Half-life extension of single-domain antibody–drug conjugates by albumin binding moiety enhances antitumor efficacy

Quanxiao Li1, Yu Kong1, Yuxuan Zhong1, Ailing Huang2, Tianlei Ying1(), Yanling Wu1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (5) : e557. DOI: 10.1002/mco2.557
ORIGINAL ARTICLE

Half-life extension of single-domain antibody–drug conjugates by albumin binding moiety enhances antitumor efficacy

  • Quanxiao Li1, Yu Kong1, Yuxuan Zhong1, Ailing Huang2, Tianlei Ying1(), Yanling Wu1()
Author information +
History +

Abstract

Single-domain antibody–drug conjugates (sdADCs) have been proven to have deeper solid tumor penetration and intratumor accumulation capabilities due to their smaller size compared with traditional IgG format ADCs. However, one of the key challenges for improving clinical outcomes of sdADCs is their abbreviated in vivo half-life. In this study, we innovatively fused an antihuman serum albumin (αHSA) nanobody to a sdADCs targeting oncofetal antigen 5T4, conferring serum albumin binding to enhance the pharmacokinetic profiles of sdADCs. The fusion protein was conjugated with monomethyl auristatin E (MMAE) at s224c site mutation. The conjugate exhibited potent cytotoxicity against various tumor cells. Compared with the nonalbumin-binding counterparts, the conjugate exhibited a 10-fold extended half-life in wild-type mice and fivefold prolonged serum half-life in BxPC-3 xenograft tumor models as well as enhanced tumor accumulation and retention in mice. Consequently, n501–αHSA–MMAE showed potent antitumor effects, which were comparable to n501–MMAE in pancreatic cancer BxPC-3 xenograft tumor models; however, in human ovarian teratoma PA-1 xenograft tumor models, n501–αHSA–MMAE significantly improved antitumor efficacy. Moreover, the conjugate showed mitigated hepatotoxicity. In summary, our results suggested that fusion to albumin-binding moiety as a viable strategy can enhance the therapeutic potential of sdADCs through optimized pharmacokinetics.

Keywords

albumin-binding moiety / antitumor efficacy / half-life extension / single-domain antibody–drug conjugates

Cite this article

Download citation ▾
Quanxiao Li, Yu Kong, Yuxuan Zhong, Ailing Huang, Tianlei Ying, Yanling Wu. Half-life extension of single-domain antibody–drug conjugates by albumin binding moiety enhances antitumor efficacy. MedComm, 2024, 5(5): e557 https://doi.org/10.1002/mco2.557

References

1 Z Fu, S Li, S Han, C Shi, Y Zhang. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93. doi:
2 CH Chau, PS Steeg, WD Figg. Antibody-drug conjugates for cancer. Lancet. 2019;394(10200):793-804. doi:
3 C Dumontet, JM Reichert, PD Senter, JM Lambert, A Beck. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023;22(8):641-661. doi:
4 G van Dongen. Improving tumor penetration of antibodies and antibody-drug conjugates: taking away the barriers for trojan horses. Cancer Res. 2021;81(15):3956-3957. doi:
5 R Zhang, L Hao, P Chen, G Zhang, N Liu. Multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy. Bioorg Chem. 2023;137:106576. doi:
6 RA Davis, T Ganguly, R Harris, SH Hausner, L Kovacs, JL Sutcliffe. Synthesis and evaluation of a monomethyl auristatin E horizontal line integrin alpha(v)beta(6) binding peptide-drug conjugate for tumor targeted drug delivery. J Med Chem. 2023;66(14):9842-9852. doi:
7 C Fu, L Yu, Y Miao, X Liu, Z Yu, M Wei. Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm Sin B. 2023;13(2):498-516. doi:
8 BM Cooper, J Iegre, OD DH, M Olwegard Halvarsson, DR Spring. Peptides as a platform for targeted therapeutics for cancer: peptide-drug conjugates (PDCs). Chem Soc Rev. 2021;50(3):1480-1494. doi:
9 Y Wang, AG Cheetham, G Angacian, H Su, L Xie, H Cui. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev. 2017;110-111: 112-126. doi:
10 SS Panikar, N Banu, J Haramati, S Del Toro-Arreola, A Riera Leal, P Salas. Nanobodies as efficient drug-carriers: progress and trends in chemotherapy. J Control Release. 2021;334: 389-412. doi:
11 MA Rossotti, K Belanger, KA Henry, J Tanha. Immunogenicity and humanization of single-domain antibodies. FEBS J. 2022;289(14):4304-4327. doi:
12 Y Wu, Q Li, Y Kong, et al. A highly stable human single-domain antibody-drug conjugate exhibits superior penetration and treatment of solid tumors. Mol Ther. 2022;30(8):2785-2799. doi:
13 DR Goulet, WM Atkins. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109(1):74-103. doi:
14 NV Currier, SE Ackerman, JR Kintzing, et al. Targeted drug delivery with an integrin-binding knottin-Fc-MMAF conjugate produced by cell-free protein synthesis. Mol Cancer Ther. 2016;15(6):1291-1300. doi:
15 V Gupta, S Bhavanasi, M Quadir, et al. Protein PEGylation for cancer therapy: bench to bedside. J Cell Commun Signal. 2019;13(3):319-330. doi:
16 P Famta, S Shah, N Jain, et al. Albumin-hitchhiking: fostering the pharmacokinetics and anticancer therapeutics. J Control Release. 2023;353: 166-185. doi:
17 HY Tao, RQ Wang, WJ Sheng, YS Zhen. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int J Biol Macromol. 2021;187: 24-34. doi:
18 T Ying, R Gong, TW Ju, P Prabakaran, DS Dimitrov. Engineered Fc based antibody domains and fragments as novel scaffolds. Biochim Biophys Acta. 2014;1844(11):1977-1982. doi:
19 L Wang, T Ying. New directions for half-life extension of protein therapeutics: the rise of antibody fc domains and fragments. Curr Pharm Biotechnol. 2016;17(15):1348-1352. doi:
20 T Ying, Y Wang, Y Feng, et al. Engineered antibody domains with significantly increased transcytosis and half-life in macaques mediated by FcRn. MAbs. 2015;7(5):922-930. doi:
21 D Sleep. Albumin and its application in drug delivery. Expert Opin Drug Deliv. 2015;12(5):793-812. doi:
22 A Zorzi, S Linciano, A Angelini. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. Medchemcomm. 2019;10(7):1068-1081. doi:
23 C Chaudhury, S Mehnaz, JM Robinson, et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003;197(3):315-322. doi:
24 S Oyama, K Ebina, Y Etani, et al. A novel anti-TNF-alpha drug ozoralizumab rapidly distributes to inflamed joint tissues in a mouse model of collagen induced arthritis. Sci Rep. 2022;12(1):18102. doi:
25 F Kratz. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171-183. doi:
26 NA Jumapili, M Zivalj, RM Barthelmess, et al. A few good reasons to use nanobodies for cancer treatment. Eur J Immunol. 2023;53(9):e2250024. doi:
27 H Liu, R Wang, D An, et al. An engineered IL-21 with half-life extension enhances anti-tumor immunity as a monotherapy or in combination with PD-1 or TIGIT blockade. Int Immunopharmacol. 2021;101:108307. doi: Pt A
28 SO Doronina, TD Bovee, DW Meyer, et al. Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug Chem. 2008;19(10):1960-1963. doi:
29 BM Bordeau, TD Nguyen, JR Polli, P Chen, JP Balthasar. Payload-binding Fab fragments increase the therapeutic index of MMAE antibody-drug conjugates. Mol Cancer Ther. 2023;22(4):459-470. doi:
30 RA Smith, DJ Zammit, NK Damle, et al. ASN004, a 5T4-targeting scFv-Fc antibody-drug conjugate with high drug-to-antibody ratio, induces complete and durable tumor regressions in preclinical models. Mol Cancer Ther. 2021;20(8):1327-1337. doi:
31 I Nessler, E Khera, S Vance, et al. Increased tumor penetration of single-domain antibody–drug conjugates improves in vivo efficacy in prostate cancer models. Cancer Research. 2020;80(6):1268-1278. doi:
32 C Li, W Zhan, Z Yang, et al. Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell. 2022;185(8):1389-1401. doi: e18
33 Y Shi, H Wu, W Hu, et al. An antigen-strengthened dye-modified fully-human-nanobody-based immunoprobe for second near infrared bioimaging of metastatic tumors. Biomaterials. 2022;287:121637. doi:
34 K Huang, T Ying, Y Wu. Single-domain antibodies as therapeutics for respiratory RNA virus infections. Viruses. 2022;14(6):1162. doi:
35 Y Wu, S Jiang, T Ying. Single-domain antibodies as therapeutics against human viral diseases. Front Immunol. 2017;8: 1802. doi:
36 E Yang, Q Liu, G Huang, J Liu, W Wei. Engineering nanobodies for next-generation molecular imaging. Drug Discov Today. 2022;27(6):1622-1638. doi:
37 DC Roopenian, S Akilesh. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715-725. doi:
38 L Liu. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9(1):15-32. doi:
39 R Zaman, RA Islam, N Ibnat, et al. Current strategies in extending half-lives of therapeutic proteins. J Control Release. 2019;301: 176-189. doi:
40 D Shi, D Beasock, A Fessler, et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev. 2022;180:114079. doi:
41 LJ Holt, A Basran, K Jones, et al. Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng Des Sel. 2008;21(5):283-288. doi:
42 T Ying, TW Ju, Y Wang, P Prabakaran, DS Dimitrov. Interactions of IgG1 CH2 and CH3 Domains with FcRn. Front Immunol. 2014;5: 146. doi:
43 L Van de Sande, S Cosyns, W Willaert, W Ceelen. Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review. Drug Deliv. 2020;27(1):40-53. doi:
44 F Zeeshan, T Madheswaran, J Panneerselvam, R Taliyan, P Kesharwani. Human serum albumin as multifunctional nanocarrier for cancer therapy. J Pharm Sci. 2021;110(9):3111-3117. doi:
45 J Fang, H Nakamura, H Maeda. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136-151. doi:
46 H Cho, SI Jeon, CH Ahn, MK Shim, K Kim. Emerging albumin-binding anticancer drugs for tumor-targeted drug delivery: current understandings and clinical translation. Pharmaceutics. 2022;14(4):728. doi:
47 G Stehle, H Sinn, A Wunder, et al. Plasma protein (albumin) catabolism by the tumor itself–implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol. 1997;26(2):77-100. doi:
48 A Spada, J Emami, JA Tuszynski, A Lavasanifar. The uniqueness of albumin as a carrier in nanodrug delivery. Mol Pharm. 2021;18(5):1862-1894. doi:
49 A Paci, A Desnoyer, J Delahousse, et al. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: part 1, monoclonal antibodies, antibody-drug conjugates and bispecific T-cell engagers. Eur J Cancer. 2020;128: 107-118. doi:
50 A Samantasinghar, NP Sunildutt, F Ahmed, et al. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed Pharmacother. 2023;161:114408. doi:
51 RP Lyon, TD Bovee, SO Doronina, et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33(7):733-735. doi:
52 KJ Hamblett, PD Senter, DF Chace, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10(20):7063-7070. doi:
53 JC Masters, DJ Nickens, D Xuan, RL Shazer, M Amantea. Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Invest New Drugs. 2018;36(1):121-135. doi:
54 L Di. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015;17(1):134-143. doi:
PDF

Accesses

Citations

Detail

Sections
Recommended

/