Toll-like receptors in health and disease

Kunyu Wang1, Hanyao Huang2, Qi Zhan1, Haoran Ding1, Yi Li1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (5) : e549. DOI: 10.1002/mco2.549
REVIEW

Toll-like receptors in health and disease

  • Kunyu Wang1, Hanyao Huang2, Qi Zhan1, Haoran Ding1, Yi Li1()
Author information +
History +

Abstract

Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.

Keywords

cancer / clinical treatment / disease / innate immunity / toll-like receptors

Cite this article

Download citation ▾
Kunyu Wang, Hanyao Huang, Qi Zhan, Haoran Ding, Yi Li. Toll-like receptors in health and disease. MedComm, 2024, 5(5): e549 https://doi.org/10.1002/mco2.549

References

1 CA Janeway. Approaching the asymptote—evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54: 1-13.
2 T Kawasaki, T Kawai. Toll-like receptor signaling pathways. Front Immunol. 2014;5: 461.
3 D Li, M Wu. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291.
4 KM Pflug, R Sitcheran. Targeting NF-kappaB-inducing kinase (NIK) in immunity, inflammation, and cancer. Int J Mol Sci. 2020;21(22):8470.
5 J Kay, E Thadhani, L Samson, B Engelward. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst). 2019;83:102673.
6 M Murata. Inflammation and cancer. Environ Health Prev Med. 2018;23(1):50.
7 LB Meira, JM Bugni, SL Green, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest. 2008;118(7):2516-2525.
8 AM Yu, JA Calvo, S Muthupalani, LD Samson. The Mbd4 DNA glycosylase protects mice from inflammation-driven colon cancer and tissue injury. Oncotarget. 2016;7(19):28624-28636.
9 H Yu, L Lin, Z Zhang, H Zhang, H Hu. Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209.
10 JJ Brennan, TD Gilmore. Evolutionary origins of Toll-like receptor signaling. Mol Biol Evol. 2018;35(7):1576-1587.
11 J Aluri, MA Cooper, LG Schuettpelz. Toll-like receptor signaling in the establishment and function of the immune system. Cells. 2021;10(6):1374.
12 KA Fitzgerald, JC Kagan. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044-1066.
13 U Hasan, C Chaffois, C Gaillard, et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol. 2005;174(5):2942-2950.
14 S Francisco, J-M Billod, J Merino, et al. Induction of TLR4/TLR2 interaction and heterodimer formation by low endotoxic atypical LPS. Front Immunol. 2022;12:748303.
15 J Zindel, P Kubes. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15: 493-518.
16 JC Chow, DW Young, DT Golenbock, WJ Christ, F Gusovsky. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999;274(16):10689-10692.
17 R Zhou, L Liu, Y Wang. Viral proteins recognized by different TLRs. J Med Virol. 2021;93(11):6116-6123.
18 H Zhang, L Kang, H Yao, et al. Streptococcus pneumoniaeEndopeptidase O (PepO) elicits a strong innate immune response in mice via TLR2 and TLR4 signaling pathways. Front Cell Infect Microbiol. 2016;6: 23.
19 S Feng, C Zhang, S Chen, R He, G Chao, S Zhang. TLR5 signaling in the regulation of intestinal mucosal immunity. J Inflamm Res. 2023;16: 2491-2501.
20 H Hug, MH Mohajeri, G La Fata. Toll-like receptors: regulators of the immune response in the human gut. Nutrients. 2018;10(2):203.
21 S Sharma, KA Fitzgerald, MP Cancro, A Marshak-Rothstein. Nucleic acid-sensing receptors: rheostats of autoimmunity and autoinflammation. J Immunol. 2015;195(8):3507-3512.
22 J Agier, P Zelechowska, E Kozlowska, E Brzezinska-Blaszczyk. Expression of surface and intracellular Toll-like receptors by mature mast cells. Cent Eur J Immunol. 2016;41(4):333-338.
23 B Tavora, T Mederer, KJ Wessel, et al. Tumoural activation of TLR3-SLIT2 axis in endothelium drives metastasis. Nature. 2020;586(7828):299-304.
24 Y Chen, J Lin, Y Zhao, X Ma, H Yi. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B. 2021;22(8):609-632.
25 Y-H Yong, S-F Liu, G-H Hua, et al. Goose toll-like receptor 3 (TLR3) mediated IFN-γ and IL-6 in anti-H5N1 avian influenza virus response. Vet Immunol Immunopathol. 2018;197: 31-38.
26 Z Zhang, U Ohto, T Shibata, et al. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45(4):737-748.
27 C Apetrei, AA Patamawenu, NE Wright, et al. Toll-like receptor 7-adapter complex modulates interferon-α production in HIV-stimulated plasmacytoid dendritic cells. PLoS One. 2019;14(12):e0225806.
28 S-R Shih, Z Luo, R Su, et al. EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. PLoS Pathog. 2019;15(11):e1008142.
29 W Greulich, M Wagner, MM Gaidt, et al. TLR8 is a sensor of RNase T2 degradation products. Cell. 2019;179(6):1264-1275. e13.
30 H Hemmi, O Takeuchi, T Kawai, et al. A Toll-like receptor recognizes bacterial DNA. Article. Nature. 2000;408(6813):740-745.
31 H Hochrein, B Schlatter, M O'Keeffe, et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci USA. 2004;101(31):11416-11421.
32 SM-Y Lee, T-F Yip, S Yan, et al. Recognition of double-stranded RNA and regulation of interferon pathway by toll-like receptor 10. Front Immunol. 2018;9: 516.
33 SB Su, L Tao, ZP Deng, W Chen, SY Qin, HX Jiang. TLR10: insights, controversies and potential utility as a therapeutic target. Scand J Immunol. 2021;93(4):e12988.
34 L Boutens, AM Mirea, I van den Munckhof, et al. A role for TLR10 in obesity and adipose tissue morphology. Cytokine. 2018;108: 205-212.
35 F Fore, M Budipranama, RA Destiawan. TLR10 and its role in immunity. Handb Exp Pharmacol. 2022;276: 161-174.
36 D Mukhopadhyay, D Arranz-Solis, JPJ Saeij. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. PLoS Pathog. 2020;16(5):e1008586.
37 Y Liu, M Yang, X Tang, et al. Characterization of a novel Toll-like receptor 13 homologue from a marine fish Nibea albiflora, revealing its immunologic function as PRRs. Dev Comp Immunol. 2023;139:104563.
38 X Yu, Y Liang, Y Zhou, et al. 23S rRNA from Vibrio parahaemolyticus regulates the innate immune response via recognition by TLR13 in orange-spotted grouper (Epinephelus coioides). Dev Comp Immunol. 2021;114:103837.
39 F-Y Gao, J-C Pang, M Wang, et al. Structurally diverse genes encode TLR13 in Nile tilapia: the two receptors can recognize Streptococcus 23S RNA and conduct signal transduction through MyD88. Article. Mol Immunol. 2021;132: 60-78.
40 K Vijay. Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol. 2018;59: 391-412.
41 P Behzadi, HA Garcia-Perdomo, TM Karpinski. Toll-like receptors: general molecular and structural biology. J Immunol Res. 2021;2021:9914854.
42 K Tabeta, K Hoebe, EM Janssen, et al. The Unc93b1mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol. 2006;7(2):156-164.
43 NA Lind, VE Rael, K Pestal, B Liu, GM Barton. Regulation of the nucleic acid-sensing Toll-like receptors. Nat Rev Immunol. 2022;22(4):224-235.
44 K Pelka, D Bertheloot, E Reimer, et al. The chaperone UNC93B1 regulates toll-like receptor stability independently of endosomal TLR transport. Immunity. 2018;48(5):911-922. e7.
45 K Takahashi, T Shibata, S Akashi-Takamura, et al. A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses. J Exp Med. 2007;204(12):2963-2976.
46 F Randow, B Seed. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Article. Nat Cell Biol. 2001;3(10):891-896.
47 M Yamamoto, S Sato, H Hemmi, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301(5633):640-643.
48 T Kawai, O Adachi, T Ogawa, K Takeda, S Akira. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 1999;11(1):115-122.
49 M Yamamoto, S Sato, K Mori, et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J Immunol. 2002;169(12):6668-6672.
50 O Takeuchi, K Takeda, K Hoshino, O Adachi, T Ogawa, S Akira. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol. 2000;12(1):113-117.
51 LAJ O'Neill, AG Bowie. The family of five: tIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7(5):353-364.
52 PG Motshwene, MC Moncrieffe, JG Grossmann, et al. An oligomeric signaling platform formed by the toll-like receptor signal transducers MyD88 and IRAK-4. Article. J Biol Chem. 2009;284(37):25404-25411.
53 D De Nardo, KR Balka, Y Cardona Gloria, VR Rao, E Latz, SL Masters. Interleukin-1 receptor–associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. J Biol Chem. 2018;293(39):15195-15207.
54 R Ferrao, H Zhou, Y Shan, et al. IRAK4 dimerization and trans-autophosphorylation are induced by myddosome assembly. Mol Cell. 2014;55(6):891-903.
55 S-C Lin, Y-C Lo, H Wu. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465(7300):885-890.
56 T Kawagoe, S Sato, K Matsushita, et al. Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2. Nat Immunol. 2008;9(6):684-691.
57 Z-P Xia, L Sun, X Chen, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature. 2009;461(7260):114-119.
58 J-I Inoue, J Gohda, T Akiyama. Characteristics and biological functions of TRAF6 Adv Exp Med Biol. 2007;597: 72-79.
59 J Wei, S Zang, M Xu, Q Zheng, X Chen, Q Qin. TRAF6 is a critical factor in fish immune response to virus infection. Fish Shellfish Immunol. 2017;60: 6-12.
60 L Chen, L Zheng, P Chen, G Liang. Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling. J Med Chem. 2020;63(22):13316-13329.
61 H Oshiumi, M Matsumoto, K Funami, T Akazawa, T Seya. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. Nat Immunol. 2003;4(2):161-167.
62 K Clark, O Takeuchi, S Akira, P Cohen. The TRAF-associated protein TANK facilitates cross-talk within the IκB kinase family during Toll-like receptor signaling. Proc Natl Acad Sci USA. 2011;108(41):17093-17098.
63 SM McWhirter, KA Fitzgerald, J Rosains, DC Rowe, DT Golenbock, T Maniatis. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Article. Proc Nat Acad Sci USA. 2004;101(1):233-238.
64 KA Fitzgerald, SM McWhirter, KL Faia, et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Article. Nat Immunol. 2003;4(5):491-496.
65 S Sato, M Sugiyama, M Yamamoto, et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, nf-κb and ifn-regulatory factor-3, in the toll-like receptor signaling. J Immunol. 2003;171(8):4304-4310.
66 MA Ermolaeva, M-C Michallet, N Papadopoulou, et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol. 2008;9(9):1037-1046.
67 HI Muendlein, WM Connolly, Z Magri, et al. ZBP1 promotes LPS-induced cell death and IL-1β release via RHIM-mediated interactions with RIPK1. Nat Commun. 2021;12(1):86.
68 T Kawai, S Akira. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373-384.
69 MC Nussenzweig, RM Steinman. Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction. J Exp Med. 1980;151(5):1196-1212.
70 J Banchereau, RM Steinman. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245-252.
71 AD Edwards, SS Diebold, EM Slack, et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol. 2003;33(4):827-833.
72 O Schulz, SS Diebold, M Chen, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature. 2005;433(7028):887-892.
73 A Jain, RA Irizarry-Caro, MM McDaniel, et al. T cells instruct myeloid cells to produce inflammasome-independent IL-1beta and cause autoimmunity. Nat Immunol. 2020;21(1):65-74.
74 C Pasare, R Medzhitov. Toll-dependent control mechanisms of CD4 T cell activation. Article. Immunity. 2004;21(5):733-741.
75 D Kabelitz. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol. 2007;19(1):39-45.
76 RPM Sutmuller, M den Brok, M Kramer, et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest. 2006;116(2):485-494.
77 LS Kreuk, MA Koch, LC Slayden, et al. B cell receptor and Toll-like receptor signaling coordinate to control distinct B-1 responses to both self and the microbiota. eLife. 2019;8:e47015.
78 C Pasare, R Medzhitov. Control of B-cell responses by Toll-like receptors. Article. Nature. 2005;438(7066):364-368.
79 C Guerra, K Johal, D Morris, et al. Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp Immunol. 2012;168(1):142-152.
80 NM Lauzon, F Mian, R MacKenzie, AA Ashkar. The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity. Cell Immunol. 2006;241(2):102-112.
81 A Chalifour, P Jeannin, JF Gauchat, et al. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood. 2004;104(6):1778-1783.
82 T Kondo, T Kawai, S Akira. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 2012;33(9):449-458.
83 LLN Hubbard, BB Moore. IRAK-M regulation and function in host defense and immune homeostasis. Infect Dis Rep. 2010;2(1):e9.
84 K Kobayashi, LD Hernandez, JE Galán, CA Janeway, R Medzhitov, RA Flavell. IRAK-M is a negative regulator of toll-like receptor signaling. Cell. 2002;110(2):191-202.
85 Y Bulut, E Faure, L Thomas, O Equils, M Arditi. Cooperation of toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferiouter surface protein A lipoprotein:: Role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol. 2001;167(2):987-994.
86 G Zhang, S Ghosh. Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem. 2002;277(9):7059-7065.
87 PH Larsen, TH Holm, T Owens. Toll-like receptors in brain development and homeostasis. Sci STKE. 2007;2007(402):pe47-pe47.
88 KS Michelsen, M Arditi. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr Opin Hematol. 2007;14(1):48-54.
89 S Fillatreau, B Manfroi, T D?rner. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat Rev Rheumatol. 2020;17(2):98-108.
90 E Elinav, R Nowarski, CA Thaiss, B Hu, C Jin, RA Flavell. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759-771.
91 B Ruffell, D Chang-Strachan, V Chan, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26(5):623-637.
92 IE Dumitriu, DR Dunbar, SE Howie, T Sethi, CD Gregory. Human dendritic cells produce TGF-β1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+regulatory T cells. J Immunol. 2009;182(5):2795-2807.
93 V Kumar. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol. 2020;11: 1722.
94 R Patra, N Chandra Das, S Mukherjee. Targeting human TLRs to combat COVID-19: a solution? J Med Virol. 2021;93(2):615-617.
95 S Khanmohammadi, N Rezaei. Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021;93(5):2735-2739.
96 MS Diamond, TD Kanneganti. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol. 2022;23(2):165-176.
97 M Zheng, R Karki, EP Williams, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol. 2021;22(7):829-838.
98 A Sariol, S Perlman. SARS-CoV-2 takes its Toll. Nat Immunol. 2021;22(7):801-802.
99 S Jung, I Potapov, S Chillara, A del Sol. Leveraging systems biology for predicting modulators of inflammation in patients with COVID-19. Sci Adv. 2021;7(6):eabe5735.
100 L Mazaleuskaya, R Veltrop, N Ikpeze, J Martin-Garcia, S Navas-Martin. Protective role of Toll-like receptor 3-induced type i interferon in murine coronavirus infection of macrophages. Viruses. 2012;4(5):901-923.
101 MA Moreno-Eutimio, C Lopez-Macias, R Pastelin-Palacios. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020;22(4-5):226-229.
102 FP Veras, MC Pontelli, CM Silva, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12):e20201129.
103 S Bolourani, M Brenner, P Wang. The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl). 2021;99(10):1373-1384.
104 E Fraser. Long term respiratory complications of covid-19. BMJ. 2020;370:m3001.
105 S Bhattacharyya, W Wang, W Qin, et al. TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. JCI Insight. 2018;3(13):e98850.
106 S Nishimoto, D Fukuda, M Sata. Emerging roles of Toll-like receptor 9 in cardiometabolic disorders. Inflamm Regen. 2020;40: 18.
107 J Kim, JY Yoo, JM Suh, et al. The flagellin-TLR5-Nox4 axis promotes the migration of smooth muscle cells in atherosclerosis. Exp Mol Med. 2019;51(7):1-13.
108 K Koushki, SK Shahbaz, K Mashayekhi, et al. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol. 2020;60(2):175-199.
109 P Kong, ZY Cui, XF Huang, DD Zhang, RJ Guo, M Han. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131.
110 H Vaez, H Soraya, A Garjani, T Gholikhani. Toll-like receptor 4 (TLR4) and AMPK relevance in cardiovascular disease. Adv Pharm Bull. 2023;13(1):36-47.
111 AL Bayer, P Alcaide. MyD88: at the heart of inflammatory signaling and cardiovascular disease. J Mol Cell Cardiol. 2021;161: 75-85.
112 L Yu, Z Feng. The role of Toll-like receptor signaling in the progression of heart failure. Mediat Inflamm. 2018;2018:9874109.
113 T Shishido, N Nozaki, H Takahashi, et al. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury. Biochem Biophys Res Commun. 2006;345(4):1446-1453.
114 T Peng, Y Ma, X Zhang, et al. Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS One. 2012;7(7):e40763.
115 T Shishido, N Nozaki, S Yamaguchi, et al. Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation. 2003;108(23):2905-2910.
116 X Wang, T Ha, J Kalbfleisch, D Williams, C Li. TLR3 mediates neonatal heart repair and regeneration through glycolysis-dependent YAP/TAZ mediated miR-152 expression. Circulation. 2016;134: 966-982.
117 JE Cole, TJ Navin, AJ Cross, et al. Unexpected protective role for Toll-like receptor 3 in the arterial wall. Proc Natl Acad Sci USA. 2011;108(6):2372-2377.
118 A Lazaridis, E Gavriilaki, S Douma, E Gkaliagkousi. Toll-like receptors in the pathogenesis of essential hypertension. A forthcoming immune-driven theory in full effect. Int J Mol Sci. 2021;22(7):3451.
119 S Satoh, R Yada, H Inoue, et al. Toll-like receptor-4 is upregulated in plaque debris of patients with acute coronary syndrome more than Toll-like receptor-2. Heart Vessels. 2016;31(1):1-5.
120 Y Yang, J Lv, S Jiang, et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 2016;7(5):e2234.
121 ML Peng, Y Fu, CW Wu, Y Zhang, H Ren, SS Zhou. Signaling pathways related to oxidative stress in diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:907757.
122 Q Su, L Li, Y Sun, H Yang, Z Ye, J Zhao. Effects of the TLR4/Myd88/NF-kappa B signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cell Physiol Biochem. 2018;47(4):1497-1508.
123 X Chu, B Xu, H Gao, et al. Lipopolysaccharides improve mesenchymal stem cell-mediated cardioprotection by MyD88 and stat3 signaling in a mouse model of cardiac ischemia/reperfusion injury. Stem Cells Dev. 2019;28(9):620-631.
124 J-G Lee, E-J Lim, D-W Park, S-H Lee, J-R Kim, S-H Baek. A combination of Lox-1 and Nox1 regulates TLR9-mediated foam cell formation. Cell Signalling. 2008;20(12):2266-2275.
125 D Fukuda, S Nishimoto, K Aini, et al. Toll-like receptor 9 plays a pivotal role in angiotensin II-induced atherosclerosis. J Am Heart Assoc. 2019;8(7):e010860.
126 A Baumann, A Nier, A Hernandez-Arriaga, et al. Toll-like receptor 1 as a possible target in non-alcoholic fatty liver disease. Sci Rep. 2021;11(1):17815.
127 D Issa, N Alkhouri. Nonalcoholic fatty liver disease and hepatocellular carcinoma: new insights on presentation and natural history. Hepatobiliary Surg Nutr. 2017;6(6):401-403.
128 NS Alegre, CC Garcia, LA Billordo, et al. Limited expression of TLR9 on T cells and its functional consequences in patients with nonalcoholic fatty liver disease. Clin Mol Hepatol. 2020;26(2):216-226.
129 A Vijayan, M Rumbo, C Carnoy, J-C Sirard. Compartmentalized antimicrobial defenses in response to flagellin. Trends Microbiol. 2018;26(5):423-435.
130 Z Shen, W Luo, B Tan, et al. Roseburia intestinalis stimulates TLR5-dependent intestinal immunity against Crohn's disease. EBioMedicine. 2022;85:104285.
131 ML Hoivik, B Moum, IC Solberg, et al. Work disability in inflammatory bowel disease patients 10 years after disease onset: results from the IBSEN study. Gut. 2013;62(3):368-375.
132 G Ruan, M Chen, L Chen, et al. Roseburia intestinalis and its metabolite butyrate inhibit colitis and upregulate TLR5 through the SP3 signaling pathway. Nutrients. 2022;14(15):3041.
133 S Luo, X Deng, Q Liu, et al. Emodin ameliorates ulcerative colitis by the flagellin-TLR5 dependent pathway in mice. Int Immunopharmacol. 2018;59: 269-275.
134 H Schmitt, J Ulmschneider, U Billmeier, et al. The TLR9 agonist cobitolimod induces IL10-producing wound healing macrophages and regulatory T cells in ulcerative colitis. J Crohns Colitis. 2020;14(4):508-524.
135 CP Sodhi, P Wipf, Y Yamaguchi, et al. The human milk oligosaccharides 2'-fucosyllactose and 6'-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. Pediatr Res. 2021;89(1):91-101.
136 L Sun, Y Li, H Luo, K Wang, L Li, Y Zeng. Effects of Toll?like receptor 9 and CpG oligodeoxynucleotides 1826 on sodium taurocholate?induced acute pancreatitis rats. Mol Med Rep. 2018;18(4):3818-3824.
137 JL Harding, ME Pavkov, DJ Magliano, JE Shaw, EW Gregg. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2018;62(1):3-16.
138 LM Hinder, BJ Murdock, M Park, et al. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: an inflammatory story. Exp Neurol. 2018;305: 33-43.
139 Z Guo, Y Zhang, C Liu, JY Youn, H Cai. Toll-like receptor 2 (TLR2) knockout abrogates diabetic and obese phenotypes while restoring endothelial function via inhibition of NOX1. Diabetes. 2021;70(9):2107-2119.
140 J Huang, J Peng, JA Pearson, et al. Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. Cell Mol Immunol. 2021;18(2):328-338.
141 ME Youssef, HM Abdelrazek, YM Moustafa. Cardioprotective role of GTS-21 by attenuating the TLR4/NF-kappa B pathway in streptozotocin-induced diabetic cardiomyopathy in rats. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(1):11-31.
142 M Liu, J Peng, N Tai, et al. Toll-like receptor 9 negatively regulates pancreatic islet beta cell growth and function in a mouse model of type 1 diabetes. Diabetologia. 2018;61(11):2333-2343.
143 Y-R Liao, Z-J Li, P Zeng, Y-Q Lan. TLR7 deficiency contributes to attenuated diabetic retinopathy via inhibition of inflammatory response. Biochem Biophys Res Commun. 2017;493(2):1136-1142.
144 R Simo, O Simo-Servat, P Bogdanov, C Hernandez. Neurovascular unit: a new target for treating early stages of diabetic retinopathy. Pharmaceutics. 2021;13(8):1320.
145 M Singer, CS Deutschman, CW Seymour, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Article. JAMA. 2016;315(8):801-810.
146 T van der Poll, FL van de Veerdonk, BP Scicluna, MG Netea. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407-420.
147 JE Gotts, MA Matthay. Sepsis: pathophysiology and clinical management. BMJ. 2016;353: 1585.
148 D Deng, X Li, C Liu, et al. Systematic investigation on the turning point of over-inflammation to immunosuppression in CLP mice model and their characteristics. Int Immunopharmacol. 2017;42: 49-58.
149 MY Behairy, AA Abdelrahman, EA Toraih, et al. Investigation of TLR2 and TLR4 polymorphisms and sepsis susceptibility: computational and experimental approaches. Int J Mol Sci. 2022;23(18):10982.
150 X Wang, Z Guo, Z Wang, et al. Diagnostic and predictive values of pyroptosis-related genes in sepsis. Front Immunol. 2023;14:1105399.
151 X Wang, D Li, Y-Y Qin, et al. Toll-like receptor 2 deficiency relieves splenic immunosuppression during sepsis. Article; Early access. Immunobiology. 2023;228(3):152374.
152 J Rybka, A Butrym, T Wrobel, et al. The expression of Toll-like receptors and development of severe sepsis in patients with acute myeloid leukemias after induction chemotherapy. Med Oncol. 2014;31(12):319.
153 J Yang, W Liu, M Xu, L Yu. Long non-coding RNA CRNDE and toll-like receptor 3 correlate with disease severity, inflammation, and mortality in sepsis. J Clin Lab Anal. 2020;34(9):e23360.
154 KA Cavassani, M Ishii, H Wen, et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med. 2008;205(11):2609-2621.
155 X Chen, T Wang, L Song, X Liu. Activation of multiple Toll-like receptors serves different roles in sepsis-induced acute lung injury. Exp Ther Med. 2019;18(1):443-450.
156 B Williams, J Neder, P Cui, et al. Toll-like receptors 2 and 7 mediate coagulation activation and coagulopathy in murine sepsis. J Thromb Haemost. 2019;17(10):1683-1693.
157 J Li, Y Chen, R Li, et al. Gut microbial metabolite hyodeoxycholic acid targets the TLR4/MD2 complex to attenuate inflammation and protect against sepsis. Article; Early Access. Mol Ther. 2023;31(4):1017-1032.
158 X-S Chen, S-H Wang, C-Y Liu, et al. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res. 2022;185:106473.
159 S Xie, J Li, F Lyu, et al. Novel tripeptide RKH derived from Akkermansia muciniphila protects against lethal sepsis. Gut. 2023;73(1):78-91.
160 Z Xiao, B Kong, J Fang, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered. 2021;12(2):9367-9376.
161 X Yang, Y Yin, X Yan, Z Yu, Y Liu, J Cao. Flagellin attenuates experimental sepsis in a macrophage-dependent manner. Crit Care. 2019;23(1):106.
162 B Williams, J Zhu, L Zou, W Chao. Innate immune TLR7 signaling mediates platelet activation and platelet-leukocyte aggregate formation in murine bacterial sepsis. Platelets. 2022;33(8):1251-1259.
163 W Jian, L Gu, B Williams, Y Feng, W Chao, L Zou. Toll-like receptor 7 contributes to inflammation, organ injury, and mortality in murine sepsis. Anesthesiology. 2019;131(1):105-118.
164 KH Chen, L Zeng, W Gu, J Zhou, DY Du, JX Jiang. Polymorphisms in the toll-like receptor 9 gene associated with sepsis and multiple organ dysfunction after major blunt trauma. Br J Surg. 2011;98(9):1252-1259.
165 N Atalan, H Karagedik, L Acar, et al. Analysis of Toll-like receptor 9 gene polymorphisms in sepsis. In Vivo. 2016;30(5):639-643.
166 G Plitas, BM Burt, HM Nguyen, ZM Bamboat, RP DeMatteo. Toll-like receptor 9 inhibition reduces mortality in polymicrobial sepsis. J Exp Med. 2008;205(6):1277-1283.
167 S Sun, Z Duan, X Wang, et al. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway. Cell Death Dis. 2021;12(6):606.
168 DE Johnson, B Burtness, CR Leemans, VWY Lui, JE Bauman, JR Grandis. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92.
169 AWY Chai, KP Lim, SC Cheong. Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol. 2020;61: 71-83.
170 LK Ng, AM Rich, HM Hussaini, et al. Toll-like receptor 2 is present in the microenvironment of oral squamous cell carcinoma. Br J Cancer. 2011;104(3):460-463.
171 N Ikehata, M Takanashi, T Satomi, et al. Toll-like receptor 2 activation implicated in oral squamous cell carcinoma development. Biochem Biophys Res Commun. 2018;495(3):2227-2234.
172 CD Palani, L Ramanathapuram, A Lam-Ubol, ZB Kurago. Toll-like receptor 2 induces adenosine receptor A2a and promotes human squamous carcinoma cell growth via extracellular signal regulated kinases. Oncotarget. 2018;9(6):6814-6829.
173 LK Makinen, T Atula, V Hayry, et al. Predictive role of toll-like receptors 2, 4, and 9 in oral tongue squamous cell carcinoma. Oral Oncol. 2015;51(1):96-102.
174 L Farnebo, A Shahangian, Y Lee, JH Shin, FA Scheeren, JB Sunwoo. Targeting Toll-like receptor 2 inhibits growth of head and neck squamous cell carcinoma. Oncotarget. 2015;6(12):9897-9907.
175 H Sung, J Ferlay, RL Siegel, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
176 G El-Kharashy, A Gowily, T Okda, M Houssen. Association between serum soluble Toll-like receptor 2 and 4 and the risk of breast cancer. Mol Clin Oncol. 2021;14(2):38.
177 Y Wang, S Liu, Y Zhang, J Yang. Dysregulation of TLR2 serves as a prognostic biomarker in breast cancer and predicts resistance to endocrine therapy in the luminal B subtype. Front Oncol. 2020;10: 547.
178 J Lee, J Choi, S Chung, et al. Genetic predisposition of polymorphisms in HMGB1-related genes to breast cancer prognosis in Korean women. J Breast Cancer. 2017;20(1):27-34.
179 X Niu, L Yin, X Yang, et al. Serum amyloid A 1 induces suppressive neutrophils through the Toll-like receptor 2-mediated signaling pathway to promote progression of breast cancer. Cancer Sci. 2022;113(4):1140-1153.
180 L Secli, L Avalle, P Poggio, et al. Targeting the extracellular HSP90 co-chaperone morgana inhibits cancer cell migration and promotes anticancer immunity. Cancer Res. 2021;81(18):4794-4807.
181 Y Wang, J Jin, Y Li, et al. NK cell tumor therapy modulated by UV-inactivated oncolytic herpes simplex virus type 2 and checkpoint inhibitors. Transl Res. 2022;240: 64-86.
182 S Bi, W Huang, S Chen, et al. Cordyceps militaris polysaccharide converts immunosuppressive macrophages into M1-like phenotype and activates T lymphocytes by inhibiting the PD-L1/PD-1 axis between TAMs and T lymphocytes. Int J Biol Macromol. 2020;150: 261-280.
183 EH Schreuders, A Ruco, L Rabeneck, et al. Colorectal cancer screening: a global overview of existing programmes. Gut. 2015;64(10):1637-1649.
184 K Paarnio, S Vayrynen, K Klintrup, et al. Divergent expression of bacterial wall sensing toll-like receptors 2 and 4 in colorectal cancer. World J Gastroenterol. 2017;23(26):4831-4838.
185 I Messaritakis, M Stogiannitsi, A Koulouridi, et al. Evaluation of the detection of Toll-like receptors (TLRs) in cancer development and progression in patients with colorectal cancer. PLoS One. 2018;13(6):e0197327.
186 YD Liu, CB Ji, SB Li, et al. Toll-like receptor 2 stimulation promotes colorectal cancer cell growth via PI3K/Akt and NF-kappaB signaling pathways. Int Immunopharmacol. 2018;59: 375-383.
187 J Qin, H Li, W Yu, L Wei, B Wen. Effect of cold exposure and capsaicin on the expression of histone acetylation and Toll-like receptors in 1,2-dimethylhydrazine-induced colon carcinogenesis. Environ Sci Pollut Res Int. 2021;28(43):60981-60992.
188 MA Proenca, JM Biselli, M Succi, et al. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis. World J Gastroenterol. 2018;24(47):5351-5365.
189 CH Sun, BB Li, B Wang, et al. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med. 2019;5(3):178-187.
190 H Tsoi, ESH Chu, X Zhang, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology. 2017;152(6):1419-1433. e5.
191 S Meng, Y Li, X Zang, Z Jiang, H Ning, J Li. Effect of TLR2 on the proliferation of inflammation-related colorectal cancer and sporadic colorectal cancer. Cancer Cell Int. 2020;20: 95.
192 X Zhou, T Hong, Q Yu, et al. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Sci Rep. 2017;7(1):14247.
193 YD Liu, L Yu, L Ying, et al. Toll-like receptor 2 regulates metabolic reprogramming in gastric cancer via superoxide dismutase 2. Int J Cancer. 2019;144(12):3056-3069.
194 CM Lourenco, MD Susi, MC Antunes do Nascimento, et al. Characterization and strong risk association of TLR2 del -196 to -174 polymorphism and Helicobacter pylori and their influence on mRNA expression in gastric cancer. World J Gastrointest Oncol. 2020;12(5):535-548.
195 D Cao, Y Wu, Z Jia, et al. 18 beta-glycyrrhetinic acid inhibited mitochondrial energy metabolism and gastric carcinogenesis through methylation-regulated TLR2 signaling pathway. Carcinogenesis. 2019;40(2):234-245.
196 AC West, K Tang, H Tye, et al. Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer. Oncogene. 2017;36(36):5134-5144.
197 C Herrera-Pariente, R Capo-Garcia, M Diaz-Gay, et al. Identification of new genes involved in germline predisposition to early-onset gastric cancer. Int J Mol Sci. 2021;22(3):1310.
198 S Wang, Y Yao, C Rao, G Zheng, W Chen. 25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-kappaB signaling pathway. Int J Oncol. 2019;54(3):966-980.
199 J Xu, R Guo, J Jia, Y He, S He. Activation of Toll-like receptor 2 enhances peripheral and tumor-infiltrating CD8(+) T cell cytotoxicity in patients with gastric cancer. BMC Immunol. 2021;22(1):67.
200 SK Reis, EAR Socca, BR de Souza, SC Genaro, N Duran, WJ Favaro. Effects of combined OncoTherad immunotherapy and probiotic supplementation on modulating the chronic inflammatory process in colorectal carcinogenesis. Tissue Cell. 2022;75:101747.
201 M Naciute, V Niemi, RA Kemp, S Hook. Lipid-encapsulated oral therapeutic peptide vaccines reduce tumour growth in an orthotopic mouse model of colorectal cancer. Eur J Pharm Biopharm. 2020;152: 183-192.
202 HC Chuang, CC Huang, CY Chien, JH Chuang. Toll-like receptor 3-mediated tumor invasion in head and neck cancer. Oral Oncol. 2012;48(3):226-232.
203 N Nomi, S Kodama, M Suzuki. Toll-like receptor 3 signaling induces apoptosis in human head and neck cancer via survivin associated pathway. Oncol Rep. 2010;24(1):225-231.
204 Q Luo, S Hu, M Yan, Z Sun, W Chen, F Chen. Activation of Toll-like receptor 3 induces apoptosis of oral squamous carcinoma cells in vitro and in vivo. Int J Biochem Cell Biol. 2012;44(8):1266-1275.
205 J-H Park, D-I Jeon, H-E Yoon, et al. Poly I:c inhibits cell proliferation and enhances the growth inhibitory effect of paclitaxel in oral sqaumous cell carcinoma. Acta Odontol Scand. 2012;70(3):241-245.
206 Z He, X Huang, Y Ni, et al. Functional toll-like receptor 3 expressed by oral squamous cell carcinoma induced cell apoptosis and decreased migration. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118(1):92-100.
207 L Fan, P Zhou, Q Hong, et al. Toll-like receptor 3 acts as a suppressor gene in breast cancer initiation and progression: a two-stage association study and functional investigation. Oncoimmunology. 2019;8(6):e1593801.
208 L Fan, P Zhou, AX Chen, GY Liu, KD Yu, ZM Shao. Toll-like receptor 3 -926T>A increased the risk of breast cancer through decreased transcriptional activity. Oncoimmunology. 2019;8(12):e1673126.
209 AR Bernardo, JM Cosgaya, A Aranda, AM Jimenez-Lara. Pro-apoptotic signaling induced by Retinoic acid and dsRNA is under the control of interferon regulatory factor-3 in breast cancer cells. Apoptosis. 2017;22(7):920-932.
210 L Huang, Y Rong, X Tang, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer. 2022;21(1):45.
211 A Ultimo, C de la Torre, C Gimenez, et al. Nanoparticle-cell-nanoparticle communication by stigmergy to enhance poly(I:c) induced apoptosis in cancer cells. Chem Commun (Camb). 2020;56(53):7273-7276.
212 QG Mu, G Lin, M Jeon, et al. Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. Mater Today (Kidlington). 2021;50: 149-169.
213 J Zhao, Y Xue, Y Pan, et al. Toll-like receptor 3 agonist poly I:c reinforces the potency of cytotoxic chemotherapy via the TLR3-UNC93B1-IFN-beta signaling axis in paclitaxel-resistant colon cancer. J Cell Physiol. 2019;234(5):7051-7061.
214 S Long, Y Gu, Y An, et al. Reovirus enhances cytotoxicity of natural killer cells against colorectal cancer via TLR3 pathway. J Transl Med. 2021;19(1):185.
215 K Lei, B Ma, P Shi, et al. Icariin mitigates the growth and invasion ability of human oral squamous cell carcinoma via inhibiting toll-like receptor 4 and phosphorylation of NF-kappaB P65. Onco Targets Ther. 2020;13: 299-307.
216 VS Kotrashetti, R Nayak, K Bhat, J Hosmani, P Somannavar. Immunohistochemical expression of TLR4 and TLR9 in various grades of oral epithelial dysplasia and squamous cell carcinoma, and their roles in tumor progression: a pilot study. Biotech Histochem. 2013;88(6):311-322.
217 MJ Szczepanski, M Czystowska, M Szajnik, et al. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res. 2009;69(7):3105-3113.
218 L Li, Z Zhou, K Mai, et al. Protein overexpression of toll-like receptor 4 and myeloid differentiation factor 88 in oral squamous cell carcinoma and clinical significance. Oncol Lett. 2021;22(5):786.
219 LP Pisani, D Estadella, DA Ribeiro. The role of Toll like receptors (TLRs) in oral carcinogenesis. Anticancer Res. 2017;37(10):5389-5394.
220 Z He, R Deng, X Huang, et al. Lipopolysaccharide enhances OSCC migration by promoting epithelial-mesenchymal transition. J Oral Pathol Med. 2015;44(9):685-692.
221 J Yang, D Liu, KS Khatri, et al. Prognostic value of toll-like receptor 4 and nuclear factor-kappaBp65 in oral squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(6):753-764. e1.
222 Q Kong, Y Liang, Q He, et al. Autophagy inhibits TLR4-mediated invasiveness of oral cancer cells via the NF-kappaB pathway. Oral Dis. 2020.
223 NN Al-Hebshi, AT Nasher, MY Maryoud, et al. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep. 2017;7(1):1834.
224 X Wang, X Yu, Q Wang, Y Lu, H Chen. Expression and clinical significance of SATB1 and TLR4 in breast cancer. Oncol Lett. 2017;14(3):3611-3615.
225 DW Edwardson, J Boudreau, J Mapletoft, C Lanner, AT Kovala, AM Parissenti. Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance. PLoS One. 2017;12(9):e0183662.
226 K Wu, H Zhang, Y Fu, et al. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol Med Rep. 2018;18(3):3411-3420.
227 F Long, H Lin, X Zhang, J Zhang, H Xiao, T Wang. Atractylenolide-I suppresses tumorigenesis of breast cancer by inhibiting Toll-like receptor 4-mediated nuclear factor-kappaB signaling pathway. Front Pharmacol. 2020;11:598939.
228 J Li, J Yin, W Shen, et al. TLR4 promotes breast cancer metastasis via Akt/GSK3beta/beta-catenin pathway upon LPS stimulation. Anat Rec (Hoboken). 2017;300(7):1219-1229.
229 XL Zhao, Y Lin, J Jiang, et al. High-mobility group box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells. J Pathol. 2017;243(3):376-389.
230 PL Thomas, G Nangami, T Rana, et al. The rapid endocytic uptake of fetuin-A by adherent tumor cells is mediated by Toll-like receptor 4 (TLR4). FEBS Open Bio. 2020;10(12):2722-2732.
231 M Moaaz, S Youssry, A Moaz, M Abdelrahman. Study of Toll-like receptor 4 gene polymorphisms in colorectal cancer: correlation with clinicopathological features. Immunol Invest. 2020;49(5):571-584.
232 GB Park, D Kim. TLR4-mediated galectin-1 production triggers epithelial-mesenchymal transition in colon cancer cells through ADAM10- and ADAM17-associated lactate production. Mol Cell Biochem. 2017;425(1-2):191-202.
233 J Guo, M Liao, J Wang. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal. 2021;19(1):90.
234 HC Huang, BH Cai, CS Suen, et al. BGN/TLR4/NF-B mediates epigenetic silencing of immunosuppressive siglec ligands in colon cancer cells. Cells. 2020;9(2):397.
235 YJ Shi, QQ Zhao, XS Liu, et al. Toll-like receptor 4 regulates spontaneous intestinal tumorigenesis by up-regulating IL-6 and GM-CSF. J Cell Mol Med. 2020;24(1):385-397.
236 N Eiro, L Gonzalez, LO Gonzalez, et al. Toll-like receptor-4 expression by stromal fibroblasts is associated with poor prognosis in colorectal cancer. J Immunother. 2013;36(6):342-349.
237 J Ying, HY Zhou, P Liu, et al. Aspirin inhibited the metastasis of colon cancer cells by inhibiting the expression of toll-like receptor 4. Cell Biosci. 2018;8: 1.
238 C Xu, L Gu, M Kuerbanjiang, S Wen, Q Xu, H Xue. Thrombospondin 2/Toll-like receptor 4 axis contributes to HIF-1alpha-derived glycolysis in colorectal cancer. Front Oncol. 2020;10:557730.
239 Y Wu, J Wu, T Chen, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis in mice via a Toll-like receptor 4/p21-activated kinase 1 cascade. Dig Dis Sci. 2018;63(5):1210-1218.
240 E Pastille, T Fassnacht, A Adamczyk, N Ngo Thi Phuong, J Buer, AM Westendorf. Inhibition of TLR4 signaling impedes tumor growth in colitis-associated colon cancer. Front Immunol. 2021;12:669747.
241 S Yan, G Liu, C Jin, et al. MicroRNA-6869-5p acts as a tumor suppressor via targeting TLR4/NF-kappaB signaling pathway in colorectal cancer. J Cell Physiol. 2018;233(9):6660-6668.
242 N Li, H Xu, Y Ou, et al. LPS-induced CXCR7 expression promotes gastric Cancer proliferation and migration via the TLR4/MD-2 pathway. Diagn Pathol. 2019;14(1):3.
243 L Hu, MD Zang, HX Wang, et al. Biglycan stimulates VEGF expression in endothelial cells by activating the TLR signaling pathway. Mol Oncol. 2016;10(9):1473-1484.
244 G Chen, M Xu, J Chen, et al. Clinicopathological features and increased expression of Toll-like receptor 4 of gastric cardia cancer in a high-risk chinese population. J Immunol Res. 2018;2018:7132868.
245 V Sangwan, L Al-Marzouki, S Pal, et al. Inhibition of LPS-mediated TLR4 activation abrogates gastric adenocarcinoma-associated peritoneal metastasis. Clin Exp Metastasis. 2022;39(2):323-333.
246 Q Li, W Wu, D Gong, R Shang, J Wang, H Yu. Propionibacterium acnes overabundance in gastric cancer promote M2 polarization of macrophages via a TLR4/PI3K/Akt signaling. Gastric Cancer. 2021;24(6):1242-1253.
247 CC Tsai, TY Chen, KJ Tsai, et al. NF-kappaB/miR-18a-3p and miR-4286/BZRAP1 axis may mediate carcinogenesis in Helicobacter pylori-Associated gastric cancer. Biomed Pharmacother. 2020;132:110869.
248 X Zhang, H Shi, X Yuan, P Jiang, H Qian, W Xu. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer. 2018;17(1):146.
249 L Ding, Q Jiang, G Li, et al. Comprehensive assessment of association between TLR4 gene polymorphisms and cancer risk: a systematic meta-analysis. Oncotarget. 2017;8(59):100593-100602.
250 TW Kim, S-J Lee, BM Oh, et al. Epigenetic modification of TLR4 promotes activation of NF-kappa B by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer. Oncotarget. 2016;7(4):4195-4209.
251 Z Li, H Gao, Y Liu, et al. Genetic variants in the regulation region of TLR4 reduce the gastric cancer susceptibility. Gene. 2021;767:145181.
252 T Yamaguchi, S Fushida, Y Yamamoto, et al. Low-dose paclitaxel suppresses the induction of M2 macrophages in gastric cancer. Oncol Rep. 2017;37(6):3341-3350.
253 H Zhuang, X Dai, X Zhang, Z Mao, H Huang. Sophoridine suppresses macrophage-mediated immunosuppression through TLR4/IRF3 pathway and subsequently upregulates CD8(+) T cytotoxic function against gastric cancer. Biomed Pharmacother. 2020;121:109636.
254 S Basith, B Manavalan, TH Yoo, SG Kim, S Choi. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res. 2012;35(8):1297-1316.
255 J-H Park, H-E Yoon, D-J Kim, S-A Kim, S-G Ahn, J-H Yoon. Toll-like receptor 5 activation promotes migration and invasion of salivary gland adenocarcinoma. J Oral Pathol Med. 2011;40(2):187-193.
256 JH Park, HE Yoon, DI Jeon, SG Ahn, JH Yoon. Activation of TLR2 and TLR5 did not affect tumor progression of an oral squamous cell carcinoma, YD-10B cells. J Oral Pathol Med. 2010;39(10):781-785.
257 AA Omar, J Korvala, C Haglund, et al. Toll-like receptors -4 and -5 in oral and cutaneous squamous cell carcinomas. J Oral Pathol Med. 2015;44(4):258-265.
258 AAH Omar, J Korvala, C Haglund, et al. Toll-like receptors-4 and-5 in oral and cutaneous squamous cell carcinomas. J Oral Pathol Med. 2015;44(4):258-265.
259 N Khajuria, R Metgud. Role of bacteria in oral carcinogenesis. Indian J Dent. 2015;6(1):37-43.
260 CY Yang, YM Yeh, HY Yu, et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol. 2018;9: 862.
261 J Bolz, E Dosa, J Schubert, AW Eckert. Bacterial colonization of microbial biofilms in oral squamous cell carcinoma. Clin Oral Investig. 2014;18(2):409-414.
262 W Bode. Bacterial flagella and flagellar protein flagellin. Angew Chem Int Ed Engl. 1973;12(9):683-693.
263 S Chen, W Yuan, Z Fu, et al. Toll-like receptor 5 gene polymorphism is associated with breast cancer susceptibility. Oncotarget. 2017;8(51):88622-88629.
264 W Jiang, Y Han, T Liang, C Zhang, F Gao, G Hou. Down-regulation of Toll-like receptor 5 (TLR5) increased VEGFR expression in triple negative breast cancer (TNBC) based on radionuclide imaging. Front Oncol. 2021;11:708047.
265 D Shi, W Liu, S Zhao, C Zhang, T Liang, G Hou. TLR5 is a new reporter for triple-negative breast cancer indicated by radioimmunoimaging and fluorescent staining. J Cell Mol Med. 2019;23(12):8305-8313.
266 D Shi, S Zhao, W Jiang, C Zhang, T Liang, G Hou. TLR5: a prognostic and monitoring indicator for triple-negative breast cancer. Cell Death Dis. 2019;10(12):954.
267 P Pimentel-Nunes, N Goncalves, I Boal-Carvalho, et al. Decreased Toll-interacting protein and peroxisome proliferator-activated receptor gamma are associated with increased expression of Toll-like receptors in colon carcinogenesis. J Clin Pathol. 2012;65(4):302-308.
268 I Beilmann-Lehtonen, J Hagstrom, H Mustonen, S Koskensalo, C Haglund, C Bockelman. High tissue TLR5 expression predicts better outcomes in colorectal cancer patients. Oncology. 2021;99(9):589-600.
269 I Beilmann-Lehtonen, J Hagstrom, T Kaprio, et al. The relationship between the tissue expression of TLR2, TLR4, TLR5, and TLR7 and systemic inflammatory responses in colorectal cancer patients. Oncology. 2021;99(12):790-801.
270 SN Klimosch, A Forsti, J Eckert, et al. Functional TLR5 genetic variants affect human colorectal cancer survival. Cancer Res. 2013;73(24):7232-7242.
271 I Thagia, EJ Shaw, E Smith, KJ Else, RJ Rigby. Intestinal epithelial suppressor of cytokine signaling 3 enhances microbial-induced inflammatory tumor necrosis factor-alpha, contributing to epithelial barrier dysfunction. Am J Physiol Gastrointest Liver Physiol. 2015;308(1):G25-G31.
272 A Kasurinen, J Hagstrom, A Laitinen, A Kokkola, C Bockelman, C Haglund. Evaluation of toll-like receptors as prognostic biomarkers in gastric cancer: high tissue TLR5 predicts a better outcome. Sci Rep. 2019;9(1):12553.
273 T Xu, D Fu, Y Ren, et al. Genetic variations of TLR5 gene interacted with Helicobacter pylori infection among carcinogenesis of gastric cancer. Oncotarget. 2017;8(19):31016-31022.
274 V De Re, O Repetto, M De Zorzi, et al. Polymorphism in Toll-like receptors and Helicobacter pylori motility in autoimmune atrophic gastritis and gastric cancer. Cancers (Basel). 2019;11(5):648.
275 K Terawaki, Y Kashiwase, M Uzu, et al. Leukemia inhibitory factor via the Toll-like receptor 5 signaling pathway involves aggravation of cachexia induced by human gastric cancer-derived 85As2 cells in rats. Oncotarget. 2018;9(78):34748-34764.
276 A Mahmoud Hashemi, H Mahmoud Hashemi, S Solahaye Kahnamouii, et al. Activation Toll-like receptor7 (TLR7) responsiveness associated with mitogen- activated protein kinase (MAPK) activation in HIOEC cell line of oral squamous cell carcinoma. J Dent (Shiraz). 2018;19(3):217-224.
277 YH Ni, L Ding, DY Zhang, YY Hou, X Huang, Q Hu. Distinct expression patterns of Toll-like receptor 7 in tumour cells and fibroblast-like cells in oral squamous cell carcinoma. Histopathology. 2015;67(5):730-739.
278 D Wan, H Que, L Chen, et al. Lymph-node-targeted cholesterolized TLR7 agonist liposomes provoke a safe and durable antitumor response. Nano Lett. 2021;21(19):7960-7969.
279 J-S Wu, J-X Li, N Shu, et al. A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. Nano Res. 2021;15(1):510-518.
280 A Francian, A Widmer, T Olsson, et al. Delivery of toll-like receptor agonists by complement C3-targeted liposomes activates immune cells and reduces tumour growth. J Drug Target. 2021;29(7):754-760.
281 B Bahmani, H Gong, BT Luk, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat Commun. 2021;12(1):1999.
282 E Safarzadeh, A Mohammadi, B Mansoori, et al. STAT3 silencing and TLR7/8 pathway activation repolarize and suppress myeloid-derived suppressor cells from breast cancer patients. Front Immunol. 2020;11:613215.
283 CG Park, CA Hartl, D Schmid, EM Carmona, H-J Kim, MS Goldberg. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci Transl Med. 2018;10(433):eaar1916.
284 P Zhou, J Qin, C Zhou, et al. Multifunctional nanoparticles based on a polymeric copper chelator for combination treatment of metastatic breast cancer. Biomaterials. 2019;195: 86-99.
285 Y Liu, L Tang, N Gao, et al. Synthetic MUC1 breast cancer vaccine containing a Toll-like receptor 7 agonist exerts antitumor effects. Oncol Lett. 2020;20(3):2369-2377.
286 M Grimm, M Kim, A Rosenwald, et al. Toll-like receptor (TLR) 7 and TLR8 expression on CD133+ cells in colorectal cancer points to a specific role for inflammation-induced TLRs in tumourigenesis and tumour progression. Eur J Cancer. 2010;46(15):2849-2857.
287 EH Hong, J Cho, JH Ahn, et al. Plasmacytoid dendritic cells regulate colitis-associated tumorigenesis by controlling myeloid-derived suppressor cell infiltration. Cancer Lett. 2020;493: 102-112.
288 RV Huis In ’t Veld, CG Da Silva, MJ Jager, LJ Cruz, F Ossendorp. Combining photodynamic therapy with immunostimulatory nanoparticles elicits effective anti-tumor immune responses in preclinical murine models. Pharmaceutics. 2021;13(9):1470.
289 Z Liu, Y Xie, Y Xiong, et al. TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 2020;469: 173-185.
290 S Schoelch, C Rauber, A Tietz, et al. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors. Oncotarget. 2015;6(7):4663-4676.
291 J Ye, BN Mills, SS Qin, et al. Toll-like receptor 7/8 agonist R848 alters the immune tumor microenvironment and enhances SBRT-induced antitumor efficacy in murine models of pancreatic cancer. J Immunother Cancer. 2022;10(7):e004784.
292 J Jiang, L Dong, B Qin, H Shi, X Guo, Y Wang. Decreased expression of TLR7 in gastric cancer tissues and the effects of TLR7 activation on gastric cancer cells. Oncol Lett. 2016;12(1):631-636.
293 Q Yuan, Q Zhou, J Ren, et al. WGCNA identification of TLR7 as a novel diagnostic biomarker, progression and prognostic indicator, and immunotherapeutic target for stomach adenocarcinoma. Cancer Med. 2021;10(12):4004-4016.
294 F Shirafkan, J Shokri-Shirvani, P Morakabati, et al. Expression of TLR1, TLR3 and TLR7 genes remarkably down-regulated from erosion to peptic ulcer and gastric cancer development. Gene Rep. 2021;24:101229.
295 X Wang, Y Liu, Y Diao, et al. Gastric cancer vaccines synthesized using a TLR7 agonist and their synergistic antitumor effects with 5-fluorouracil. J Transl Med. 2018;16(1):120.
296 L Ma, M Han, Z Keyoumu, H Wang, S Keyoumu. Immunotherapy of dual-function vector with both immunostimulatory and B-cell lymphoma 2 (Bcl-2)-silencing effects on gastric carcinoma. Med Sci Monit. 2017;23: 1980-1991.
297 AG Daskalopoulos, D Avgoustidis, R Chaisuparat, et al. Assessment of TLR4 and TLR9 signaling and correlation with human papillomavirus status and histopathologic parameters in oral tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;129(5):493-513.
298 R Min, Z Zun, L Siyi, Y Wenjun, W Lizheng, Z Chenping. Increased expression of Toll-like receptor-9 has close relation with tumour cell proliferation in oral squamous cell carcinoma. Arch Oral Biol. 2011;56(9):877-884.
299 R Min, L Siyi, Y Wenjun, et al. Toll-like receptor-9 agonists increase cyclin D1 expression partly through activation of activator protein-1 in human oral squamous cell carcinoma cells. Cancer Sci. 2012;103(11):1938-1945.
300 J Tuomela, J Sandholm, M Kaakinen, et al. DNA from dead cancer cells induces TLR9-mediated invasion and inflammation in living cancer cells. Breast Cancer Res Treat. 2013;142(3):477-487.
301 S Shahriari, S Rezaeifard, HR Moghimi, MR Khorramizadeh, Z Faghih. Cell membrane and intracellular expression of toll-like receptor 9 (TLR9) in colorectal cancer and breast cancer cell-lines. Cancer Biomark. 2017;18(4):375-380.
302 G Guney Eskiler, A Deveci Ozkan. The relationship between the efficacy of talazoparib and the functional toll-like receptors 3 and 9 in triple negative breast cancer. Mol Immunol. 2022;141: 280-286.
303 A Singh, A Bandyopadhyay, N Mukherjee, A Basu. Toll-like receptor 9 expression levels in breast carcinoma correlate with improved overall survival in patients treated with neoadjuvant chemotherapy and could serve as a prognostic marker. Genet Test Mol Biomarkers. 2021;25(1):12-19.
304 S Natarajan, M Ranganathan. Toll-like receptor (TLR) gene expression and immunostimulatory effect of CpG oligonucleotides in hormone receptor positive cell line T47D and triple negative breast cancer cell line MDA-MB-468. Immunopharmacol Immunotoxicol. 2020;42(5):408-415.
305 CL Miller, I Sagiv-Barfi, P Neuhofer, et al. Systemic delivery of a targeted synthetic immunostimulant transforms the immune landscape for effective tumor regression. Cell Chem Biol. 2022;29(3):451-462. e8.
306 C Gao, T Qiao, B Zhang, S Yuan, X Zhuang, Y Luo. TLR9 signaling activation at different stages in colorectal cancer and NF-kappaB expression. OncoTargets and Therapy. 2018;11: 5963-5971.
307 Q Luo, L Zeng, C Tang, Z Zhang, Y Chen, C Zeng. TLR9 induces colitis-associated colorectal carcinogenesis by regulating NF-kappa B expression levels. Oncol Lett. 2020;20(4):110.
308 R Anunobi, BA Boone, N Cheh, et al. Extracellular DNA promotes colorectal tumor cell survival after cytotoxic chemotherapy. J Surg Res. 2018;226: 181-191.
309 Z Niu, W Tang, T Liu, et al. Cell-free DNA derived from cancer cells facilitates tumor malignancy through Toll-like receptor 9 signaling-triggered interleukin-8 secretion in colorectal cancer. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1007-1017.
310 S Shahriari, S Rezaeifard, HR Moghimi, MR Khorramizadeh, Z Faghih. Cell membrane and intracellular expression of toll-like receptor 9 (TLR9) in colorectal cancer and breast cancer cell-lines. Cancer Biomarkers. 2017;18(4):375-380.
311 WW Wang, L Wu, W Lu, et al. Lipopolysaccharides increase the risk of colorectal cancer recurrence and metastasis due to the induction of neutrophil extracellular traps after curative resection. J Cancer Res Clin Oncol. 2021;147(9):2609-2619.
312 LM Scheetz, M Yu, D Li, MG Castro, JJ Moon, A Schwendeman. Synthetic HDL nanoparticles delivering docetaxel and CpG for chemoimmunotherapy of colon adenocarcinoma. Int J Mol Sci. 2020;21(5):1777.
313 H Okada, K Takahashi, H Yaku, et al. In situ vaccination using unique TLR9 ligand K3-SPG induces long-lasting systemic immune response and synergizes with systemic and local immunotherapy. Sci Rep. 2022;12(1):2132.
314 TR Wang, JC Peng, YQ Qiao, et al. Helicobacter pylori regulates TLR4 and TLR9 during gastric carcinogenesis. Int J Clin Exp Pathol. 2014;7(10):6950-6955.
315 B Fernandez-Garcia, N Eiro, S Gonzalez-Reyes, et al. Clinical significance of Toll- like Receptor 3, 4, and 9 in gastric cancer. J Immunother. 2014;37(2):77-83.
316 MD Susi, ML Caroline, LT Rasmussen, et al. Toll-like receptor 9 polymorphisms and Helicobacter pylori influence gene expression and risk of gastric carcinogenesis in the Brazilian population. World J Gastrointest Oncol. 2019;11(11):998-1010.
317 X-R Qin, J Wu, X-Y Yao, J Huang, X-Y Wang. Helicobacter pylori DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9. Saudi J Gastroenterol. 2019;25(3):181-187.
318 MG Varga, CL Shaffer, JC Sierra, et al. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene. 2016;35(48):6262-6269.
319 P Behzadi. The role of Toll-like receptor (TLR) polymorphisms in urinary bladder cancer. Genetic Polymorphism and cancer susceptibility. 2021: 281-317.
320 P Behzadi, Toll-like receptor (TLR) polymorphisms in prostate cancer. Genetic Polymorphism and Disease. CRC Press; 2022;10: 379-399.
321 T Ebermeyer, F Cognasse, P Berthelot, P Mismetti, O Garraud, H Hamzeh-Cognasse. Platelet innate immune receptors and TLRs: a double-edged sword. Int J Mol Sci. 2021;22(15):7894.
322 ZM Liu, MH Yang, K Yu, ZX Lian, SL Deng. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front Pharmacol. 2022;13:989664.
323 W Li, L Wan, S Duan, J Xu. Bibliometric analysis of toll-like receptor agonists associated with cancer therapy. Medicine (Baltimore). 2022;101(1):e28520.
324 A Angelopoulou, N Alexandris, E Konstantinou, et al. Imiquimod—a toll like receptor 7 agonist—is an ideal option for management of COVID 19. Environ Res. 2020;188:109858.
325 HF Florindo, R Kleiner, D Vaskovich-Koubi, et al. Immune-mediated approaches against COVID-19. Nat Nanotechnol. 2020;15(8):630-645.
326 JJ Nieto-Fontarigo, S Tillgren, S Cerps, et al. Imiquimod boosts interferon response, and decreases ACE2 and pro-inflammatory response of human bronchial epithelium in asthma. Front Immunol. 2021;12:743890.
327 H Lu. TLR agonists for cancer immunotherapy: tipping the balance between the immune stimulatory and inhibitory effects. Front Immunol. 2014;5: 83.
328 L Galluzzi, G Kroemer, A Eggermont. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. Oncoimmunology. 2014;3(11):e967147.
329 JD Wolchok, H Kluger, MK Callahan, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122-133.
330 C Robert, GV Long, B Brady, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-330.
331 C Robert, J Schachter, GV Long, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521-2532.
332 Y Xun, H Yang, B Kaminska, H You. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J Hematol Oncol. 2021;14(1):176.
333 A Ribas, JD Wolchok. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350-1355.
334 DS Shin, JM Zaretsky, H Escuin-Ordinas, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7(2):188-201.
335 J Schachter, A Ribas, GV Long, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet North Am Ed. 2017;390(10105):1853-1862.
336 T Adamus, M Kortylewski. The revival of CpG oligonucleotide-based cancer immunotherapies. Contemp Oncol (Pozn). 2018;22(1A):56-60.
337 JA Marin-Acevedo, B Dholaria, AE Soyano, KL Knutson, S Chumsri, Y Lou. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39.
338 Y Takeda, K Kataoka, J Yamagishi, S Ogawa, T Seya, M Matsumoto. A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy. Cell Rep. 2017;19(9):1874-1887.
339 F Sato-Kaneko, S Yao, A Ahmadi, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. 2017;2(18):e93397.
340 R Ramanathan, H Choudry, H Jones, et al. Phase II trial of adjuvant dendritic cell vaccine in combination with celecoxib, interferon-α, and rintatolimod in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal metastases. Ann Surg Oncol. 2021;28(8):4637-4646.
341 S Gandhi, M Opyrchal, MJ Grimm, et al. Systemic infusion of TLR3-ligand and IFN-α in patients with breast cancer reprograms local tumor microenvironments for selective CTL influx. J Immunother Cancer. 2023;11(11):e007381.
342 LQM Chow, C Morishima, KD Eaton, et al. Phase Ib trial of the Toll-like receptor 8 agonist, motolimod (VTX-2337), combined with cetuximab in patients with recurrent or metastatic SCCHN. Clin Cancer Res. 2017;23(10):2442-2450.
343 RL Ferris, NF Saba, BJ Gitlitz, et al. Effect of adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck the active8 randomized clinical trial. JAMA Oncol. 2018;4(11):1583-1588.
344 A Ribas, T Medina, S Kummar, et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov. 2018;8(10):1250-1257.
345 H Murck. Symptomatic protective action of glycyrrhizin (licorice) in COVID-19 infection? Front Immunol. 2020;11: 1239.
346 R Patra, NC Das, S Mukherjee. Toll-like receptors (TLRs) as therapeutic targets for treating SARS-CoV-2: an immunobiological perspective. Adv Exp Med Biol. 2021;1352: 87-109.
347 S Goulopoulou, CG McCarthy, RC Webb. Toll-like receptors in the vascular system: sensing the dangers within. Pharmacol Rev. 2016;68(1):142-167.
348 T Ishikawa, K Abe, M Takana-Ishikawa, et al. Chronic inhibition of Toll-like receptor 9 ameliorates pulmonary hypertension in rats. J Am Heart Assoc. 2021;10(7):e019247.
349 R Kitazume-Taneike, M Taneike, S Omiya, et al. Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochem Biophys Res Commun. 2019;515(3):442-447.
350 R Medzhitov, P PrestonHurlburt, CA Janeway. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388(6640):394-397.
351 B Huang, J Zhao, HX Li, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance (Publication with Expression of Concern. See vol. 79, pg. 4305, 2019). Article; Publication with Expression of Concern. Cancer Res. 2005;65(12):5009-5014.
352 CB Rodell, SP Arlauckas, MF Cuccarese, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2018;2(8):578.
353 W Li, F Wang, R Guo, Z Bian, Y Song. Targeting macrophages in hematological malignancies: recent advances and future directions. J Hematol Oncol. 2022;15(1):110.
354 H Xia, M Qin, Z Wang, et al. A pH-/enzyme-responsive nanoparticle selectively targets endosomal toll-like receptors to potentiate robust cancer vaccination. Article. Nano Lett. 2022;22(7):2978-2987.
355 L Nuhn, S De Koker, S Van Lint, et al. Nanoparticle-conjugate TLR7/8 agonist localized immunotherapy provokes safe antitumoral responses. Adv Mater. 2018;30(45):e1803397.
356 J Le Naour, G Kroemer. Trial watch: Toll-like receptor ligands in cancer therapy. Oncoimmunology. 2023;12(1):2180237.
PDF

Accesses

Citations

Detail

Sections
Recommended

/