RNA modifications in pulmonary diseases

Weiwei Qian1,2, Lvying Yang3, Tianlong Li4, Wanlin Li5, Jian Zhou6,7(), Shenglong Xie8()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (5) : e546. DOI: 10.1002/mco2.546
REVIEW

RNA modifications in pulmonary diseases

  • Weiwei Qian1,2, Lvying Yang3, Tianlong Li4, Wanlin Li5, Jian Zhou6,7(), Shenglong Xie8()
Author information +
History +

Abstract

Threatening public health, pulmonary disease (PD) encompasses diverse lung injuries like chronic obstructive PD, pulmonary fibrosis, asthma, pulmonary infections due to pathogen invasion, and fatal lung cancer. The crucial involvement of RNA epigenetic modifications in PD pathogenesis is underscored by robust evidence. These modifications not only shape cell fates but also finely modulate the expression of genes linked to disease progression, suggesting their utility as biomarkers and targets for therapeutic strategies. The critical RNA modifications implicated in PDs are summarized in this review, including N6-methylation of adenosine, N1-methylation of adenosine, 5-methylcytosine, pseudouridine (5-ribosyl uracil), 7-methylguanosine, and adenosine to inosine editing, along with relevant regulatory mechanisms. By shedding light on the pathology of PDs, these summaries could spur the identification of new biomarkers and therapeutic strategies, ultimately paving the way for early PD diagnosis and treatment innovation.

Keywords

pulmonary diseases / functions of RNA modifications / RNA modification database / RNA modifications

Cite this article

Download citation ▾
Weiwei Qian, Lvying Yang, Tianlong Li, Wanlin Li, Jian Zhou, Shenglong Xie. RNA modifications in pulmonary diseases. MedComm, 2024, 5(5): e546 https://doi.org/10.1002/mco2.546

References

1 KF Rabe, H Watz. Chronic obstructive pulmonary disease. Lancet. 2017;389(10082):1931-1940.
2 TM Maher, E Bendstrup, L Dron, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res. 2021;22(1):197.
3 SA Christenson, BM Smith, M Bafadhel, N Putcha. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227-2242.
4 WA Wuyts, C Agostini, KM Antoniou, et al. The pathogenesis of pulmonary fibrosis: a moving target. Eur Respir J. 2013;41(5):1207-1218.
5 YE Miller. Pathogenesis of lung cancer: 100 year report. Am J Respir Cell Mol Biol. 2005;33(3):216-223.
6 C Pinnetti, E Cimini, V Mazzotta, et al. Mpox as AIDS-defining event with a severe and protracted course: clinical, immunological, and virological implications. Lancet Infect Dis. 2023;24(2):e127-e135.
7 Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020;8(6):585-596.
8 D Wendisch, O Dietrich, T Mari, et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell. 2021;184(26):6243-6261.e27.
9 M Esteller. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148-1159.
10 CJ Rhodes, K Batai, M Bleda, et al. Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respir Med. 2019;7(3):227-238.
11 L Zhang, Y Li, J Wang, et al. RNA modification signature of peripheral blood as a potential diagnostic marker for pulmonary hypertension. Hypertension. 2022;79(3):e67-e69.
12 SF Dowdy. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222-229.
13 E Avci, P Sarvari, R Savai, W Seeger, SS Pullamsetti. Epigenetic mechanisms in parenchymal lung diseases: bystanders or therapeutic targets? Int J Mol Sci. 2022;23(1):546.
14 X Wang, Z Guo, F Yan. RNA epigenetics in chronic lung diseases. Genes (Basel). 2022;13(12):2381.
15 PC Teng, Y Liang, AA Yarmishyn, et al. RNA modifications and epigenetics in modulation of lung cancer and pulmonary diseases. Int J Mol Sci. 2021;22(19):10592.
16 RIN Khan, WA Malla. m(6)A modification of RNA and its role in cancer, with a special focus on lung cancer. Genomics. 2021;113(4):2860-2869.
17 L Xu, L Zhou, C Yan, L Li. Emerging role of N6-methyladenosine RNA methylation in lung diseases. Exp Biol Med (Maywood). 2022;247(20):1862-1872.
18 Q Zhang, K Xu. The role of regulators of RNA m(6)A methylation in lung cancer. Genes Dis. 2023;10(2):495-504.
19 O Glaich, S Parikh, RE Bell, et al. DNA methylation directs microRNA biogenesis in mammalian cells. Nat Commun. 2019;10(1):5657.
20 J Karijolich, YT Yu. Spliceosomal snRNA modifications and their function. RNA Biol. 2010;7(2):192-204.
21 RW Yao, Y Wang, LL Chen. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21(5):542-551.
22 RZ He, J Jiang, DX Luo. The functions of N6-methyladenosine modification in lncRNAs. Genes Dis. 2020;7(4):598-605.
23 BS Zhao, IA Roundtree, C He. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31-42.
24 S Zaccara, RJ Ries, SR Jaffrey. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608-624.
25 L Cui, R Ma, J Cai, et al. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther. 2022;7(1):334.
26 IA Roundtree, ME Evans, T Pan, C He. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187-1200.
27 F Liu, W Clark, G Luo, et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell. 2016;167(7):1897.
28 G Jia, Y Fu, X Zhao, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885-887.
29 M Han, H Sun, Q Zhou, et al. Effects of RNA methylation on Tumor angiogenesis and cancer progression. Mol Cancer. 2023;22(1):198.
30 PJ Batista, B Molinie, J Wang, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014;15(6):707-719.
31 B Chatterjee, CJ Shen, P Majumder. RNA modifications and RNA metabolism in neurological disease pathogenesis. Int J Mol Sci. 2021;22(21):11870.
32 Y Wu, S Zhan, Y Xu, X Gao. RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sci. 2021;278:119565.
33 Z Jiapaer, D Su, L Hua, et al. Regulation and roles of RNA modifications in aging-related diseases. Aging Cell. 2022;21(7):e13657.
34 LJ Deng, WQ Deng, SR Fan, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022;21(1):52.
35 X Deng, R Su, H Weng, H Huang, Z Li, J Chen. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28(5):507-517.
36 T Wang, S Kong, M Tao, S Ju. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19(1):88.
37 L He, H Li, A Wu, Y Peng, G Shu, G Yin. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18(1):176.
38 M Chen, CM Wong. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 2020;19(1):44.
39 Y An, H Duan. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21(1):14.
40 YG Chen, R Chen, S Ahmad, et al. N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 2019;76(1):96-109.e9.
41 JA Bokar, ME Shambaugh, D Polayes, AG Matera, FM Rottman. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3(11):1233-1247.
42 S Lin, J Choe, P Du, R Triboulet, RI Gregory. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62(3):335-345.
43 P Wang, KA Doxtader, Y Nam. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016;63(2):306-317.
44 AS Warda, J Kretschmer, P Hackert, et al. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18(11):2004-2014.
45 Y Yang, PJ Hsu, YS Chen, YG Yang. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28(6):616-624.
46 KE Pendleton, B Chen, K Liu, et al. The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169(5):824-835.e14.
47 XL Ping, BF Sun, L Wang, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177-189.
48 DP Patil, CK Chen, BF Pickering, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537(7620):369-373.
49 J Wen, R Lv, H Ma, et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69(6):1028-1038.e6.
50 T Sun, R Wu, L Ming. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613.
51 Y Ueda, I Ooshio, Y Fusamae, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep. 2017;7:42271.
52 D Dominissini, S Moshitch-Moshkovitz, S Schwartz, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201-206.
53 X Wang, BS Zhao, IA Roundtree, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388-1399.
54 H Du, Y Zhao, J He, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.
55 Y Wang, CY Qian, XP Li, et al. Genome-scale long noncoding RNA expression pattern in squamous cell lung cancer. Sci Rep. 2015;5:11671.
56 H Shi, X Wang, Z Lu, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27(3):315-328.
57 W Xiao, S Adhikari, U Dahal, et al. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. 2016;61(4):507-519.
58 Y Mao, L Dong, XM Liu, et al. m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 2019;10(1):5332.
59 B Zhou, C Liu, L Xu, et al. N(6)-methyladenosine reader protein YT521-B homology domain-containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes. Hepatology. 2021;73(1):91-103.
60 H Huang, H Weng, W Sun, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285-295.
61 JB Macon, R Wolfenden. 1-Methyladenosine. Dimroth rearrangement and reversible reduction. Biochemistry. 1968;7(10):3453-3458.
62 C Zhang, G Jia. Reversible RNA Modification N(1)-methyladenosine (m(1)A) in mRNA and tRNA. Genom Proteom Bioinform. 2018;16(3):155-161.
63 HH Woo, SK Chambers. Human ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim Biophys Acta Gene Regul Mech. 2019;1862(1):35-46.
64 E Vilardo, C Nachbagauer, A Buzet, A Taschner, J Holzmann, W Rossmanith. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase–extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 2012;40(22):11583-11593.
65 T Chujo, T Suzuki. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. 2012;18(12):2269-2276.
66 D Bar-Yaacov, I Frumkin, Y Yashiro, et al. Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates. PLoS Biol. 2016;14(9):e1002557.
67 PV Sergiev, NA Aleksashin, AA Chugunova, YS Polikanov, OA Dontsova. Structural and evolutionary insights into ribosomal RNA methylation. Nat Chem Biol. 2018;14(3):226-235.
68 S Sharma, DLJ Lafontaine. ‘View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem Sci. 2015;40(10):560-575.
69 T Waku, Y Nakajima, W Yokoyama, et al. NML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent manner. J Cell Sci. 2016;129(12):2382-2393.
70 F Liu, W Clark, G Luo, et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell. 2016;167(3):816-828.e16.
71 X Li, X Xiong, K Wang, et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol. 2016;12(5):311-316.
72 X Dai, T Wang, G Gonzalez, Y Wang. Identification of YTH domain-containing proteins as the readers for N1-methyladenosine in RNA. Anal Chem. 2018;90(11):6380-6384.
73 L Trixl, A Lusser. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA. 2019;10(1):e1510.
74 M Schosserer, N Minois, TB Angerer, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6: 6158.
75 R Reid, PJ Greene, DV Santi. Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res. 1999;27(15):3138-3145.
76 KE Bohnsack, C H?bartner, MT Bohnsack. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes (Basel). 2019;10(2):102.
77 D Dominissini, G Rechavi. 5-methylcytosine mediates nuclear export of mRNA. Cell Res. 2017;27(6):717-719.
78 X Yang, Y Yang, BF Sun, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27(5):606-625.
79 Y Yang, L Wang, X Han, et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell. 2019;75(6):1188-1202.e11.
80 X Dai, G Gonzalez, L Li, et al. YTHDF2 binds to 5-methylcytosine in RNA and modulates the maturation of ribosomal RNA. Anal Chem. 2020;92(1):1346-1354.
81 L Wang, Y Zhou, L Xu, et al. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature. 2015;523(7562):621-625.
82 B Delatte, F Wang, LV Ngoc, et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science. 2016;351(6270):282-285.
83 L Kawarada, T Suzuki, T Ohira, S Hirata, K Miyauchi, T Suzuki. ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Res. 2017;45(12):7401-7415.
84 AE Arguello, A Li, X Sun, TW Eggert, E Mairhofer, RE Kleiner. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases. Nat Commun. 2022;13(1):4176.
85 HM Goodman, J Abelson, A Landy, S Brenner, JD Smith. Amber suppression: a nucleotide change in the anticodon of a tyrosine transfer RNA. Nature. 1968;217(5133):1019-1024.
86 DE Eyler, MK Franco, Z Batool, et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc Natl Acad Sci USA. 2019;116(46):23068-23074.
87 M Penzo, L Montanaro. Turning uridines around: role of rRNA pseudouridylation in ribosome biogenesis and ribosomal function. Biomolecules. 2018;8(2):38.
88 MT Bohnsack, KE Sloan. Modifications in small nuclear RNAs and their roles in spliceosome assembly and function. Biol Chem. 2018;399(11):1265-1276.
89 TM Carlile, NM Martinez, C Schaening, et al. mRNA structure determines modification by pseudouridine synthase 1. Nat Chem Biol. 2019;15(10):966-974.
90 J Cerneckis, Q Cui, C He, C Yi, Y Shi. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol Sci. 2022;43(6):522-535.
91 M Penzo, AN Guerrieri, F Zacchini, D Treré, L Montanaro. RNA pseudouridylation in physiology and medicine: for better and for worse. Genes (Basel). 2017;8(11):301.
92 J Song, Y Zhuang, C Zhu, et al. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol. 2020;16(2):160-169.
93 MK Purchal, DE Eyler, M Tardu, et al. Pseudouridine synthase 7 is an opportunistic enzyme that binds and modifies substrates with diverse sequences and structures. Proc Natl Acad Sci USA. 2022;119(4):e2109708119.
94 C Xue, Q Chu, Q Zheng, et al. Role of main RNA modifications in cancer: N(6)-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther. 2022;7(1):142.
95 A Ramanathan, GB Robb, SH Chan. mRNA capping: biological functions and applications. Nucleic Acids Res. 2016;44(16):7511-7526.
96 LS Zhang, C Liu, H Ma, et al. Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol Cell. 2019;74(6):1304-1316.e8.
97 C Tomikawa. 7-Methylguanosine modifications in transfer RNA (tRNA). Int J Mol Sci. 2018;19(12):4080.
98 L Pandolfini, I Barbieri, AJ Bannister, et al. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol Cell. 2019;74(6):1278-1290.e9.
99 A Alexandrov, MR Martzen, EM Phizicky. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA. 2002;8(10):1253-1266.
100 S Haag, J Kretschmer, MT Bohnsack. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA. 2015;21(2):180-187.
101 S Lin, Q Liu, VS Lelyveld, J Choe, JW Szostak, RI Gregory. Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71(2):244-255.e5.
102 C Zorbas, E Nicolas, L Wacheul, E Huvelle, V Heurgué-Hamard, DL Lafontaine. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol Biol Cell. 2015;26(11):2080-2095.
103 NS Ganem, N Ben-Asher, AT Lamm. In cancer, A-to-I RNA editing can be the driver, the passenger, or the mechanic. Drug Resist Updat. 2017;32: 16-22.
104 NI Vlachogiannis, KM Verrou, K Stellos, PP Sfikakis, D Paraskevis. The role of A-to-I RNA editing in infections by RNA viruses: Possible implications for SARS-CoV-2 infection. Clin Immunol. 2021;226:108699.
105 J Quin, J Sedmík, D Vuki?, A Khan, LP Keegan, MA O'Connell. ADAR RNA modifications, the epitranscriptome and innate immunity. Trends Biochem Sci. 2021;46(9):758-771.
106 BE Wulff, M Sakurai, K Nishikura. Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing. Nat Rev Genet. 2011;12(2):81-85.
107 JB Li, GM Church. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci. 2013;16(11):1518-1522.
108 K Nishikura. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17(2):83-96.
109 S Bertotti, I Fleming, MLM Cámara, et al. Characterization of ADAT2/3 molecules in Trypanosoma cruzi and regulation of mucin gene expression by tRNA editing. Biochem J. 2022;479(4):561-580.
110 X Liu, R Chen, Y Sun, et al. Crystal structure of the yeast heterodimeric ADAT2/3 deaminase. BMC Biol. 2020;18(1):189.
111 E Oakes, A Anderson, A Cohen-Gadol, HA Hundley. Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem. 2017;292(10):4326-4335.
112 Raghava Kurup R, EK Oakes, AC Manning, P Mukherjee, P Vadlamani, HA Hundley. RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS. J Biol Chem. 2022;298(9):102267.
113 H Sung, J Ferlay, RL Siegel, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
114 MJ Hendrix, EA Seftor, AR Hess, RE Seftor. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003;3(6):411-421.
115 E Brzeziańska, A Dutkowska, A Antczak. The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep. 2013;40(1):309-325.
116 J Dong, B Li, D Lin, Q Zhou, D Huang. Advances in targeted therapy and immunotherapy for non-small cell lung cancer based on accurate molecular typing. Front Pharmacol. 2019;10: 230.
117 TT Sio, J Ko, VK Gudena, N Verma, UB Chaudhary. Chemotherapeutic and targeted biological agents for metastatic bladder cancer: a comprehensive review. Int J Urol. 2014;21(7):630-637.
118 P Nombela, B Miguel-López, S Blanco. The role of m(6)A, m(5)C and Ψ RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer. 2021;20(1):18.
119 H Huang, H Weng, J Chen. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37(3):270-288.
120 Y Liu, X Guo, M Zhao, et al. Contributions and prognostic values of m(6) A RNA methylation regulators in non-small-cell lung cancer. J Cell Physiol. 2020;235(9):6043-6057.
121 Q Cui, H Shi, P Ye, et al. m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18(11):2622-2634.
122 Y Zhang, S Liu, T Zhao, C Dang. METTL3?mediated m6A modification of Bcl?2 mRNA promotes non?small cell lung cancer progression. Oncol Rep. 2021;46(2):163.
123 J Choe, S Lin, W Zhang, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature. 2018;561(7724):556-560.
124 JE Harper, SM Miceli, RJ Roberts, JL Manley. Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res. 1990;18(19):5735-5741.
125 Y Du, G Hou, H Zhang, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 2018;46(10):5195-5208.
126 L Xue, J Li, Y Lin, et al. m(6) A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer. J Cell Physiol. 2021;236(4):2649-2658.
127 X Ye, RA Weinberg. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 2015;25(11):675-686.
128 S Wanna-Udom, M Terashima, H Lyu, et al. The m6A methyltransferase METTL3 contributes to transforming growth factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB. Biochem Biophys Res Commun. 2020;524(1):150-155.
129 X Yang, Q Bai, W Chen, et al. m(6) A-dependent modulation via IGF2BP3/MCM5/Notch axis promotes partial EMT and LUAD metastasis. Adv Sci (Weinh). 2023;10(20):e2206744.
130 H Wu, F Li, R Zhu. miR-338-5p inhibits cell growth and migration via inhibition of the METTL3/m6A/c-Myc pathway in lung cancer. Acta Biochim Biophys Sin (Shanghai). 2021;53(3):304-316.
131 W Huang, CB Qi, SW Lv, et al. Determination of DNA and RNA methylation in circulating tumor cells by mass spectrometry. Anal Chem. 2016;88(2):1378-1384.
132 H Li, Y Zhang, Y Guo, et al. ALKBH1 promotes lung cancer by regulating m6A RNA demethylation. Biochem Pharmacol. 2021;189:114284.
133 J Liu, D Ren, Z Du, H Wang, H Zhang, Y Jin. m(6)A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem Biophys Res Commun. 2018;502(4):456-464.
134 Y Chao, J Shang, W Ji. ALKBH5-m(6)A-FOXM1 signaling axis promotes proliferation and invasion of lung adenocarcinoma cells under intermittent hypoxia. Biochem Biophys Res Commun. 2020;521(2):499-506.
135 H Sheng, Z Li, S Su, et al. YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation. Carcinogenesis. 2020;41(5):541-550.
136 D Jin, J Guo, Y Wu, et al. m(6)A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19(1):40.
137 X Yang, F Shao, D Guo, et al. WNT/β-catenin-suppressed FTO expression increases m(6)A of c-Myc mRNA to promote tumor cell glycolysis and tumorigenesis. Cell Death Dis. 2021;12(5):462.
138 Y Shi, S Fan, M Wu, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun. 2019;10(1):4892.
139 CC Hao, CY Xu, XY Zhao, et al. Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma. J Exp Clin Cancer Res. 2020;39(1):256.
140 M Tasaki, K Shimada, H Kimura, K Tsujikawa, N Konishi. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer. Br J Cancer. 2011;104(4):700-706.
141 Z Chen, M Qi, B Shen, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 2019;47(5):2533-2545.
142 JC Yang, E Risch, M Zhang, C Huang, H Huang, L Lu. Association of tRNA methyltransferase NSUN2/IGF-II molecular signature with ovarian cancer survival. Future Oncol. 2017;13(22):1981-1990.
143 Z Sun, S Xue, M Zhang, et al. Aberrant NSUN2-mediated m(5)C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene. 2020;39(45):6906-6919.
144 L Van Haute, S Dietmann, L Kremer, et al. Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun. 2016;7:12039.
145 W Elhardt, R Shanmugam, TP Jurkowski, A Jeltsch. Somatic cancer mutations in the DNMT2 tRNA methyltransferase alter its catalytic properties. Biochimie. 2015;112: 66-72.
146 AS Nelson, RA Marsh, KC Myers, et al. A reduced-intensity conditioning regimen for patients with dyskeratosis congenita undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22(5):884-888.
147 JA Stockert, A Gupta, B Herzog, SS Yadav, AK Tewari, KK Yadav. Predictive value of pseudouridine in prostate cancer. Am J Clin Exp Urol. 2019;7(4):262-272.
148 SY Liu, ZY Zhao, Z Qiao, SM Li, WN Zhang. LncRNA PCAT1 interacts with DKC1 to regulate proliferation, invasion and apoptosis in NSCLC cells via the VEGF/AKT/Bcl2/Caspase9 pathway. Cell Transplant. 2021;30:963689720986071.
149 J Ma, H Han, Y Huang, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021;29(12):3422-3435.
150 EM Amin, Y Liu, S Deng, et al. The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing FAK. Sci Signal. 2017;10(497):eaah3941.
151 A Herbert. ADAR and immune silencing in cancer. Trends Cancer. 2019;5(5):272-282.
152 Y Li, S Banerjee, SA Goldstein, et al. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. eLife. 2017;6:e25687.
153 JJ Ishizuka, RT Manguso, CK Cheruiyot, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature. 2019;565(7737):43-48.
154 C Anadón, S Guil, L Simó-Riudalbas, et al. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis. Oncogene. 2016;35(33):4407-4413.
155 K Maemura, K Watanabe, T Ando, et al. Altered editing level of microRNAs is a potential biomarker in lung adenocarcinoma. Cancer Sci. 2018;109(10):3326-3335.
156 J Vestbo, SS Hurd, R Rodriguez-Roisin. The 2011 revision of the global strategy for the diagnosis, management and prevention of COPD (GOLD)–why and what? Clin Respir J. 2012;6(4):208-214.
157 Word Health Organization. Chronic obstructive pulmonary disease (COPD). Updated 16 March 2023.
158 AJ Alfahad, MM Alzaydi, AM Aldossary, et al. Current views in chronic obstructive pulmonary disease pathogenesis and management. Saudi Pharm J. 2021;29(12):1361-1373.
159 YC Chen, YP Chang, KT Huang, PY Hsu, CC Hsiao, MC Lin. Unraveling the pathogenesis of asthma and chronic obstructive pulmonary disease overlap: focusing on epigenetic mechanisms. Cells. 2022;11(11):1728.
160 T Hu, L Xu, M Jiang, et al. N6-methyladenosine-methylomic landscape of lung tissues of mice with chronic obstructive pulmonary disease. Front Immunol. 2023;14:1137195.
161 Z Wang, DE Schones, K Zhao. Characterization of human epigenomes. Curr Opin Genet Dev. 2009;19(2):127-134.
162 DD Zong, RY Ouyang, P Chen. Epigenetic mechanisms in chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2015;19(5):844-856.
163 J Salimian, H Mirzaei, A Moridikia, AB Harchegani, A Sahebkar, H Salehi. Chronic obstructive pulmonary disease: MicroRNAs and exosomes as new diagnostic and therapeutic biomarkers. J Res Med Sci. 2018;23: 27.
164 L Zhang, H Valizadeh, I Alipourfard, R Bidares, L Aghebati-Maleki, M Ahmadi. Epigenetic modifications and therapy in chronic obstructive pulmonary disease (COPD): an update review. Copd. 2020;17(3):333-342.
165 X Huang, D Lv, X Yang, M Li, H Zhang. m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med. 2020;24(21):12706-12715.
166 Y Qin, Y Qiao, L Li, et al. The m(6)A methyltransferase METTL3 promotes hypoxic pulmonary arterial hypertension. Life Sci. 2021;274:119366.
167 SX Li, W Yan, JP Liu, YJ Zhao, L Chen. Long noncoding RNA SNHG4 remits lipopolysaccharide-engendered inflammatory lung damage by inhibiting METTL3 - Mediated m(6)A level of STAT2 mRNA. Mol Immunol. 2021;139: 10-22.
168 R Faraj, Y Liang, A Feng, J Wu, SM Black, T Wang. Exploring m6A-RNA methylation as a potential therapeutic strategy for acute lung injury and acute respiratory distress syndrome. Pulm Circ. 2023;13(2):e12230.
169 X Guo, Y Lin, Y Lin, et al. PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environ Pollut. 2022;303:119115.
170 X Han, H Liu, Z Zhang, et al. Epitranscriptomic 5-methylcytosine profile in PM(2.5)-induced mouse pulmonary fibrosis. Genom Proteom Bioinform. 2020;18(1):41-51.
171 KA Johannson. Air pollution exposure and IPF: prevention when there is no cure. Thorax. 2018;73(2):103-104.
172 PM George, CM Patterson, AK Reed, M Thillai. Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir Med. 2019;7(3):271-282.
173 Y Zhou, C Fang, Q Sun, Y Dong. Relevance of RNA N6-methyladenosine regulators for pulmonary fibrosis: implications for chronic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis. Front Genet. 2022;13:939175.
174 MS Deng, KJ Chen, DD Zhang, GH Li, CM Weng, JM Wang. m6A RNA methylation regulators contribute to predict and as a therapy target of pulmonary fibrosis. Evid Based Complement Alternat Med. 2022;2022:2425065.
175 S Wang, W Luo, J Huang, et al. The combined effects of circular RNA methylation promote pulmonary fibrosis. Am J Respir Cell Mol Biol. 2022;66(5):510-523.
176 W Sun, Y Li, D Ma, et al. ALKBH5 promotes lung fibroblast activation and silica-induced pulmonary fibrosis through miR-320a-3p and FOXM1. Cell Mol Biol Lett. 2022;27(1):26.
177 T Huang, WY He. Construction and validation of a novel prognostic signature of idiopathic pulmonary fibrosis by identifying subtypes based on genes related to 7-methylguanosine modification. Front Genet. 2022;13:890530.
178 T Xie, J Liang, N Liu, et al. Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. J Clin Invest. 2016;126(9):3626.
179 JX Zhang, PJ Huang, DP Wang, et al. m(6)A modification regulates lung fibroblast-to-myofibroblast transition through modulating KCNH6 mRNA translation. Mol Ther. 2021;29(12):3436-3448.
180 L Fei, G Sun, J Sun, D Wu. The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model. Bioengineered. 2022;13(3):7622-7634.
181 AM Raustia, RT Pohjola. Acupuncture compared with stomatognathic treatment for TMJ dysfunction. Part III: Effect of treatment on mobility. J Prosthet Dent. 1986;56(5):616-623.
182 D Sun, X Cai, F Shen, et al. Transcriptome-wide m6A methylome and mA-modified gene analysis in asthma. Front Cell Dev Biol. 2022;10:799459.
183 H Kim, YS Lee, SM Kim, et al. RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis. Dev Cell. 2021;56(8):1118-1130.e6.
184 Q Feng, H Zhao, L Xu, Z Xie. N6-methyladenosine modification and its regulation of respiratory viruses. Front Cell Dev Biol. 2021;9:699997.
185 M Xue, BS Zhao, Z Zhang, et al. Viral N(6)-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nat Commun. 2019;10(1):4595.
186 AM Price, KE Hayer, ABR McIntyre, et al. Direct RNA sequencing reveals m(6)A modifications on adenovirus RNA are necessary for efficient splicing. Nat Commun. 2020;11(1):6016.
187 DG Courtney, EM Kennedy, RE Dumm, et al. Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe. 2017;22(3):377-386.e5.
188 M Lu, Z Zhang, M Xue, et al. N(6)-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol. 2020;5(4):584-598.
189 R Vaid, A Mendez, K Thombare, et al. Global loss of cellular m(6)A RNA methylation following infection with different SARS-CoV-2 variants. Genome Res. 2023;33(3):299-313.
190 HM Li, F Tang, LJ Wang, Q Huang, HF Pan, TP Zhang. Association of N6-methyladenosine readers' genes variation and expression level with pulmonary tuberculosis. Front Public Health. 2022;10:925303.
191 J Ma, L Zhang, S Chen, H Liu. A brief review of RNA modification related database resources. Methods. 2022;203: 342-353.
192 WA Cantara, PF Crain, J Rozenski, et al. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res. 2011;39(Database issue):D195-201.
193 P Boccaletto, MA Machnicka, E Purta, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303-D307.
194 JJ Xuan, WJ Sun, PH Lin, et al. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res. 2018;46(D1):D327-D334.
195 H Liu, H Wang, Z Wei, et al. MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Res. 2018;46(D1):D281-D287.
196 Y Tang, K Chen, B Song, et al. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res. 2021;49(D1):D134-D143.
197 B Song, Y Tang, K Chen, et al. m7GHub: deciphering the location, regulation and pathogenesis of internal mRNA N7-methylguanosine (m7G) sites in human. Bioinformatics. 2020;36(11):3528-3536.
198 S Liu, A Zhu, C He, M Chen. REPIC: a database for exploring the N(6)-methyladenosine methylome. Genome Biol. 2020;21(1):100.
199 J Ma, B Song, Z Wei, et al. m5C-Atlas: a comprehensive database for decoding and annotating the 5-methylcytosine (m5C) epitranscriptome. Nucleic Acids Res. 2022;50(D1):D196-D203.
200 X Bao, Y Zhang, H Li, et al. RM2Target: a comprehensive database for targets of writers, erasers and readers of RNA modifications. Nucleic Acids Res. 2023;51(D1):D269-D279.
201 Y Han, J Feng, L Xia, et al. CVm6A: a visualization and exploration database for m6As in cell lines. Cells. 2019;8(2):168.
202 X Luo, H Li, J Liang, et al. RMVar: an updated database of functional variants involved in RNA modifications. Nucleic Acids Res. 2021;49(D1):D1405-D1412.
203 K Chen, B Song, Y Tang, et al. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis. Nucleic Acids Res. 2021;49(D1):D1396-D1404.
204 C Lo Giudice, G Pesole, E Picardi. REDIdb 3.0: a comprehensive collection of RNA editing events in plant organellar genomes. Front Plant Sci. 2018;9: 482.
205 G Ramaswami, JB Li. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res. 2014;42(Database issue):D109-D113.
206 AM Kiran, JJ O'Mahony, K Sanjeev, PV Baranov. Darned in 2013: inclusion of model organisms and linking with Wikipedia. Nucleic Acids Res. 2013;41(Database issue):D258-D261.
207 E Picardi, AM D'Erchia, C Lo Giudice, G Pesole. REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res. 2017;45(D1):D750-D757.
208 Y Zhang, J Jiang, J Ma, et al. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology. Nucleic Acids Res. 2023;51(D1):D106-D116.
209 X Li, Z Feng, R Wang, J Hu, X He, Z Shen. Expression status and prognostic value of m(6)A RNA methylation regulators in lung adenocarcinoma. Life (Basel). 2021;11(7):619.
210 B Guo, H Zhang, J Wang, et al. Identification of the signature associated with m(6)A RNA methylation regulators and m(6)A-related genes and construction of the risk score for prognostication in early-stage lung adenocarcinoma. Front Genet. 2021;12:656114.
211 X Li, X Xiong, C Yi. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods. 2016;14(1):23-31.
212 HX Zheng, XS Zhang, N Sui. Advances in the profiling of N(6)-methyladenosine (m(6)A) modifications. Biotechnol Adv. 2020;45:107656.
213 K Chen, Z Lu, X Wang, et al. High-resolution N(6) - methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chem Int Ed Engl. 2015;54(5):1587-1590.
214 H Zhou, S Rauch, Q Dai, et al. Evolution of a reverse transcriptase to map N(1)-methyladenosine in human messenger RNA. Nat Methods. 2019;16(12):1281-1288.
215 X Li, X Xiong, M Zhang, et al. Base-resolution mapping reveals distinct m(1)A methylome in nuclear- and mitochondrial-encoded transcripts. Mol Cell. 2017;68(5):993-1005.e9.
216 M Safra, A Sas-Chen, R Nir, et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature. 2017;551(7679):251-255.
217 L Malbec, T Zhang, YS Chen, et al. Dynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translation. Cell Res. 2019;29(11):927-941.
218 M Schaefer, T Pollex, K Hanna, F Lyko. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res. 2009;37(2):e12.
219 X Shu, J Cao, M Cheng, et al. A metabolic labeling method detects m(6)A transcriptome-wide at single base resolution. Nat Chem Biol. 2020;16(8):887-895.
220 Y Wang, Y Xiao, S Dong, Q Yu, G Jia. Antibody-free enzyme-assisted chemical approach for detection of N(6)-methyladenosine. Nat Chem Biol. 2020;16(8):896-903.
221 X Li, P Zhu, S Ma, et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 2015;11(8):592-597.
222 TM Carlile, MF Rojas-Duran, B Zinshteyn, H Shin, KM Bartoli, WV Gilbert. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014;515(7525):143-146.
223 KD Meyer. DART-seq: an antibody-free method for global m(6)A detection. Nat Methods. 2019;16(12):1275-1280.
224 S Schwartz, Y Motorin. Next-generation sequencing technologies for detection of modified nucleotides in RNAs. RNA Biol. 2017;14(9):1124-1137.
225 K Thüring, K Schmid, P Keller, M Helm. LC-MS analysis of methylated RNA. Methods Mol Biol. 2017;1562: 3-18.
226 Y Tang, J Xiong, HP Jiang, SJ Zheng, YQ Feng, BF Yuan. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis. Anal Chem. 2014;86(15):7764-7772.
227 S Zhong, H Li, Z Bodi, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell. 2008;20(5):1278-1288.
228 Z Bodi, RG Fray. Detection and quantification of N (6)-methyladenosine in messenger RNA by TLC. Methods Mol Biol. 2017;1562: 79-87.
229 N Liu, M Parisien, Q Dai, G Zheng, C He, T Pan. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 2013;19(12):1848-1856.
230 KD Meyer, Y Saletore, P Zumbo, O Elemento, CE Mason, SR Jaffrey. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell. 2012;149(7):1635-1646.
231 B Linder, AV Grozhik, AO Olarerin-George, C Meydan, CE Mason, SR Jaffrey. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12(8):767-772.
232 RT Walton, KA Christie, MN Whittaker, BP Kleinstiver. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 2020;368(6488):290-296.
233 XM Liu, J Zhou, Y Mao, Q Ji, SB Qian. Programmable RNA N(6)-methyladenosine editing by CRISPR-Cas9 conjugates. Nat Chem Biol. 2019;15(9):865-871.
234 M Du, Y Zhang, Y Mao, et al. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochem Biophys Res Commun. 2017;482(4):582-589.
235 P Xiao, YK Liu, W Han, Y Hu, BY Zhang, WL Liu. Exosomal delivery of FTO confers gefitinib resistance to recipient cells through ABCC10 regulation in an m6A-dependent manner. Mol Cancer Res. 2021;19(4):726-738.
236 Z Xu, B Peng, Y Cai, et al. N6-methyladenosine RNA modification in cancer therapeutic resistance: current status and perspectives. Biochem Pharmacol. 2020;182:114258.
237 D Han, J Liu, C Chen, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270-274.
238 X Mu, Q Zhao, W Chen, et al. IL-37 confers anti-tumor activity by regulation of m6A methylation. Front Oncol. 2020;10:526866.
239 Y Huang, R Su, Y Sheng, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019;35(4):677-691.e10.
240 R Su, L Dong, C Li, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell. 2018;172(1-2):90-105.e23.
241 B Chen, F Ye, L Yu, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012;134(43):17963-17971.
242 L Yang, J Li, L Xu, et al. Rhein shows potent efficacy against non-small-cell lung cancer through inhibiting the STAT3 pathway. Cancer Manag Res. 2019;11: 1167-1176.
243 G Huang, S Huang, H Cui. Effect of M6A regulators on diagnosis, subtype classification, prognosis and novel therapeutic target development of idiopathic pulmonary fibrosis. Front Pharmacol. 2022;13:993567.
244 Y Lu, Z Liu, Y Zhang, et al. METTL3-mediated m6A RNA methylation induces the differentiation of lung resident mesenchymal stem cells into myofibroblasts via the miR-21/PTEN pathway. Respir Res. 2023;24(1):300.
245 X Han, L Liu, S Huang, et al. RNA m(6)A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis. Nat Commun. 2023;14(1):7328.
246 J Wang, L Wang, X Tian, L Luo. N(6)-methyladenosine reader YTHDF1 regulates the proliferation and migration of airway smooth muscle cells through m(6)A/cyclin D1 in asthma. PeerJ. 2023;11:e14951.
247 Z Fang, Y Hu, J Hu, Y Huang, S Zheng, C Guo. The crucial roles of N(6)-methyladenosine (m(6)A) modification in the carcinogenesis and progression of colorectal cancer. Cell Biosci. 2021;11(1):72.
PDF

Accesses

Citations

Detail

Sections
Recommended

/