJ Meyer. The role of glutathione in detoxication. Environ Health Perspect. 1983;49: 59-69.
448 H Hiraishi, A Terano, S Ota, et al. Protection of cultured rat gastric cells against oxidant-induced damage by exogenous glutathione. Gastroenterology. 1994;106(5):1199-1207.
449 J M?rtensson, A Jain, A Meister. Glutathione is required for intestinal function. Proc Natl Acad Sci USA. 1990;87(5):1715-1719.
450 TM Hagen, TY Aw, DP Jones. Glutathione uptake and protection against oxidative injury in isolated kidney cells. Kidney Int. 1988;34(1):74-81.
451 RL Gould, SW Craig, S McClatchy, GA Churchill, R Pazdro. Quantitative trait mapping in Diversity Outbred mice identifies novel genomic regions associated with the hepatic glutathione redox system. Redox Biol. 2021;46:102093.
452 B Niu, K Liao, Y Zhou, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;277:121110.
453 A Fraternale, MF Paoletti, A Casabianca, et al. GSH and analogs in antiviral therapy. Mol Aspects Med. 2009;30(1-2):99-110.
454 Y Gao, Y Li, H Cao, et al. Hypertoxic self-assembled peptide with dual functions of glutathione depletion and biosynthesis inhibition for selective tumor ferroptosis and pyroptosis. J Nanobiotechnology. 2022;20(1):390.
455 RH Peters, DJ Jollow, RK Stuart. Role of glutathione in the in vitro synergism between 4-hydroperoxy-cyclophosphamide and cisplatin in leukemia cell lines. Cancer Res. 1991;51(10):2536-2541.
456 T Chen, J Chen, T Zeng, et al. WZ35 inhibits gastric cancer cell metastasis by depleting glutathione to promote cellular metabolic remodeling. Cancer Lett. 2023;555:216044.
457 G Peng, S Chen, N Zheng, et al. Integrative proteomics and m6A microarray analyses of the signatures induced by METTL3 reveals prognostically significant in gastric cancer by affecting cellular metabolism. Front Oncol. 2022;12:996329.
458 R Su, L Dong, C Li, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell. 2018;172(1-2):90-105. e23.
459 X Liu, M Feng, X Hao, et al. m6A methylation regulates hypoxia-induced pancreatic cancer glycolytic metabolism through ALKBH5-HDAC4-HIF1α positive feedback loop. Oncogene. 2023;42(25):2047-2060.
460 C Peng, F Xiong, X Pu, et al. m(6)A methylation modification and immune cell infiltration: implications for targeting the catalytic subunit m(6)A-METTL complex in gastrointestinal cancer immunotherapy. Front Immunol. 2023;14:1326031.
461 P Luo, S Li, X Long. N6-methyladenosine RNA modification in PD-1/PD-L1: novel implications for immunotherapy. Biochim Biophys Acta Rev Cancer. 2023;1878(3):188873.
462 L Wang, H Hui, K Agrawal, et al. m(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. Embo J. 2020;39(20):e104514.
463 W Wan, X Ao, Q Chen, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21(1):60.
464 Z Ni, P Sun, J Zheng, et al. JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA. Cancer Res. 2022;82(9):1789-1802.
465 C Hu, J Liu, Y Li, et al. Multifaceted roles of the N(6)-methyladenosine RNA methyltransferase METTL3 in cancer and immune microenvironment. Biomolecules. 2022;12(8).
466 Z Liu, T Wang, Y She, et al. N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20(1):105.
467 W Guo, F Tan, Q Huai, et al. Comprehensive analysis of PD-L1 expression, immune infiltrates, and m6A RNA methylation regulators in esophageal squamous cell carcinoma. Front Immunol. 2021;12:669750.
468 T Li, YT Tan, YX Chen, et al. Methionine deficiency facilitates antitumour immunity by altering m(6)A methylation of immune checkpoint transcripts. Gut. 2023;72(3):501-511.
469 H Li, Q Su, B Li, et al. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration. J Cell Mol Med. 2020;24(8):4452-4465.
470 X Lou, JJ Wang, YQ Wei, JJ Sun. Emerging role of RNA modification N6-methyladenosine in immune evasion. Cell Death Dis. 2021;12(4):300.
471 YG Chen, R Chen, S Ahmad, et al. N6-Methyladenosine modification controls circular RNA immunity. Mol Cell. 2019;76(1):96-109. e9.
472 N Li, Y Kang, L Wang, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 2020;117(33):20159-20170.
473 L Liu, L Liang, H Li, et al. The role of m6A-mediated PD-1/PD-L1 in antitumor immunity. Biochem Pharmacol. 2023;210:115460.
474 M Zhang, J Song, W Yuan, W Zhang, Z Sun. Roles of RNA methylation on tumor immunity and clinical implications. Front Immunol. 2021;12:641507.
475 G Yu, J Bao, M Zhan, et al. Comprehensive analysis of m5C methylation regulatory genes and tumor microenvironment in prostate cancer. Front Immunol. 2022;13:914577.
476 L Zhang, Z Su, F Hong, L Wang. Identification of a methylation-regulating genes prognostic signature to predict the prognosis and aid immunotherapy of clear cell renal cell carcinoma. Front Cell Dev Biol. 2022;10:832803.
477 G Sun, S Ma, Z Zheng, et al. Multi-omics analysis of expression and prognostic value of NSUN members in prostate cancer. Front Oncol. 2022;12:965571.
478 Z Huang, J Pan, H Wang, et al. Prognostic significance and tumor immune microenvironment heterogenicity of m5C RNA methylation regulators in triple-negative breast cancer. Front Cell Dev Biol. 2021;9:657547.
479 X Fang, C Miao, T Zeng, et al. Role of m(5) C RNA methylation regulators in colorectal cancer prognosis and immune microenvironment. J Clin Lab Anal. 2022;36(4):e24303.
480 Y Luo, J Feng, Q Xu, W Wang, X Wang. NSun2 deficiency protects endothelium from inflammation via mRNA methylation of ICAM-1. Circ Res. 2016;118(6):944-956.
481 L Lu, SG Gaffney, VL Cannataro, J Townsend. Transfer RNA methyltransferase gene NSUN2 mRNA expression modifies the effect of T cell activation score on patient survival in head and neck squamous carcinoma. Oral Oncol. 2020;101:104554.
482 J Zhao, J Zou, W Jiao, L Lin, J Wang, Z Lin. Construction of N-7 methylguanine-related mRNA prognostic model in uterine corpus endometrial carcinoma based on multi-omics data and immune-related analysis. Sci Rep. 2022;12(1):18813.
483 T Li, PS Hu, Z Zuo, et al. METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18(1):112.
484 LJ Deng, WQ Deng, SR Fan, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022;21(1):52.
485 Y Hu, C Gong, Z Li, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer. 2022;21(1):34.
486 R Su, L Dong, Y Li, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020;38(1):79-96. e11.
487 PA Boriack-Sjodin, S Ribich, RA Copeland. RNA-modifying proteins as anticancer drug targets. Nat Rev Drug Discov. 2018;17(6):435-453.
488 Y Yang, PJ Hsu, YS Chen, YG Yang. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28(6):616-624.
489 X Yang, Y Wang, R Byrne, G Schneider, S Yang. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520-10594.
PDF

Accesses

Citations

Detail

Sections
Recommended

/