PA28γ induces dendritic cell maturation and activates T-cell immune responses in oral lichen planus

Yimei Wang1, Qiyue Zhang1, Xiaoting Deng1,2, Ying Wang1, Xin Tian1, Shiyu Zhang1, Yingqiang Shen1, Xikun Zhou3, Xin Zeng1, Qianming Chen1, Lu Jiang1(), Jing Li1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (5) : e561. DOI: 10.1002/mco2.561
ORIGINAL ARTICLE

PA28γ induces dendritic cell maturation and activates T-cell immune responses in oral lichen planus

  • Yimei Wang1, Qiyue Zhang1, Xiaoting Deng1,2, Ying Wang1, Xin Tian1, Shiyu Zhang1, Yingqiang Shen1, Xikun Zhou3, Xin Zeng1, Qianming Chen1, Lu Jiang1(), Jing Li1()
Author information +
History +

Abstract

Oral lichen planus (OLP) is a common chronic inflammatory disease of the oral mucosa, the mechanism of its inflammatory progression has not yet been fully elucidated. PA28γ plays a significant role in a variety of immune-related diseases. However, the exact role of PA28γ in the pathogenesis of OLP remains unclear. Here, we demonstrated that PA28γ is overexpressed in epithelial cells and inflammatory cells of OLP tissues but has no significant relationship with OLP subtypes. Functionally, keratinocytes with high PA28γ expression could induce dendritic cell (DC) maturation and promote the T-cell differentiation into Th1 cells in response to the immune response. In addition, we found that a high level of PA28γ expression is associated with high numbers of infiltrating mature DCs and activated T-cells in OLP tissues. Mechanistically, keratinocytes with high PA28γ expression could promote the secretion of C–C motif chemokine (CCL)5, blocking CCL5 or/and its receptor CD44 could inhibit the induction of T-cell differentiation by keratinocytes with high PA28γ expression. In conclusion, we reveal that keratinocytes with high expression of PA28γ in OLP can induce DC maturation and promote T-cell differentiation through the CCL5-CD44 pathway, providing previously unidentified mechanistic insights into the mechanism of inflammatory progression in OLP.

Keywords

dendritic cell / immune responses / oral lichen planus / PA28γ / T-cells

Cite this article

Download citation ▾
Yimei Wang, Qiyue Zhang, Xiaoting Deng, Ying Wang, Xin Tian, Shiyu Zhang, Yingqiang Shen, Xikun Zhou, Xin Zeng, Qianming Chen, Lu Jiang, Jing Li. PA28γ induces dendritic cell maturation and activates T-cell immune responses in oral lichen planus. MedComm, 2024, 5(5): e561 https://doi.org/10.1002/mco2.561

References

1 MS Alrashdan, N Cirillo, M McCullough. Oral lichen planus: a literature review and update. Arch Dermatol Res. 2016;308(8):539-551.
2 M González-Moles, S Warnakulasuriya, I González-Ruiz, et al. Worldwide prevalence of oral lichen planus: a systematic review and meta-analysis. Oral Dis. 2021;27(4):813-828.
3 SMH Aghbari, AI Abushouk, A Attia, et al. Malignant transformation of oral lichen planus and oral lichenoid lesions: a meta-analysis of 20095 patient data. Oral Oncol. 2017;68: 92-102.
4 S Warnakulasuriya, O Kujan, JM Aguirre-Urizar, et al. Oral potentially malignant disorders: a consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer. Oral Dis. 2021;27(8):1862-1880.
5 C Tziotzios, JYW Lee, T Brier, et al. Lichen planus and lichenoid dermatoses: clinical overview and molecular basis. J Am Acad Dermatol. 2018;79(5):789-804.
6 CP Chiang, J Yu-Fong Chang, YP Wang, YH Wu, SY Lu, A Sun. Oral lichen planus—differential diagnoses, serum autoantibodies, hematinic deficiencies, and management. J Formos Med Assoc. 2018;117(9):756-765.
7 X Deng, Y Wang, L Jiang, J Li, Q Chen. Updates on immunological mechanistic insights and targeting of the oral lichen planus microenvironment. Front Immunol. 2022;13:1023213.
8 ZB Kurago. Etiology and pathogenesis of oral lichen planus: an overview. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(1):72-80.
9 B Zhao, N Xu, R Li, et al. Vitamin D/VDR signaling suppresses microRNA-802-induced apoptosis of keratinocytes in oral lichen planus. FASEB J. 2019;33(1):1042-1050.
10 MR Payeras, K Cherubini, MA Figueiredo, FG Salum. Oral lichen planus: focus on etiopathogenesis. Arch Oral Biol. 2013;58(9):1057-1069.
11 Y Wang, G Du, L Shi, X Shen, Z Shen, W Liu. Altered expression of CCN1 in oral lichen planus associated with keratinocyte activation and IL-1β, ICAM1, and CCL5 up-regulation. J Oral Pathol Med. 2020;49(9):920-925.
12 P Cascio. PA28γ: new insights on an ancient proteasome activator. Biomolecules. 2021;11(2):228.
13 L Yao, L Zhou, Y Xuan, et al. The proteasome activator REGγ counteracts immunoproteasome expression and autoimmunity. J Autoimmun. 2019;103:102282.
14 F Yin, J Wang, K Zhao, et al. The significance of PA28γ and U2AF1 in oral mucosal carcinogenesis. Oral Dis. 2020;26(1):53-61.
15 A El-Howati, MH Thornhill, HE Colley, C Murdoch. Immune mechanisms in oral lichen planus. Oral Dis. 2023;29(4):1400-1415.
16 S Mukae, Y Okazaki, H Tsuda, et al. Detection of fascin and CCR-7 positive mature dendritic cells in oral lichen planus. J Oral Pathol Med. 2009;38(4):334-342.
17 L Zhou, L Yao, Q Zhang, et al. REGγ controls Th17 cell differentiation and autoimmune inflammation by regulating dendritic cells. Cell Mol Immunol. 2020;17(11):1136-1147.
18 YK Wang, J Wang, F Hua, et al. TREM-1 modulates dendritic cells maturation and dendritic cell-mediated T-cell activation induced by ox-LDL. Oxid Med Cell Longev. 2022;2022:3951686.
19 T Shiohara, N Moriya, K Tsuchiya, M Nagashima, H Narimatsu. Lichenoid tissue reaction induced by local transfer of Ia-reactive T-cell clones. J Invest Dermatol. 1986;87(1):33-38.
20 T Koga, F Sasaki, K Saeki, et al. Expression of leukotriene B(4) receptor 1 defines functionally distinct DCs that control allergic skin inflammation. Cell Mol Immunol. 2021;18(6):1437-1449.
21 CE Zielinski, F Mele, D Aschenbrenner, et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature. 2012;484(7395):514-518.
22 S Sandhu, BA Klein, M Al-Hadlaq, et al. Oral lichen planus: comparative efficacy and treatment costs-a systematic review. BMC Oral Health. 2022;22(1):161.
23 K Thongprasom. Oral lichen planus: challenge and management. Oral Dis. 2018;24(1-2):172-173.
24 K Vinay, S Kumar, A Dev, et al. Oral acitretin plus topical triamcinolone vs topical triamcinolone monotherapy in patients with symptomatic oral lichen planus: a randomized clinical trial. JAMA Dermatol. 2024;160(1):80-87.
25 M Qing, D Yang, Q Shang, et al. CD8(+) tissue-resident memory T cells induce oral lichen planus erosion via cytokine network. Elife. 2023;12:e83981.
26 SC Eisenbarth. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol. 2019;19(2):89-103.
27 SS Surwase, SMS Shahriar, JM An, et al. Engineered nanoparticles inside a microparticle oral system for enhanced mucosal and systemic immunity. ACS Appl Mater Interfaces. 2022;14(9):11124-11143.
28 D Zotos, JM Coquet, Y Zhang, et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med. 2010;207(2):365-378.
29 RJ Ma, MJ He, YQ Tan, G Zhou. Artemisinin and its derivatives: a potential therapeutic approach for oral lichen planus. Inflamm Res. 2019;68(4):297-310.
30 J Shan, S Li, C Wang, et al. Expression and biological functions of the CCL5-CCR5 axis in oral lichen planus. Exp Dermatol. 2019;28(7):816-821.
31 RJ Siegel, AK Singh, PM Panipinto, et al. Extracellular sulfatase-2 is overexpressed in rheumatoid arthritis and mediates the TNF-α-induced inflammatory activation of synovial fibroblasts. Cell Mol Immunol. 2022;19(10):1185-1195.
32 DN Xia, YQ Tan, JY Yang, G Zhou. Omega-3 polyunsaturated fatty acids: a promising approach for the management of oral lichen planus. Inflamm Res. 2020;69(10):989-999.
33 JG Edmans, B Ollington, HE Colley, et al. Electrospun patch delivery of anti-TNFα F(ab) for the treatment of inflammatory oral mucosal disease. J Control Release. 2022;350: 146-157.
34 HS Lee, WJ Kim. The role of matrix metalloproteinase in inflammation with a focus on infectious diseases. Int J Mol Sci. 2022;23(18):10546.
35 F Romano, PG Arduino, M Maggiora, et al. Effect of a structured plaque control on MMP-1 and MMP-9 crevicular levels in patients with desquamative gingivitis associated with oral lichen planus. Clin Oral Investig. 2019;23(6):2651-2658.
36 MP Piccinni, L Lombardelli, F Logiodice, et al. Potential pathogenetic role of Th17, Th0, and Th2 cells in erosive and reticular oral lichen planus. Oral Dis. 2014;20(2):212-218.
37 T Yamamoto, T Osaki. Characteristic cytokines generated by keratinocytes and mononuclear infiltrates in oral lichen planus. J Invest Dermatol. 1995;104(5):784-788.
38 D Bastian, Y Wu, BC Betts, XZ Yu. The IL-12 cytokine and receptor family in graft-vs.-host disease. Front Immunol. 2019;10: 988.
39 R Khatonier, G Ahmed, P Sarmah, K Narain, AM Khan. Immunomodulatory role of Th17 pathway in experimental visceral leishmaniasis. Immunobiology. 2021;226(6):152148.
40 MD Powell, KA Read, BK Sreekumar, DM Jones, KJ Oestreich. IL-12 signaling drives the differentiation and function of a T(H)1-derived T(FH1)-like cell population. Sci Rep. 2019;9(1):13991.
41 X Liu, V Adorno-Cruz, YF Chang, et al. EGFR inhibition blocks cancer stem cell clustering and lung metastasis of triple negative breast cancer. Theranostics. 2021;11(13):6632-6643.
42 HP Llewellyn, S Arat, J Gao, et al. T cells and monocyte-derived myeloid cells mediate immunotherapy-related hepatitis in a mouse model. J Hepatol. 2021;75(5):1083-1095.
43 N Ludwig, MJ Szczepanski, A Gluszko, et al. CD44(+) tumor cells promote early angiogenesis in head and neck squamous cell carcinoma. Cancer Lett. 2019;467: 85-95.
44 X Weng, S Maxwell-Warburton, A Hasib, L Ma, L Kang. The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab. 2022;33(5):318-332.
45 VL Hegde, NP Singh, PS Nagarkatti, M Nagarkatti. CD44 mobilization in allogeneic dendritic cell-T cell immunological synapse plays a key role in T cell activation. J Leukoc Biol. 2008;84(1):134-142.
46 H Guan, PS Nagarkatti, M Nagarkatti. Role of CD44 in the differentiation of Th1 and Th2 cells: CD44-deficiency enhances the development of Th2 effectors in response to sheep RBC and chicken ovalbumin. J Immunol. 2009;183(1):172-180.
PDF

Accesses

Citations

Detail

Sections
Recommended

/