Cellular senescence in cancer: molecular mechanisms and therapeutic targets

Ping Jin1, Xirui Duan2, Lei Li3, Ping Zhou2, Cheng-Gang Zou1(), Ke Xie2()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (5) : e542. DOI: 10.1002/mco2.542
REVIEW

Cellular senescence in cancer: molecular mechanisms and therapeutic targets

  • Ping Jin1, Xirui Duan2, Lei Li3, Ping Zhou2, Cheng-Gang Zou1(), Ke Xie2()
Author information +
History +

Abstract

Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A “one-two-punch” therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.

Keywords

immunosenescence / senescence / senescence-associated secretory phenotype (SASP) / senotherapeutics / tumor

Cite this article

Download citation ▾
Ping Jin, Xirui Duan, Lei Li, Ping Zhou, Cheng-Gang Zou, Ke Xie. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm, 2024, 5(5): e542 https://doi.org/10.1002/mco2.542

References

1 C López-Otín, MA Blasco, L Partridge, M Serrano, G Kroemer. The hallmarks of aging. Cell. 2013;153(6):1194-1217.
2 C López-Otín, MA Blasco, L Partridge, M Serrano, G Kroemer. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243-278.
3 D Hanahan, RA Weinberg. The hallmarks of cancer. Cell. 2000;100(1):57-70.
4 D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
5 D Hanahan. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31-46.
6 JH Yang, M Hayano, PT Griffin, et al. Loss of epigenetic information as a cause of mammalian aging. Cell. 2023;186(2):305-326.e27.
7 D Hu, S Yuan, J Zhong, et al. Cellular senescence and hematological malignancies: from pathogenesis to therapeutics. Pharmacol Ther. 2021;223:107817.
8 A Domen, C Deben, J Verswyvel, et al. Cellular senescence in cancer: clinical detection and prognostic implications. J Exp Clin Cancer Res. 2022;41(1):360.
9 PJ Barnes, J Baker, LE Donnelly. Cellular senescence as a mechanism and target in chronic lung diseases. Am J Respir Crit Care Med. 2019;200(5):556-564.
10 A Lujambio, L Akkari, J Simon, et al. Non-cell-autonomous tumor suppression by p53. Cell. 2013;153(2):449-460.
11 CA Schmitt, B Wang, M Demaria. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19(10):619-636.
12 B Wang, M Varela-Eirin, SM Brandenburg, et al. Pharmacological CDK4/6 inhibition reveals a p53-dependent senescent state with restricted toxicity. Embo J. 2022;41(6):e108946.
13 X Peng, Y Wu, U Brouwer, et al. Cellular senescence contributes to radiation-induced hyposalivation by affecting the stem/progenitor cell niche. Cell Death Dis. 2020;11(10):854.
14 HL Ou, B Schumacher. DNA damage responses and p53 in the aging process. Blood. 2018;131(5):488-495.
15 N Ohtani. The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflamm Regen. 2022;42(1):11.
16 J Lian, Y Yue, W Yu, Y Zhang. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020;13(1):151.
17 A Gao, X Liu, W Lin, et al. Tumor-derived ILT4 induces T cell senescence and suppresses tumor immunity. J Immunother Cancer. 2021;9(3):e001536
18 F Triana-Martínez, MI Loza, E Domínguez. Beyond tumor suppression: senescence in cancer stemness and tumor dormancy. Cells. 2020;9(2)
19 T Saleh, DA Gewirtz. Considering therapy-induced senescence as a mechanism of tumour dormancy contributing to disease recurrence. Br J Cancer. 2022;126(10):1363-1365.
20 M Ruscetti, JP Morris, R Mezzadra, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell. 2020;181(2):424-441.e21.
21 CR Chambers, S Ritchie, BA Pereira, P Timpson. Overcoming the senescence-associated secretory phenotype (SASP): a complex mechanism of resistance in the treatment of cancer. Mol Oncol. 2021;15(12):3242-3255.
22 R Missiaen, NM Anderson, LC Kim, et al. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab. 2022;34(8):1151-1167.e7.
23 MA Pibuel, D Poodts, M Díaz, et al. Antitumor effect of 4MU on glioblastoma cells is mediated by senescence induction and CD44, RHAMM and p-ERK modulation. Cell Death Discov. 2021;7(1):280.
24 H Jo, K Shim, D Jeoung. The potential of senescence as a target for developing anticancer therapy. Int J Mol Sci. 2023;24(4):3436.
25 JL Kirkland, T Tchkonia. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518-536.
26 J Birch, J Gil. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34(23-24):1565-1576.
27 M Paez-Ribes, E González-Gualda, GJ Doherty, D Mu?oz-Espín. Targeting senescent cells in translational medicine. EMBO Mol Med. 2019;11(12):e10234.
28 L Zhang, LE Pitcher, V Prahalad, LJ Niedernhofer, PD Robbins. Recent advances in the discovery of senolytics. Mech Ageing Dev. 2021;200:111587.
29 L Wyld, I Bellantuono, T Tchkonia, et al. Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers. 2020;12(8):2134.
30 AA Kermani. Applications of fluorescent protein tagging in structural studies of membrane proteins. Febs J. n/a(n/a)
31 CD Wiley, J Campisi. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab. 2021;3(10):1290-1301.
32 A Mamun, MA Sufian, M Uddin, et al. Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. Eur J Pharmacol. 2022:174991.
33 X Xiao, M Xu, H Yu, et al. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct Target Ther. 2021;6(1):354.
34 H Zhu, S Blake, FK Kusuma, RB Pearson, J Kang, KT Chan. Oncogene-induced senescence: from biology to therapy. Mech Ageing Dev. 2020;187:111229.
35 DJ Zabransky, EM Jaffee, AT Weeraratna. Shared genetic and epigenetic changes link aging and cancer. Trends Cell Biol. 2022;32(4):338-350.
36 L Wang, R Chen, G Li, et al. FBW7 mediates senescence and pulmonary fibrosis through telomere uncapping. Cell Metab. 2020;32(5):860-877.e9.
37 Q Chen, H Zhang, Y Yang, et al. Metformin attenuates UVA-induced skin photoaging by suppressing mitophagy and the PI3K/AKT/mTOR pathway. Int J Mol Sci. 2022;23(13)
38 G Cavalli, R Biavasco, B Borgiani, L Dagna. Oncogene-induced senescence as a new mechanism of disease: the paradigm of erdheim-chester disease. Front Immunol. 2014;5: 281.
39 M Seoane, JA Costoya, VM Arce. Uncoupling oncogene-induced senescence (OIS) and DNA damage response (DDR) triggered by DNA hyper-replication: lessons from primary mouse embryo astrocytes (MEA). Sci Rep. 2017;7(1):12991.
40 M Serrano, AW Lin, ME McCurrach, D Beach, SW Lowe. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593-602.
41 CP Zampetidis, P Galanos, A Angelopoulou, et al. A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Mol Cell. 2021;81(23):4907-4923.e8.
42 J Cisowski, VI Sayin, M Liu, C Karlsson, MO Bergo. Oncogene-induced senescence underlies the mutual exclusive nature of oncogenic KRAS and BRAF. Oncogene. 2016;35(10):1328-1333.
43 X Liu, X Li, S Wang, et al. ATOH8 binds SMAD3 to induce cellular senescence and prevent Ras-driven malignant transformation. Proc Natl Acad Sci USA. 2023;120(3):e2208927120.
44 AS McNeal, RL Belote, H Zeng, et al. BRAF(V600E) induces reversible mitotic arrest in human melanocytes via microrna-mediated suppression of AURKB. eLife. 2021;10
45 M Braig, CA Schmitt. Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res. 2006;66(6):2881-2884.
46 A Georgilis, S Klotz, CJ Hanley, et al. PTBP1-mediated alternative splicing regulates the inflammatory secretome and the pro-tumorigenic effects of senescent cells. Cancer Cell. 2018;34(1):85-102.e9.
47 XL Liu, J Ding, LH Meng. Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol Sin. 2018;39(10):1553-1558.
48 PG Prasanna, DE Citrin, J Hildesheim, et al. Therapy-induced senescence: opportunities to improve anticancer therapy. J Natl Cancer Inst. 2021;113(10):1285-1298.
49 S Duro-Sánchez, M Nadal-Serrano, M Lalinde-Gutiérrez, et al. Therapy-induced senescence enhances the efficacy of HER2-targeted antibody-drug conjugates in breast cancer. Cancer Res. 2022;82(24):4670-4679.
50 J Kallenbach, G Atri Roozbahani, M Heidari Horestani, A Baniahmad. Distinct mechanisms mediating therapy-induced cellular senescence in prostate cancer. Cell Biosci. 2022;12(1):200.
51 JJ Lee, IH Park, WJ Rhee, HS Kim, JS Shin. HMGB1 modulates the balance between senescence and apoptosis in response to genotoxic stress. Faseb J. 2019;33(10):10942-10953.
52 TY Chen, BM Huang, TK Tang, et al. Genotoxic stress-activated DNA-PK-p53 cascade and autophagy cooperatively induce ciliogenesis to maintain the DNA damage response. Cell Death Differ. 2021;28(6):1865-1879.
53 BD Larsen, J Benada, PYK Yung, et al. Cancer cells use self-inflicted DNA breaks to evade growth limits imposed by genotoxic stress. Science. 2022;376(6592):476-483.
54 N Alessio, T Squillaro, G Di Bernardo, et al. Increase of circulating IGFBP-4 following genotoxic stress and its implication for senescence. eLife. 2020;9
55 AK Velichko, NV Petrova, SV Razin, OL Kantidze. Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress. Nucleic Acids Res. 2015;43(13):6309-6320.
56 B Xu, X Gao, X Li, Y Jia, F Li, Z Zhang. Cell cycle arrest explains the observed bulk 3D genomic alterations in response to long-term heat shock in K562 cells. Genome Res. 2022;32(7):1285-1297.
57 B Liu, Z Zhou, Y Jin, et al. Hepatic stellate cell activation and senescence induced by intrahepatic microbiota disturbances drive progression of liver cirrhosis toward hepatocellular carcinoma. J Immunother Cancer. 2022;10(1)
58 F Rossiello, U Herbig, MP Longhese, M Fumagalli, F d'Adda di Fagagna. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev. 2014;26: 89-95.
59 ML Swift, C Sell, J Azizkhan-Clifford. DNA damage-induced degradation of Sp1 promotes cellular senescence. Geroscience. 2022;44(2):683-698.
60 YS Yoon, JS You, TK Kim, et al. Senescence and impaired DNA damage responses in alpha-synucleinopathy models. Exp Mol Med. 2022;54(2):115-128.
61 C Arnould, V Rocher, AL Finoux, et al. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature. 2021;590(7847):660-665.
62 I Campillo-Marcos, E Monte-Serrano, E Navarro-Carrasco, R García-González, PA Lazo. Lysine methyltransferase inhibitors impair H4K20me2 and 53BP1 foci in response to DNA damage in sarcomas, a synthetic lethality strategy. Front Cell Dev Biol. 2021;9:715126.
63 F Rossiello, D Jurk, JF Passos, F d'Adda di Fagagna. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol. 2022;24(2):135-147.
64 RP Barnes, M de Rosa, SA Thosar, et al. Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nat Struct Mol Biol. 2022;29(7):639-652.
65 A Bernadotte, VM Mikhelson, IM Spivak. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY). 2016;8(1):3-11.
66 AM Olovnikov. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41(1):181-190.
67 R Di Micco, V Krizhanovsky, D Baker, F d'Adda di Fagagna. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75-95.
68 L Roger, F Tomas, V Gire. Mechanisms and regulation of cellular senescence. Int J Mol Sci. 2021;22(23)
69 M Kritsilis, VS Rizou, PN Koutsoudaki, K Evangelou, VG Gorgoulis, D Papadopoulos. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci. 2018;19(10):2937.
70 X Zhu, Z Chen, W Shen, et al. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther. 2021;6(1):245.
71 E Roupakia, GS Markopoulos, E Kolettas. Genes and pathways involved in senescence bypass identified by functional genetic screens. Mech Ageing Dev. 2021;194:111432.
72 L Grosse, N Wagner, A Emelyanov, et al. Defined p16(High) senescent cell types are indispensable for mouse healthspan. Cell Metab. 2020;32(1):87-99.e6.
73 J Murphy, BT Tam, JL Kirkland, et al. Senescence markers in subcutaneous preadipocytes differ in childhood- versus adult-onset obesity before and after weight loss. Obesity (Silver Spring). 2023;31(6):1610-1619.
74 M Ogrodnik. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell. 2021;20(4):e13338.
75 K Engeland. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29(5):946-960.
76 I Sanidas, H Lee, PH Rumde, et al. Chromatin-bound RB targets promoters, enhancers, and CTCF-bound loci and is redistributed by cell-cycle progression. Mol Cell. 2022;82(18):3333-3349.e9.
77 R Kumari, P Jat. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:645593.
78 A Pezone, F Olivieri, MV Napoli, A Procopio, EV Avvedimento, A Gabrielli. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol. 2023;19(4):200-211.
79 V Kolupaeva, C Basilico. Overexpression of cyclin E/CDK2 complexes overcomes FGF-induced cell cycle arrest in the presence of hypophosphorylated Rb proteins. Cell Cycle. 2012;11(13):2557-2566.
80 Y Li, W Deng, J Wu, et al. TXNIP exacerbates the senescence and aging-related dysfunction of β cells by inducing cell cycle arrest through p38-p16/p21-CDK-Rb pathway. Antioxid Redox Signal. 2023;38(7-9):480-495.
81 M Milanovic, DNY Fan, D Belenki, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553(7686):96-100.
82 T Saleh, VJ Carpenter, S Bloukh, DA Gewirtz. Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Semin Cancer Biol. 2022;81: 37-47.
83 F Zeng, Y Peng, Y Qin, et al. Wee1 promotes cell proliferation and imatinib resistance in chronic myeloid leukemia via regulating DNA damage repair dependent on ATM-γH2A.X-MDC1. Cell Commun Signal. 2022;20(1):199.
84 NL Ka, TY Na, H Na, et al. NR1D1 recruitment to sites of DNA damage inhibits repair and is associated with chemosensitivity of breast cancer. Cancer Res. 2017;77(9):2453-2463.
85 SJ Kim, UJ Kim, HY Yoo, YJ Choi, KW Kang. Anti-cancer effects of CKD-581, a potent histone deacetylase inhibitor against diffuse large B-cell lymphoma. Int J Mol Sci. 2020;21(12)
86 L You, E Nepovimova, M Valko, Q Wu, K Kuca. Mycotoxins and cellular senescence: the impact of oxidative stress, hypoxia, and immunosuppression. Arch Toxicol. 2023;97(2):393-404.
87 L Bian, Y Meng, M Zhang, D Li. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer. 2019;18(1):169.
88 S Wang, Z Zou, X Luo, Y Mi, H Chang, D Xing. LRH1 enhances cell resistance to chemotherapy by transcriptionally activating MDC1 expression and attenuating DNA damage in human breast cancer. Oncogene. 2018;37(24):3243-3259.
89 NMS Gustafsson, K F?rneg?rdh, N Bonagas, et al. Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination. Nat Commun. 2018;9(1):3872.
90 Z Wilson, R Odedra, Y Wallez, et al. ATR inhibitor AZD6738 (Ceralasertib) exerts antitumor activity as a monotherapy and in combination with chemotherapy and the PARP inhibitor olaparib. Cancer Res. 2022;82(6):1140-1152.
91 D Menolfi, W Jiang, BJ Lee, et al. Kinase-dead ATR differs from ATR loss by limiting the dynamic exchange of ATR and RPA. Nat Commun. 2018;9(1):5351.
92 K Li, G Bronk, J Kondev, JE Haber. Yeast ATM and ATR kinases use different mechanisms to spread histone H2A phosphorylation around a DNA double-strand break. Proc Natl Acad Sci USA. 2020;117(35):21354-21363.
93 AK Ciminera, SC Shuck, J Termini. Elevated glucose increases genomic instability by inhibiting nucleotide excision repair. Life Sci Alliance. 2021;4(10)
94 C Marx, MU Schaarschmidt, J Kirkpatrick, et al. Cooperative treatment effectiveness of ATR and HSP90 inhibition in Ewing's sarcoma cells. Cell Biosci. 2021;11(1):57.
95 L Zhao, Y Zhang, Y Gao, et al. JMJD3 promotes SAHF formation in senescent WI38 cells by triggering an interplay between demethylation and phosphorylation of RB protein. Cell Death Differ. 2015;22(10):1630-1640.
96 X Su, X Wang, Y Liu, et al. Effect of Jiajian Guishen Formula on the senescence-associated heterochromatic foci in mouse ovaria after induction of premature ovarian aging by the endocrine-disrupting agent 4-vinylcyclohexene diepoxide. J Ethnopharmacol. 2021;269:113720.
97 KN Miller, N Dasgupta, T Liu, PD Adams, MG Vizioli. Cytoplasmic chromatin fragments-from mechanisms to therapeutic potential. eLife. 2021;10
98 D Duan, M Shang, Y Han, et al. EZH2-CCF-cGAS axis promotes breast cancer metastasis. Int J Mol Sci. 2022;23(3)
99 TM Loo, K Miyata, Y Tanaka, A Takahashi. Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer. Cancer Sci. 2020;111(2):304-311.
100 MG Vizioli, T Liu, KN Miller, et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 2020;34(5-6):428-445.
101 J Czarnecka-Herok, MA Sliwinska, M Herok, et al. Therapy-induced senescent/polyploid cancer cells undergo atypical divisions associated with altered expression of meiosis, spermatogenesis and EMT genes. Int J Mol Sci. 2022;23(15)
102 E Sikora, J Czarnecka-Herok, A Bojko, P Sunderland. Therapy-induced polyploidization and senescence: coincidence or interconnection? Semin Cancer Biol. 2022;81: 83-95.
103 GE Neurohr, RL Terry, J Lengefeld, et al. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell. 2019;176(5):1083-1097.e18.
104 JH Wen, XH He, ZS Feng, DY Li, JX Tang, HF Liu. Cellular protein aggregates: formation, biological effects, and ways of elimination. Int J Mol Sci. 2023;24(10)
105 G Machado-Oliveira, C Ramos, ARA Marques, OV Vieira. Cell senescence, multiple organelle dysfunction and atherosclerosis. Cells. 2020;9(10)
106 H Martini, JF Passos. Cellular senescence: all roads lead to mitochondria. Febs J. 2023;290(5):1186-1202.
107 M Rovira, R Sereda, D Pladevall-Morera, et al. The lysosomal proteome of senescent cells contributes to the senescence secretome. Aging Cell. 2022;21(10):e13707.
108 K Roh, J Noh, Y Kim, et al. Lysosomal control of senescence and inflammation through cholesterol partitioning. Nat Metab. 2023;5(3):398-413.
109 GP Dimri, X Lee, G Basile, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92(20):9363-9367.
110 H Zhu, Q Li, T Liao, et al. Metabolomic profiling of single enlarged lysosomes. Nat Methods. 2021;18(7):788-798.
111 K Kaarniranta, J Blasiak, P Liton, M Boulton, DJ Klionsky, D Sinha. Autophagy in age-related macular degeneration. Autophagy. 2023;19(2):388-400.
112 MEG de Araujo, G Liebscher, MW Hess, LA Huber. Lysosomal size matters. Traffic. 2020;21(1):60-75.
113 JT Park, YS Lee, KA Cho, SC Park. Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence. Ageing Res Rev. 2018;47: 176-182.
114 X Han, H Chen, H Gong, et al. Autolysosomal degradation of cytosolic chromatin fragments antagonizes oxidative stress-induced senescence. J Biol Chem. 2020;295(14):4451-4463.
115 VI Korolchuk, S Miwa, B Carroll, T von Zglinicki. Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine. 2017;21: 7-13.
116 U Ahumada-Castro, A Puebla-Huerta, V Cuevas-Espinoza, A Lovy, JC Cardenas. Keeping zombies alive: the ER-mitochondria Ca(2+) transfer in cellular senescence. Biochim Biophys Acta Mol Cell Res. 2021;1868(11):119099.
117 AR Anzell, R Maizy, K Przyklenk, TH Sanderson. Mitochondrial quality control and disease: insights into ischemia-reperfusion injury. Mol Neurobiol. 2018;55(3):2547-2564.
118 G Ye, Z Xie, H Zeng, et al. Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death Dis. 2020;11(9):775.
119 A Krieger-Liszkay, K Krupinska, G Shimakawa. The impact of photosynthesis on initiation of leaf senescence. Physiol Plant. 2019;166(1):148-164.
120 A Saha, S Zhao, A Kindall, et al. Cysteine depletion sensitizes prostate cancer cells to agents that enhance DNA damage and to immune checkpoint inhibition. J Exp Clin Cancer Res. 2023;42(1):119.
121 L Wang, Q Zhou, L Chen, J Jiang. Iron-mediated lysosomal-mitochondrial crosstalk: a new direction in the treatment of aging and aging-related diseases. Acta Biochim Biophys Sin (Shanghai). 2020;52(11):1293-1295.
122 J K?nig, C Ott, M Hugo, et al. Mitochondrial contribution to lipofuscin formation. Redox Biol. 2017;11: 673-681.
123 DC Altieri. Mitochondria in cancer: clean windmills or stressed tinkerers? Trends Cell Biol. 2023;33(4):293-299.
124 W Choi, S Kang, J Kim. New insights into the role of the Golgi apparatus in the pathogenesis and therapeutics of human diseases. Arch Pharm Res. 2022;45(10):671-692.
125 M Tachikawa, A Mochizuki. Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics. Proc Natl Acad Sci USA. 2017;114(20):5177-5182.
126 PF Jia, Y Xue, HJ Li, WC Yang. Golgi-localized LOT regulates trans-Golgi network biogenesis and pollen tube growth. Proc Natl Acad Sci USA. 2018;115(48):12307-12312.
127 J Despres, Y Ramdani, M di Giovanni, et al. Replicative senescence of human dermal fibroblasts affects structural and functional aspects of the Golgi apparatus. Exp Dermatol. 2019;28(8):922-932.
128 WG Jerome, C Cash, R Webber, R Horton, PG Yancey. Lysosomal lipid accumulation from oxidized low density lipoprotein is correlated with hypertrophy of the Golgi apparatus and trans-Golgi network. J Lipid Res. 1998;39(7):1362-1371.
129 L Yang, J Sun, M Li, et al. Oxidized low-density lipoprotein links hypercholesterolemia and bladder cancer aggressiveness by promoting cancer stemness. Cancer Res. 2021;81(22):5720-5732.
130 LM Stewart, L Gerner, M Rettel, et al. CaMKK2 facilitates Golgi-associated vesicle trafficking to sustain cancer cell proliferation. Cell Death Dis. 2021;12(11):1040.
131 JH Lee, J Lee. Endoplasmic reticulum (ER) stress and its role in pancreatic β-cell dysfunction and senescence in type 2 diabetes. Int J Mol Sci. 2022;23(9)
132 ML Koloko Ngassie, CA Brandsma, R Gosens, YS Prakash, JK Burgess. The stress of lung aging: endoplasmic reticulum and senescence tête-à-tête. Physiology (Bethesda). 2021;36(3):150-159.
133 RL Wiseman, JS Mesgarzadeh, LM Hendershot. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell. 2022;82(8):1477-1491.
134 DV Ziegler, D Vindrieux, D Goehrig, et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat Commun. 2021;12(1):720.
135 M Bhardwaj, NM Leli, C Koumenis, RK Amaravadi. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol. 2020;66: 116-128.
136 B Tan, A Jaulin, C Bund, et al. Matrix metalloproteinase-11 promotes early mouse mammary gland tumor growth through metabolic reprogramming and increased IGF1/AKT/FoxO1 signaling pathway, enhanced ER stress and alteration in mitochondrial UPR. Cancers (Basel). 2020;12(9)
137 V Joukov, A De Nicolo. The centrosome and the primary cilium: the Yin and Yang of a hybrid organelle. Cells. 2019;8(7)
138 Q Wu, B Li, L Liu, S Sun, S Sun. Centrosome dysfunction: a link between senescence and tumor immunity. Signal Transduct Target Ther. 2020;5(1):107.
139 U Ben-David, A Amon. Context is everything: aneuploidy in cancer. Nat Rev Genet. 2020;21(1):44-62.
140 DA Lukow, JM Sheltzer. Chromosomal instability and aneuploidy as causes of cancer drug resistance. Trends Cancer. 2022;8(1):43-53.
141 Q Wu, B Li, L Liu, S Sun, S Sun. Centrosome dysfunction: a link between senescence and tumor immunity. Signal Transduct Target Ther. 2020;5(1):107.
142 JP Morretton, A Simon, A Herbette, et al. A catalog of numerical centrosome defects in epithelial ovarian cancers. EMBO Mol Med. 2022;14(9):e15670.
143 O Ganier, D Schnerch, P Oertle, RY Lim, M Plodinec, EA Nigg. Structural centrosome aberrations promote non-cell-autonomous invasiveness. Embo J. 2018;37(9)
144 NM Deori, A Kale, PK Maurya, S Nagotu. Peroxisomes: role in cellular ageing and age related disorders. Biogerontology. 2018;19(5):303-324.
145 O Moujaber, F Fishbein, N Omran, et al. Cellular senescence is associated with reorganization of the microtubule cytoskeleton. Cell Mol Life Sci. 2019;76(6):1169-1183.
146 A He, JM Dean, IJ Lodhi. Peroxisomes as cellular adaptors to metabolic and environmental stress. Trends Cell Biol. 2021;31(8):656-670.
147 LP Wilhelm, IG Ganley. Mitochondria and peroxisomes: partners in autophagy. Autophagy. 2023;19(7):2162-2163.
148 X Mao, P Bharti, A Thaivalappil, K Cao. Peroxisomal abnormalities and catalase deficiency in Hutchinson-Gilford Progeria Syndrome. Aging (Albany NY). 2020;12(6):5195-5208.
149 K Nishio, A Inoue, S Qiao, H Kondo, A Mimura. Senescence and cytoskeleton: overproduction of vimentin induces senescent-like morphology in human fibroblasts. Histochem Cell Biol. 2001;116(4):321-327.
150 X Mu, C Tseng, WS Hambright, et al. Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson-Gilford Progeria Syndrome. Aging Cell. 2020;19(8):e13152.
151 K Sossey-Alaoui, E Pluskota, D Szpak, EF Plow. The Kindlin2-p53-SerpinB2 signaling axis is required for cellular senescence in breast cancer. Cell Death Dis. 2019;10(8):539.
152 R Thomas, W Wang, DM Su. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing. 2020;17:2.
153 V Khavinson, N Linkova, A Dyatlova, R Kantemirova, K Kozlov. Senescence-associated secretory phenotype of cardiovascular system cells and inflammaging: perspectives of peptide regulation. Cells. 2023;12(1):106.
154 R Jakhar, K Crasta. Exosomes as emerging pro-tumorigenic mediators of the senescence-associated secretory phenotype. Int J Mol Sci. 2019;20(10)
155 L Mosteiro, C Pantoja, A de Martino, M Serrano. Senescence promotes in vivo reprogramming through p16(INK)(4a) and IL-6. Aging Cell. 2018;17(2)
156 JG Hou, BM Jeon, YJ Yun, CH Cui, SC Kim. Ginsenoside Rh2 ameliorates doxorubicin-induced senescence bystander effect in breast carcinoma cell MDA-MB-231 and normal epithelial cell MCF-10A. Int J Mol Sci. 2019;20(5)
157 F Geng, M Xu, L Zhao, et al. Quercetin alleviates pulmonary fibrosis in mice exposed to silica by inhibiting macrophage senescence. Front Pharmacol. 2022;13:912029.
158 P Ortiz-Montero, A Londo?o-Vallejo, JP Vernot. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal. 2017;15(1):17.
159 J Hou, Y Yun, J Xue, M Sun, S Kim. D?galactose induces astrocytic aging and contributes to astrocytoma progression and chemoresistance via cellular senescence. Mol Med Rep. 2019;20(5):4111-4118.
160 N Wajapeyee, RW Serra, X Zhu, M Mahalingam, MR Green. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363-374.
161 I Vassilieva, V Kosheverova, M Vitte, et al. Paracrine senescence of human endometrial mesenchymal stem cells: a role for the insulin-like growth factor binding protein 3. Aging (Albany NY). 2020;12(2):1987-2004.
162 F Sanada, Y Taniyama, J Muratsu, et al. IGF binding protein-5 induces cell senescence. Front Endocrinol (Lausanne). 2018;9: 53.
163 C Chin, R Ravichandran, K Sanborn, et al. Loss of IGFBP2 mediates alveolar type 2 cell senescence and promotes lung fibrosis. Cell Rep Med. 2023;4(3):100945.
164 M Akiel, C Guo, X Li, et al. IGFBP7 deletion promotes hepatocellular carcinoma. Cancer Res. 2017;77(15):4014-4025.
165 TU Ahearn, S Peisch, A Pettersson, et al. Expression of IGF/insulin receptor in prostate cancer tissue and progression to lethal disease. Carcinogenesis. 2018;39(12):1431-1437.
166 A Wuestefeld, V Iakovleva, SXL Yap, et al. A pro-regenerative environment triggers premalignant to malignant transformation of senescent hepatocytes. Cancer Res. 2023;83(3):428-440.
167 EL Watts, A Perez-Cornago, GK Fensom, et al. Circulating insulin-like growth factors and risks of overall, aggressive and early-onset prostate cancer: a collaborative analysis of 20 prospective studies and Mendelian randomization analysis. Int J Epidemiol. 2023;52(1):71-86.
168 Y Wang, P Huang, BG Wang, et al. Spatial transcriptomic analysis of ovarian cancer precursors reveals reactivation of IGFBP2 during pathogenesis. Cancer Res. 2022;82(24):4528-4541.
169 M Spitschak, A Hoeflich. Potential functions of IGFBP-2 for ovarian folliculogenesis and steroidogenesis. Front Endocrinol (Lausanne). 2018;9: 119.
170 Y Wang, H Zhang, M Wang, et al. CCNB2/SASP/Cathepsin B & PGE2 axis induce cell senescence mediated malignant transformation. Int J Biol Sci. 2021;17(13):3538-3553.
171 S Gon?alves, K Yin, Y Ito, et al. COX2 regulates senescence secretome composition and senescence surveillance through PGE(2). Cell Rep. 2021;34(11):108860.
172 J Zhou, K Liu, C Bauer, et al. Modulation of cellular senescence in HEK293 and HepG2 cells by ultrafiltrates UPla and ULu is partly mediated by modulation of mitochondrial homeostasis under oxidative stress. Int J Mol Sci. 2023;24(7)
173 ES Jun, YJ Kim, HH Kim, SY Park. Gold nanoparticles using Ecklonia stolonifera protect human dermal fibroblasts from UVA-induced senescence through inhibiting MMP-1 and MMP-3. Mar Drugs. 2020;18(9)
174 C Gabay, J Msihid, M Zilberstein, et al. Identification of sarilumab pharmacodynamic and predictive markers in patients with inadequate response to TNF inhibition: a biomarker substudy of the phase 3 TARGET study. RMD Open. 2018;4(1):e000607.
175 PE Van den Steen, SJ Husson, P Proost, J Van Damme, G Opdenakker. Carboxyterminal cleavage of the chemokines MIG and IP-10 by gelatinase B and neutrophil collagenase. Biochem Biophys Res Commun. 2003;310(3):889-896.
176 Z Yamada, J Nishio, K Motomura, et al. Senescence of alveolar epithelial cells impacts initiation and chronic phases of murine fibrosing interstitial lung disease. Front Immunol. 2022;13:935114.
177 M Oubaha, K Miloudi, A Dejda, et al. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci Transl Med. 2016;8(362):362ra144.
178 H My?h?nen, A Vaheri. Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol Life Sci. 2004;61(22):2840-2858.
179 P Parikh, RD, Britt, LJ Manlove, et al. Hyperoxia-induced cellular senescence in fetal airway smooth muscle cells. Am J Respir Cell Mol Biol. 2019;61(1):51-60.
180 D Chanda, E Otoupalova, KP Hough, et al. Fibronectin on the surface of extracellular vesicles mediates fibroblast invasion. Am J Respir Cell Mol Biol. 2019;60(3):279-288.
181 T Kumazaki, RS Robetorye, SC Robetorye, JR Smith. Fibronectin expression increases during in vitro cellular senescence: correlation with increased cell area. Exp Cell Res. 1991;195(1):13-19.
182 AL Cardoso, A Fernandes, JA Aguilar-Pimentel, et al. Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev. 2018;47: 214-277.
183 TC Lin, CH Yang, LH Cheng, WT Chang, YR Lin, HC Cheng. Fibronectin in cancer: friend or foe. Cells. 2019;9(1)
184 A Dorronsoro, FE Santiago, D Grassi, et al. Mesenchymal stem cell-derived extracellular vesicles reduce senescence and extend health span in mouse models of aging. Aging Cell. 2021;20(4):e13337.
185 Y Miyazoe, S Miuma, H Miyaaki, et al. Extracellular vesicles from senescent hepatic stellate cells promote cell viability of hepatoma cells through increasing EGF secretion from differentiated THP-1 cells. Biomed Rep. 2020;12(4):163-170.
186 L Han, Q Long, S Li, et al. Senescent stromal cells promote cancer resistance through SIRT1 loss-potentiated overproduction of small extracellular vesicles. Cancer Res. 2020;80(16):3383-3398.
187 A Saleh, SK Chowdhury, DR Smith, et al. Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons. Mol Brain. 2013;6: 45.
188 A Freund, CK Patil, J Campisi. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. Embo J. 2011;30(8):1536-1548.
189 R Buj, KE Leon, MA Anguelov, KM Aird. Suppression of p16 alleviates the senescence-associated secretory phenotype. Aging (Albany NY). 2021;13(3):3290-3312.
190 KA Cieslik, J Trial, ML Entman. Mesenchymal stem cell-derived inflammatory fibroblasts promote monocyte transition into myeloid fibroblasts via an IL-6-dependent mechanism in the aging mouse heart. Faseb J. 2015;29(8):3160-3170.
191 MJ Del Rey, á Valín, A Usategui, et al. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immun Ageing. 2019;16: 29.
192 L Wang, L Lankhorst, R Bernards. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022;22(6):340-355.
193 AW Shao, H Sun, Y Geng, et al. Bclaf1 is an important NF-κB signaling transducer and C/EBPβ regulator in DNA damage-induced senescence. Cell Death Differ. 2016;23(5):865-875.
194 R Yamagishi, F Kamachi, M Nakamura, et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci Immunol. 2022;7(72):eabl7209.
195 S Mu?oz-Galván, A Lucena-Cacace, M Perez, D Otero-Albiol, J Gomez-Cambronero, A Carnero. Tumor cell-secreted PLD increases tumor stemness by senescence-mediated communication with microenvironment. Oncogene. 2019;38(8):1309-1323.
196 VE Krisnawan, JA Stanley, JK Schwarz, DG DeNardo. Tumor microenvironment as a regulator of radiation therapy: new insights into stromal-mediated radioresistance. Cancers (Basel). 2020;12(10)
197 M Ansems, PN Span. The tumor microenvironment and radiotherapy response; a central role for cancer-associated fibroblasts. Clin Transl Radiat Oncol. 2020;22: 90-97.
198 X Wang, M Qu, J Li, P Danielson, L Yang, Q Zhou. Induction of fibroblast senescence during mouse corneal wound healing. Invest Ophthalmol Vis Sci. 2019;60(10):3669-3679.
199 DT Fearon. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res. 2014;2(3):187-193.
200 JP Coppé, K Kauser, J Campisi, CM Beauséjour. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem. 2006;281(40):29568-29574.
201 D Liu, PJ Hornsby. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 2007;67(7):3117-3126.
202 A Krtolica, S Parrinello, S Lockett, PY Desprez, J Campisi. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA. 2001;98(21):12072-12077.
203 JP Coppé, CK Patil, F Rodier, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853-2868.
204 M Takasugi, Y Yoshida, E Hara, N Ohtani. The role of cellular senescence and SASP in tumour microenvironment. Febs J. 2023;290(5):1348-1361.
205 Y Chien, C Scuoppo, X Wang, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 2011;25(20):2125-2136.
206 JC Acosta, A O'Loghlen, A Banito, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006-1018.
207 JC Acosta, A Banito, T Wuestefeld, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978-990.
208 M Xu, X Su, X Xiao, et al. Hydrogen peroxide-induced senescence reduces the wound healing-promoting effects of mesenchymal stem cell-derived exosomes partially via miR-146a. Aging Dis. 2021;12(1):102-115.
209 GH Di, Y Liu, Y Lu, J Liu, C Wu, HF Duan. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS One. 2014;9(11):e113572.
210 M Takasugi, R Okada, A Takahashi, D Virya Chen, S Watanabe, E Hara. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun. 2017;8:15729.
211 TM Loo, F Kamachi, Y Watanabe, et al. Gut microbiota promotes obesity-associated liver cancer through PGE(2)-mediated suppression of antitumor immunity. Cancer Discov. 2017;7(5):522-538.
212 G Yang, DG Rosen, Z Zhang, et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci USA. 2006;103(44):16472-16477.
213 A Iannello, TW Thompson, M Ardolino, SW Lowe, DH Raulet. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med. 2013;210(10):2057-2069.
214 TW Kang, T Yevsa, N Woller, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479(7374):547-551.
215 K Okamura, T Suzuki, K Nohara. Gestational arsenite exposure augments hepatic tumors of C3H mice by promoting senescence in F1 and F2 offspring via different pathways. Toxicol Appl Pharmacol. 2020;408:115259.
216 A Santoro, E Bientinesi, D Monti. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev. 2021;71:101422.
217 E Alspach, KC Flanagan, X Luo, et al. p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov. 2014;4(6):716-729.
218 MK Ruhland, AJ Loza, AH Capietto, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762.
219 I Guccini, A Revandkar, M D'Ambrosio, et al. Senescence reprogramming by TIMP1 deficiency promotes prostate cancer metastasis. Cancer Cell. 2021;39(1):68-82.e9.
220 D Di Mitri, A Toso, JJ Chen, et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 2014;515(7525):134-137.
221 AE Vilgelm, CA Johnson, N Prasad, et al. Connecting the dots: therapy-induced senescence and a tumor-suppressive immune microenvironment. J Natl Cancer Inst. 2016;108(6):djv406.
222 YH Kim, YW Choi, J Lee, EY Soh, JH Kim, TJ Park. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun. 2017;8:15208.
223 MC Ramello, J Tosello Boari, FP Canale, et al. Tumor-induced senescent T cells promote the secretion of pro-inflammatory cytokines and angiogenic factors by human monocytes/macrophages through a mechanism that involves Tim-3 and CD40L. Cell Death Dis. 2014;5(11):e1507.
224 C Cudejko, K Wouters, L Fuentes, et al. p16INK4a deficiency promotes IL-4-induced polarization and inhibits proinflammatory signaling in macrophages. Blood. 2011;118(9):2556-2566.
225 R Vicente, AL Mausset-Bonnefont, C Jorgensen, P Louis-Plence, JM Brondello. Cellular senescence impact on immune cell fate and function. Aging Cell. 2016;15(3):400-406.
226 CRR Schmitz, RM Maurmann, F Guma, ME Bauer, FM Barbé-Tuana. cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Front Immunol. 2023;14:1132653.
227 Z Chen, J Xiao, H Liu, et al. Astaxanthin attenuates oxidative stress and immune impairment in D-galactose-induced aging in rats by activating the Nrf2/Keap1 pathway and suppressing the NF-κB pathway. Food Funct. 2020;11(9):8099-8111.
228 TDF Costa, T Zhuang, J Lorent, et al. PAK4 suppresses RELB to prevent senescence-like growth arrest in breast cancer. Nat Commun. 2019;10(1):3589.
229 A Lanna, SM Henson, D Escors, AN Akbar. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 2014;15(10):965-972.
230 A Brauning, M Rae, G Zhu, et al. Aging of the immune system: focus on natural killer cells phenotype and functions. Cells. 2022;11(6)
231 B Sanchez-Correa, C Campos, A Pera, et al. Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies? Cancer Immunol Immunother. 2016;65(4):453-463.
232 D Frasca, A Diaz, M Romero, D Garcia, BB Blomberg. B cell immunosenescence. Annu Rev Cell Dev Biol. 2020;36: 551-574.
233 CA Chougnet, RI Thacker, HM Shehata, et al. Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J Immunol. 2015;195(6):2624-2632.
234 Q Feng, W Xia, G Dai, et al. The aging features of thyrotoxicosis mice: malnutrition, immunosenescence and lipotoxicity. Front Immunol. 2022;13:864929.
235 N Thevaranjan, A Puchta, C Schulz, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21(4):455-466.e4.
236 A Salminen, K Kaarniranta, A Kauppinen. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci. 2019;76(10):1901-1918.
237 A Salminen. Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J Mol Med (Berl). 2021;99(1):1-20.
238 A Salminen, A Kauppinen, K Kaarniranta. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology. 2018;19(5):325-339.
239 WX Huff, JH Kwon, M Henriquez, K Fetcko, M Dey. The evolving role of CD8(+)CD28(-) immunosenescent T cells in cancer immunology. Int J Mol Sci. 2019;20(11)
240 AM Mondal, I Horikawa, SR Pine, et al. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest. 2013;123(12):5247-5257.
241 Y Liu, HK Sanoff, H Cho, et al. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8(4):439-448.
242 V Nguyen, A Mendelsohn, JW Larrick. Interleukin-7 and Immunosenescence. J Immunol Res. 2017;2017:4807853.
243 Y Zhao, Q Shao, G Peng. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 2020;17(1):27-35.
244 Y Sun, JP Coppé, EW Lam. Cellular senescence: the sought or the unwanted? Trends Mol Med. 2018;24(10):871-885.
245 JJ Goronzy, G Li, M Yu, CM Weyand. Signaling pathways in aged T cells - a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol. 2012;24(5):365-372.
246 Y Li, Y Shen, P Hohensinner, et al. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity. 2016;45(4):903-916.
247 N Patsoukis, K Bardhan, P Chatterjee, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6: 6692.
248 SM Henson, A Lanna, NE Riddell, et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J Clin Invest. 2014;124(9):4004-4016.
249 G Almanzar, S Schwaiger, B Jenewein, et al. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol. 2005;79(6):3675-3683.
250 X Wang, M Liu, J Zhang, et al. CD24-Siglec axis is an innate immune checkpoint against metaflammation and metabolic disorder. Cell Metab. 2022;34(8):1088-1103.e6.
251 M Hohenegger. Drug induced rhabdomyolysis. Curr Opin Pharmacol. 2012;12(3):335-359.
252 G Li, M Yu, WW Lee, et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med. 2012;18(10):1518-1524.
253 J Crespo, H Sun, TH Welling, Z Tian, W Zou. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214-221.
254 OO Yang, H Lin, M Dagarag, HL Ng, RB Effros, CH Uittenbogaart. Decreased perforin and granzyme B expression in senescent HIV-1-specific cytotoxic T lymphocytes. Virology. 2005;332(1):16-19.
255 F Debacq-Chainiaux, JD Erusalimsky, J Campisi, O Toussaint. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4(12):1798-1806.
256 J Nikolich-?ugich. Author Correction: The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19(10):1146.
257 N Braidy, GJ Guillemin, H Mansour, T Chan-Ling, A Poljak, R Grant. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One. 2011;6(4):e19194.
258 D DiToro, SN Harbour, JK Bando, et al. Insulin-like growth factors are key regulators of T helper 17 regulatory T cell balance in autoimmunity. Immunity. 2020;52(4):650-667.e10.
259 JM Witkowski, A Mikosik, E Bryl, T Fulop. Proteodynamics in aging human T cells - the need for its comprehensive study to understand the fine regulation of T lymphocyte functions. Exp Gerontol. 2018;107: 161-168.
260 B Hu, G Li, Z Ye, et al. Transcription factor networks in aged na?ve CD4 T cells bias lineage differentiation. Aging Cell. 2019;18(4):e12957.
261 Y Elyahu, I Hekselman, I Eizenberg-Magar, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv. 2019;5(8):eaaw8330.
262 B Sanchez-Correa, I Gayoso, JM Bergua, et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol. 2012;90(1):109-115.
263 AR Manser, M Uhrberg. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance. Cancer Immunol Immunother. 2016;65(4):417-426.
264 J Hazeldine, JM Lord. Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology. 2015;16(2):187-201.
265 C Bayard, H Lepetitcorps, A Roux, et al. Coordinated expansion of both memory T cells and NK cells in response to CMV infection in humans. Eur J Immunol. 2016;46(5):1168-1179.
266 F Qian, X Wang, L Zhang, et al. Age-associated elevation in TLR5 leads to increased inflammatory responses in the elderly. Aging Cell. 2012;11(1):104-110.
267 TU Metcalf, RA Cubas, K Ghneim, et al. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell. 2015;14(3):421-432.
268 YB Shaik-Dasthagirisaheb, A Kantarci, FC, Gibson. Immune response of macrophages from young and aged mice to the oral pathogenic bacterium Porphyromonas gingivalis. Immun Ageing. 2010;7: 15.
269 M Pinti, V Appay, J Campisi, et al. Aging of the immune system: focus on inflammation and vaccination. Eur J Immunol. 2016;46(10):2286-2301.
270 G Colonna-Romano, M Bulati, A Aquino, et al. A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev. 2009;130(10):681-690.
271 S Khurana, D Frasca, B Blomberg, H Golding. AID activity in B cells strongly correlates with polyclonal antibody affinity maturation in-vivo following pandemic 2009-H1N1 vaccination in humans. PLoS Pathog. 2012;8(9):e1002920.
272 BC Miller, Z Zhao, LM Stephenson, et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy. 2008;4(3):309-314.
273 N Pengo, M Scolari, L Oliva, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol. 2013;14(3):298-305.
274 SK Mathur, EA Schwantes, NN Jarjour, WW Busse. Age-related changes in eosinophil function in human subjects. Chest. 2008;133(2):412-419.
275 H Zhang, DJ Puleston, AK Simon. Autophagy and immune senescence. Trends Mol Med. 2016;22(8):671-686.
276 HW Stout-Delgado, X Yang, WE Walker, BM Tesar, DR Goldstein. Aging impairs IFN regulatory factor 7 up-regulation in plasmacytoid dendritic cells during TLR9 activation. J Immunol. 2008;181(10):6747-6756.
277 AL Brubaker, JL Rendon, L Ramirez, MA Choudhry, EJ Kovacs. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J Immunol. 2013;190(4):1746-1757.
278 JM Reimer, KH Karlsson, K L?vgren-Bengtsson, SE Magnusson, A Fuentes, L Stertman. Matrix-M? adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS One. 2012;7(7):e41451.
279 MJ Yousefzadeh, RR Flores, Y Zhu, et al. An aged immune system drives senescence and ageing of solid organs. Nature. 2021;594(7861):100-105.
280 OO Onyema, L Decoster, R Njemini, et al. Chemotherapy-induced changes and immunosenescence of CD8+ T-cells in patients with breast cancer. Anticancer Res. 2015;35(3):1481-1489.
281 J Sceneay, GJ Goreczny, K Wilson, et al. Interferon signaling Is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discov. 2019;9(9):1208-1227.
282 R Ferrara, M Naigeon, E Auclin, et al. Circulating T-cell immunosenescence in patients with advanced non-small cell lung cancer treated with single-agent PD-1/PD-L1 inhibitors or platinum-based chemotherapy. Clin Cancer Res. 2021;27(2):492-503.
283 K Wistuba-Hamprecht, A Martens, F Heubach, et al. Peripheral CD8 effector-memory type 1 T-cells correlate with outcome in ipilimumab-treated stage IV melanoma patients. Eur J Cancer. 2017;73: 61-70.
284 ME Goebeler, RC Bargou. T cell-engaging therapies - BiTEs and beyond. Nat Rev Clin Oncol. 2020;17(7):418-434.
285 GS Laszlo, CJ Gudgeon, KH Harrington, RB Walter. T-cell ligands modulate the cytolytic activity of the CD33/CD3 BiTE antibody construct, AMG 330. Blood Cancer J. 2015;5(8):e340.
286 JC Waite, B Wang, L Haber, et al. Tumor-targeted CD28 bispecific antibodies enhance the antitumor efficacy of PD-1 immunotherapy. Sci Transl Med. 2020;12(549)
287 M Hong, JD Clubb, YY Chen. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38(4):473-488.
288 X Zhu, G Niedermann. Rapid and efficient transfer of the T cell aging marker CD57 from glioblastoma stem cells to CAR T cells. Oncoscience. 2015;2(5):476-482.
289 Y Yang, ME Kohler, CD Chien, et al. TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci Transl Med. 2017;9(417)
290 B Zhang, A Trapp, C Kerepesi, VN Gladyshev. Emerging rejuvenation strategies—reducing the biological age. Aging Cell. 2022;21(1):e13538.
291 E Fletcher-Sananikone, S Kanji, N Tomimatsu, et al. Elimination of radiation-induced senescence in the brain tumor microenvironment attenuates glioblastoma recurrence. Cancer Res. 2021;81(23):5935-5947.
292 P Hinds, J Pietruska. Senescence and tumor suppression. F1000Res. 2017;6: 2121.
293 M Ge, L Hu, H Ao, M Zi, Q Kong, Y He. Senolytic targets and new strategies for clearing senescent cells. Mech Ageing Dev. 2021;195:111468.
294 L Hu, H Li, M Zi, et al. Why senescent cells are resistant to apoptosis: an insight for senolytic development. Front Cell Dev Biol. 2022;10:822816.
295 JL Kirkland, T Tchkonia. Cellular senescence: a translational perspective. EBioMedicine. 2017;21: 21-28.
296 A Ehteda, S Simon, L Franshaw, et al. Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Rep. 2021;35(2):108994.
297 L Samaraweera, A Adomako, A Rodriguez-Gabin, HM McDaid. A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC. Sci Rep. 2017;7(1):1900.
298 T Saleh, VJ Carpenter, L Tyutyunyk-Massey, et al. Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 via interference with BCL-X(L) -BAX interaction. Mol Oncol. 2020;14(10):2504-2519.
299 L Beltzig, M Christmann, B Kaina. Abrogation of cellular senescence induced by temozolomide in glioblastoma cells: search for senolytics. Cells. 2022;11(16)
300 M Sasaki, Y Sato, Y Nakanuma. Increased p16(INK4a)-expressing senescent bile ductular cells are associated with inadequate response to ursodeoxycholic acid in primary biliary cholangitis. J Autoimmun. 2020;107:102377.
301 K Tsuji, Y Kida, N Koshikawa, et al. Suppression of non-small-cell lung cancer A549 tumor growth by an mtDNA mutation-targeting pyrrole-imidazole polyamide-triphenylphosphonium and a senolytic drug. Cancer Sci. 2022;113(4):1321-1337.
302 M Troiani, M Colucci, M D'Ambrosio, et al. Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer. Nat Commun. 2022;13(1):2177.
303 J Meng, Y Li, C Wan, et al. Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis. JCI Insight. 2021;6(23)
304 MJ Yousefzadeh, Y Zhu, SJ McGowan, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36: 18-28.
305 TD Saccon, R Nagpal, H Yadav, et al. Senolytic combination of dasatinib and quercetin alleviates intestinal senescence and inflammation and modulates the gut microbiome in aged mice. J Gerontol A Biol Sci Med Sci. 2021;76(11):1895-1905.
306 K Kovacovicova, M Skolnaja, M Heinmaa, et al. Senolytic cocktail dasatinib+quercetin (D+Q) does not enhance the efficacy of senescence-inducing chemotherapy in liver cancer. Front Oncol. 2018;8: 459.
307 F Li, P Huangyang, M Burrows, et al. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat Cell Biol. 2020;22(6):728-739.
308 Z Chrienova, D Rysanek, P Oleksak, et al. Discovery of small molecule mechanistic target of rapamycin inhibitors as anti-aging and anti-cancer therapeutics. Front Aging Neurosci. 2022;14:1048260.
309 S Tai, J Sun, Y Zhou, et al. Metformin suppresses vascular smooth muscle cell senescence by promoting autophagic flux. J Adv Res. 2022;41: 205-218.
310 S Lopes-Paciencia, E Saint-Germain, MC Rowell, AF Ruiz, P Kalegari, G Ferbeyre. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019;117: 15-22.
311 C Hansel, S Barr, AV Schemann, et al. Metformin protects against radiation-induced acute effects by limiting senescence of bronchial-epithelial cells. Int J Mol Sci. 2021;22(13)
312 X Li, B Li, Z Ni, et al. Metformin synergizes with BCL-XL/BCL-2 inhibitor ABT-263 to induce apoptosis specifically in p53-defective cancer cells. Mol Cancer Ther. 2017;16(9):1806-1818.
313 X Li, I Khan, G Huang, et al. Kaempferol acts on bile acid signaling and gut microbiota to attenuate the tumor burden in ApcMin/+ mice. Eur J Pharmacol. 2022;918:174773.
314 F Wang, L Wang, C Qu, et al. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling. BMC Cancer. 2021;21(1):396.
315 S di Martino, CA Amoreo, B Nuvoli, et al. HSP90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene. 2018;37(10):1369-1385.
316 H Wang, Z Wang, Y Huang, et al. Senolytics (DQ) mitigates radiation ulcers by removing senescent cells. Front Oncol. 2019;9: 1576.
317 N Inci, EO Akyildiz, AA Bulbul, et al. Transcriptomics and proteomics analyses reveal JAK signaling and inflammatory phenotypes during cellular senescence in blind mole rats: the reflections of superior biology. Biology (Basel). 2022;11(9)
318 L Homann, M Rentschler, E Brenner, K B?hm, M R?cken, T Wieder. IFN-γ and TNF induce senescence and a distinct senescence-associated secretory phenotype in melanoma. Cells. 2022;11(9)
319 V Gelfo, D Romaniello, M Mazzeschi, et al. Roles of IL-1 in cancer: from tumor progression to resistance to targeted therapies. Int J Mol Sci. 2020;21(17)
320 B Zhang, D Fu, Q Xu, et al. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. Nat Commun. 2018;9(1):1723.
321 T Nacarelli, L Lau, T Fukumoto, et al. NAD(+) metabolism governs the proinflammatory senescence-associated secretome. Nat Cell Biol. 2019;21(3):397-407.
322 T Nacarelli, T Fukumoto, JA Zundell, et al. NAMPT inhibition suppresses cancer stem-like cells associated with therapy-induced senescence in ovarian cancer. Cancer Res. 2020;80(4):890-900.
323 J Aguado, A Sola-Carvajal, V Cancila, et al. Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson-Gilford Progeria Syndrome. Nat Commun. 2019;10(1):4990.
324 TK Le, C Cherif, K Omabe, et al. DDX5 mRNA-targeting antisense oligonucleotide as a new promising therapeutic in combating castration-resistant prostate cancer. Mol Ther. 2023;31(2):471-486.
325 F Michelini, S Pitchiaya, V Vitelli, et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol. 2017;19(12):1400-1411.
326 Y Li, H Zhao, X Huang, et al. Embryonic senescent cells re-enter cell cycle and contribute to tissues after birth. Cell Res. 2018;28(7):775-778.
327 S An, SY Cho, J Kang, et al. Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts. Proc Natl Acad Sci USA. 2020;117(49):31535-31546.
328 S Ji, M Xiong, H Chen, et al. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther. 2023;8(1):116.
329 PL Krohn. Review lectures on senescence. II. Heterochronic transplantation in the study of ageing. Proc R Soc Lond B Biol Sci. 1962;157: 128-147.
330 IM Conboy, MJ Conboy, AJ Wagers, ER Girma, IL Weissman, TA Rando. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433(7027):760-764.
331 A Sahu, ZJ Clemens, SN Shinde, et al. Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nat Aging. 2021;1(12):1148-1161.
332 OH Jeon, M Mehdipour, TH Gil, et al. Systemic induction of senescence in young mice after single heterochronic blood exchange. Nat Metab. 2022;4(8):995-1006.
333 J Rebo, M Mehdipour, R Gathwala, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7:13363.
334 JB Mason, SL Cargill, GB Anderson, JR Carey. Transplantation of young ovaries to old mice increased life span in transplant recipients. J Gerontol A Biol Sci Med Sci. 2009;64(12):1207-1211.
335 J De Vos, J Bouckenheimer, C Sansac, JM Lema?tre, S Assou. Human induced pluripotent stem cells: a disruptive innovation. Curr Res Transl Med. 2016;64(2):91-96.
336 L Lapasset, O Milhavet, A Prieur, et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 2011;25(21):2248-2253.
337 W Wruck, N Graffmann, LS Spitzhorn, J Adjaye. Human induced pluripotent stem cell-derived mesenchymal stem cells acquire rejuvenation and reduced heterogeneity. Front Cell Dev Biol. 2021;9:717772.
338 CG Bell, R Lowe, PD Adams, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20(1):249.
339 A Trapp, C Kerepesi, VN Gladyshev. Profiling epigenetic age in single cells. Nat Aging. 2021;1(12):1189-1201.
340 E Blacher, C Tsai, L Litichevskiy, et al. Aging disrupts circadian gene regulation and function in macrophages. Nat Immunol. 2022;23(2):229-236.
341 S Chaib, T Tchkonia, JL Kirkland. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022;28(8):1556-1568.
342 B Lozano-Torres, A García-Fernández, M Domínguez, F Sancenón, JF Blandez, R Martínez-Má?ez. β-Galactosidase-activatable nile blue-based nir senoprobe for the real-time detection of cellular senescence. Anal Chem. 2023;95(2):1643-1651.
343 P Carpintero-Fernández, M Borghesan, O Eleftheriadou, et al. Genome wide CRISPR/Cas9 screen identifies the coagulation factor IX (F9) as a regulator of senescence. Cell Death Dis. 2022;13(2):163.
344 W Wang, Y Zheng, S Sun, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med. 2021;13(575)
345 E González-Gualda, M Pàez-Ribes, B Lozano-Torres, et al. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell. 2020;19(4):e13142.
346 A Estepa-Fernández, A García-Fernández, A Lérida-Viso, et al. Combination of palbociclib with navitoclax based-therapies enhances in vivo antitumoral activity in triple-negative breast cancer. Pharmacol Res. 2023;187:106628.
347 X Li, Y Song. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J Hematol Oncol. 2020;13(1):50.
348 M Wakita, A Takahashi, O Sano, et al. A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nat Commun. 2020;11(1):1935.
349 L He, C Chen, G Gao, K Xu, Z Ma. ARV-825-induced BRD4 protein degradation as a therapy for thyroid carcinoma. Aging (Albany NY). 2020;12(5):4547-4557.
350 MDM Noblejas-López, C Nieto-Jimenez, M Burgos, et al. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. J Exp Clin Cancer Res. 2019;38(1):383.
351 T Yang, Y Hu, J Miao, et al. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharm Sin B. 2022;12(6):2658-2671.
352 B Jiang, Y Gao, J Che, et al. Discovery and resistance mechanism of a selective CDK12 degrader. Nat Chem Biol. 2021;17(6):675-683.
353 D Mu?oz-Espín, M Rovira, I Galiana, et al. A versatile drug delivery system targeting senescent cells. EMBO Mol Med. 2018;10(9)
354 T Xu, Y Cai, X Zhong, et al. β-Galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells. Chem Commun (Camb). 2019;55(50):7175-7178.
355 M Althubiti, L Lezina, S Carrera, et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 2014;5(11):e1528.
356 M Poblocka, AL Bassey, VM Smith, et al. Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci Rep. 2021;11(1):20358.
357 KM Kim, JH Noh, M Bodogai, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017;31(15):1529-1534.
358 M Suda, I Shimizu, G Katsuumi, et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat Aging. 2021;1(12):1117-1126.
359 C Amor, J Feucht, J Leibold, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127-132.
360 B Sun, D Yang, H Dai, et al. Eradication of hepatocellular carcinoma by NKG2D-Based CAR-T cells. Cancer Immunol Res. 2019;7(11):1813-1823.
361 V Carpenter, T Saleh, S Min Lee, et al. Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy. Biochem Pharmacol. 2021;193:114765.
362 H Fleury, N Malaquin, V Tu, et al. Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat Commun. 2019;10(1):2556.
363 JK Venkata, N An, R Stuart, et al. Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood. 2014;124(12):1915-1925.
364 D Kolodkin-Gal, L Roitman, Y Ovadya, et al. Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut. 2022;71(2):345-355.
365 C Wang, S Vegna, H Jin, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019;574(7777):268-272.
366 F Triana-Martínez, P Picallos-Rabina, S Da Silva-álvarez, et al. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nat Commun. 2019;10(1):4731.
367 YX Chen, CJ Wang, DS Xiao, et al. eIF3a R803K mutation mediates chemotherapy resistance by inducing cellular senescence in small cell lung cancer. Pharmacol Res. 2021;174:105934.
368 HM As Sobeai, M Alohaydib, AR Alhoshani, et al. Sorafenib, rapamycin, and venetoclax attenuate doxorubicin-induced senescence and promote apoptosis in HCT116 cells. Saudi Pharm J. 2022;30(1):91-101.
369 N Herranz, J Gil. Mechanisms and functions of cellular senescence. J Clin Invest. 2018;128(4):1238-1246.
PDF

Accesses

Citations

Detail

Sections
Recommended

/