Precise prediction of cerebrospinal fluid amyloid beta protein for early Alzheimer's disease detection using multimodal data

Jingnan Sun1, Zengmai Xie2,3, Yike Sun1, Anruo Shen1, Renren Li2,3, Xiao Yuan2,3, Bai Lu4,5(), Yunxia Li2,3,6()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (5) : e532. DOI: 10.1002/mco2.532
ORIGINAL ARTICLE

Precise prediction of cerebrospinal fluid amyloid beta protein for early Alzheimer's disease detection using multimodal data

  • Jingnan Sun1, Zengmai Xie2,3, Yike Sun1, Anruo Shen1, Renren Li2,3, Xiao Yuan2,3, Bai Lu4,5(), Yunxia Li2,3,6()
Author information +
History +

Abstract

Alzheimer's disease (AD) constitutes a neurodegenerative disorder marked by a progressive decline in cognitive function and memory capacity. The accurate diagnosis of this condition predominantly relies on cerebrospinal fluid (CSF) markers, notwithstanding the associated burdens of pain and substantial financial costs endured by patients. This study encompasses subjects exhibiting varying degrees of cognitive impairment, encompassing individuals with subjective cognitive decline, mild cognitive impairment, and dementia, constituting a total sample size of 82 participants. The primary objective of this investigation is to explore the relationships among brain atrophy measurements derived from magnetic resonance imaging, atypical electroencephalography (EEG) patterns, behavioral assessment scales, and amyloid β-protein (Aβ) indicators. The findings of this research reveal that individuals displaying reduced Aβ1-42/Aβ-40 levels exhibit significant atrophy in the frontotemporal lobe, alongside irregularities in various parameters related to EEG frequency characteristics, signal complexity, inter-regional information exchange, and microstates. The study additionally endeavors to estimate Aβ1-42/Aβ-40 content through the application of a random forest algorithm, amalgamating structural data, electrophysiological features, and clinical scales, achieving a remarkable predictive precision of 91.6%. In summary, this study proposes a cost-effective methodology for acquiring CSF markers, thereby offering a valuable tool for the early detection of AD.

Keywords

amyloid beta protein / cerebrospinal fluid / EEG / MRI

Cite this article

Download citation ▾
Jingnan Sun, Zengmai Xie, Yike Sun, Anruo Shen, Renren Li, Xiao Yuan, Bai Lu, Yunxia Li. Precise prediction of cerebrospinal fluid amyloid beta protein for early Alzheimer's disease detection using multimodal data. MedComm, 2024, 5(5): e532 https://doi.org/10.1002/mco2.532

References

1 P Scheltens, B De Strooper, M Kivipelto, et al. Alzheimer's disease. Lancet North Am Ed. 2021;397(10284):1577-1590.
2 CL Masters, R Bateman, K Blennow, CC Rowe, RA Sperling, JL Cummings. Alzheimer's disease. Nat Rev Dis Primers. 2015;1(1):1-18.
3 S Sadigh-Eteghad, B Sabermarouf, A Majdi, M Talebi, M Farhoudi, J Mahmoudi. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract. 2015;24(1):1-10.
4 FM LaFerla, KN Green, S Oddo. Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci. 2007;8(7):499-509.
5 BJ Gilbert. Republished: the role of amyloid beta in the pathogenesis of Alzheimer's disease. Postgrad Med J. 2014;90(1060):113-117.
6 S Tiwari, V Atluri, A Kaushik, A Yndart, M Nair. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed. 2019: 5541-5554.
7 CM Karch, AM Goate. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43-51.
8 PJ Nestor, P Scheltens, JR Hodges. Advances in the early detection of Alzheimer's disease. Nat Med. 2004;10(7):S34-41. Suppl. Suppl.
9 J Cummings. The National Institute on Aging—Alzheimer's Association framework on Alzheimer's disease: application to clinical trials. Alzheimers Dement. 2019;15(1):172-178.
10 AM Fagan, DM Holtzman. Cerebrospinal fluid biomarkers of Alzheimer's disease. Biomark Med. 2010;4(1):51-63.
11 K Blennow, H Hampel. CSF markers for incipient Alzheimer's disease. Lancet Neurol. 2003;2(10):605-613.
12 D Gogishvili, EM Vromen, S Koppes-den Hertog, et al. Discovery of novel CSF biomarkers to predict progression in dementia using machine learning. Sci Rep. 2023;13(1):6531.
13 CR Jack Jr, DA Bennett, K Blennow, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535-562.
14 CR Jack, RC Petersen, YC Xu, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999;52(7):1397-1397.
15 J Ottoy, E Niemantsverdriet, J Verhaeghe, et al. Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid-and 18F-FDG-PET imaging. NeuroImage: Clinical. 2019;22:101771.
16 NK Logothetis. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869-878.
17 I Ripp, T Stadhouders, A Savio, et al. Integrity of neurocognitive networks in dementing disorders as measured with simultaneous PET/functional MRI. J Nucl Med. 2020;61(9):1341-1347.
18 C Anckaerts, I Blockx, P Summer, et al. Early functional connectivity deficits and progressive microstructural alterations in the TgF344-AD rat model of Alzheimer's disease: a longitudinal MRI study. Neurobiol Dis. 2019;124: 93-107.
19 X Tang, D Holland, AM Dale, L Younes, MI Miller, AsDN Initiative. Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting. Hum Brain Mapp. 2014;35(8):3701-3725.
20 Y Sun, X Chen, B Liu, et al. A surgery-detection two-dimensional panorama of signal acquisition technologies in brain-computer interface. arXiv:230816102. 2023.
21 X Chen, Y Wang, M Nakanishi, X Gao, TP Jung, S Gao. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci USA. 2015;112(44):E6058-6067.
22 Y Sun, L Liang, J Sun, et al. A binocular vision SSVEP brain-computer interface paradigm for dual-frequency modulation. IEEE Trans Biomed Eng. 2022;70: 1172-1181.
23 EY Kimchi, A Neelagiri, W Whitt, et al. Clinical EEG slowing correlates with delirium severity and predicts poor clinical outcomes. Neurology. 2019;93(13):e1260-e1271.
24 C Babiloni, X Arakaki, H Azami, et al. Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: recommendations of an expert panel. Alzheimers Dement. 2021;17(9):1528-1553.
25 D Arnaldi, A Donniaquio, P Mattioli, et al. Epilepsy in neurodegenerative dementias: a clinical, epidemiological, and EEG study. J Alzheimer's Dis. 2020;74(3):865-874.
26 CT Briels, CJ Stam, P Scheltens, S Bruins, I Lues, AA Gouw. In pursuit of a sensitive EEG functional connectivity outcome measure for clinical trials in Alzheimer's disease. Clin Neurophysiol. 2020;131(1):88-95.
27 G Adler, S Brassen, A Jajcevic. EEG coherence in Alzheimer's dementia. J Neural Transm. 2003;110: 1051-1058.
28 C Delaby, T Estellés, N Zhu, et al. The Aβ1–42/Aβ1–40 ratio in CSF is more strongly associated to tau markers and clinical progression than Aβ1–42 alone. Alzheimer's Res Ther. 2022;14(1):1-11.
29 H-W Klafki, B Morgado, O Wirths, et al. Is plasma amyloid-β1–42/1–40 a better biomarker for Alzheimer's disease than AβX–42/X–40? Fluids Barriers CNS. 2022;19(1):96.
30 J Sepulcre, MR Sabuncu, Q Li, G El Fakhri, R Sperling, KA Johnson. Tau and amyloid β proteins distinctively associate to functional network changes in the aging brain. Alzheimer's Dement. 2017;13(11):1261-1269.
31 Y Sun, A Shen, J Sun, et al. Minimally invasive local-skull electrophysiological modification with piezoelectric drill. IEEE Trans Neural Syst Rehabil Eng. 2022;30: 2042-2051.
32 Y Sun, A Shen, C Du, J Sun, X Chen, X Gao. A real-time non-implantation bi-directional brain-computer interface solution without stimulation artifacts. IEEE Trans Neural Syst Rehabil Eng. 2023.
33 D Seo, RM Neely, K Shen, et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron. 2016;91(3):529-539.
34 RM Neely, DK Piech, SR Santacruz, MM Maharbiz, JM Carmena. Recent advances in neural dust: towards a neural interface platform. Curr Opin Neurobiol. 2018;50: 64-71.
35 D Seo, JM Carmena, JM Rabaey, MM Maharbiz, E Alon. Model validation of untethered, ultrasonic neural dust motes for cortical recording. J Neurosci Methods. 2015;244: 114-122.
36 Y Zhang, K Sun, J Ren, et al. High-resolution dynamic human brain neural activity recording using 3T MRI. Biorxiv. 2023:542967. 2023.05. 31.
37 S Janelidze, H Zetterberg, N Mattsson, et al. CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios: better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol. 2016;3(3):154-165.
38 H Zhu, H Lu, F Wang, et al. Characteristics of cortical atrophy and white matter lesions between dementia with Lewy bodies and Alzheimer's disease: a case-control study. Front Neurol. 2022;12: 2522.
39 Y Zhang, E Londos, L Minthon, et al. Usefulness of computed tomography linear measurements in diagnosing Alzheimer's disease. Acta Radiol. 2008;49(1):91-97.
40 R Uribe-San-Martín, E Ciampi, R Di Giacomo, et al. Corpus callosum atrophy and post-surgical seizures in temporal lobe epilepsy associated with hippocampal sclerosis. Epilepsy Res. 2018;142: 29-35.
41 A Lempel, J Ziv. On the complexity of finite sequences. IEEE Trans Inf Theory. 1976;22(1):75-81.
42 G Biau, E Scornet. A random forest guided tour. Test. 2016;25: 197-227.
43 Y Qi. Random forest for bioinformatics. Ensemble Machine Learning: Methods and Applications. Springer; 2012: 307-323.
PDF

Accesses

Citations

Detail

Sections
Recommended

/