NFKB2 mediates colorectal cancer cell immune escape and metastasis in a STAT2/PD-L1-dependent manner

Jiwei Zhang1(), Fen Ma1, Zhe Li2, Yuan Li1, Xun Sun3, Mingxu Song4, Fan Yang1, Enjiang Wu1, Xiaohui Wei1(), Zhengtao Wang1(), Li Yang1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (5) : e521. DOI: 10.1002/mco2.521
ORIGINAL ARTICLE

NFKB2 mediates colorectal cancer cell immune escape and metastasis in a STAT2/PD-L1-dependent manner

  • Jiwei Zhang1(), Fen Ma1, Zhe Li2, Yuan Li1, Xun Sun3, Mingxu Song4, Fan Yang1, Enjiang Wu1, Xiaohui Wei1(), Zhengtao Wang1(), Li Yang1()
Author information +
History +

Abstract

This study systematically analyzed the molecular mechanism and function of nuclear factor kappa B subunit 2 (NFKB2) in colorectal cancer (CRC) to investigate the potential of NFKB2 as a therapeutic target for CRC. Various experimental techniques, including RNA sequencing, proteome chip assays, and small molecule analysis, were used to obtain a deeper understanding of the regulation of NFKB2 in CRC. The results revealed that NFKB2 was upregulated in a significant proportion of patients with advanced hepatic metastasis of CRC. NFKB2 played an important role in promoting tumor growth through CD8+ T-cell exhaustion. Moreover, NFKB2 directly interacted with signal transducer and activator of transcription 2 (STAT2), leading to increased phosphorylation of STAT2 and the upregulation of programmed death ligand 1 (PD-L1). Applying a small molecule inhibitor of NFKB2 (Rg5) led to a reduction in PD-L1 expression and improved response to programmed death-1 blockade-based immunotherapy. In conclusion, the facilitated NFKB2-STAT2/PD-L1 axis may suppress immune surveillance in CRC and targeting NFKB2 may enhance the efficacy of immunotherapeutic strategies. Our results provide novel insights into the molecular mechanisms underlying the contribution of NFKB2 in CRC immune escape.

Keywords

colorectal cancer / immunotherapy / nuclear factor kappa B subunit 2 / programmed death ligand 1 / signal transducer and activator of transcription 2

Cite this article

Download citation ▾
Jiwei Zhang, Fen Ma, Zhe Li, Yuan Li, Xun Sun, Mingxu Song, Fan Yang, Enjiang Wu, Xiaohui Wei, Zhengtao Wang, Li Yang. NFKB2 mediates colorectal cancer cell immune escape and metastasis in a STAT2/PD-L1-dependent manner. MedComm, 2024, 5(5): e521 https://doi.org/10.1002/mco2.521

References

1 H Sung, J Ferlay, RL Siegel, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
2 S Pilleron, D Sarfati, M Janssen-Heijnen, et al. Global cancer incidence in older adults, 2012 and 2035: a population-based study. Int J Cancer. 2019;144(1):49-58.
3 F Bray, J Ferlay, I Soerjomataram, RL Siegel, LA Torre, A Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018;68(6):394–424.
4 J Terzic, S Grivennikov, E Karin, et al. Inflammation and colon cancer. Gastroenterology. 2010;138(6):2101-2114. e2105.
5 H Sheng, J Shao, CS Williams, et al. Nuclear translocation of beta-catenin in hereditary and carcinogen-induced intestinal adenomas. Carcinogenesis. 1998;19(4):543-549.
6 SC Sun. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545-558.
7 Y Grinberg-Bleyer, H Oh, A Desrichard, et al. NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170(6):1096-1108. e1013.
8 GS Seo. [The role of NF-kappaB in colon cancer]. Korean J Gastroenterol. 2011;57(1):3-7.
9 M Patel, PG Horgan, DC McMillan, et al. NF-kappaB pathways in the development and progression of colorectal cancer. Transl Res. 2018;197: 43-56.
10 PA Baeuerle, T Henkel. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12: 141-179.
11 PA Baeuerle, D Baltimore. NF-kappa B: ten years after. Cell. 1996;87(1):13-20.
12 M Tegowski,A Baldwin. Noncanonical NF-kappaB in cancer. Biomedicines. 2018;6(2):66.
13 FI Dimitrakopoulos, AG Antonacopoulou, A Kottorou, et al. NSCLC and the alternative pathway of NF-kappaB: uncovering an unknown relation. Virchows Arch. 2012;460(5):515-523.
14 F Rojo, A Gonzalez-Perez, J Furriol, et al. Non-canonical NF-kappaB pathway activation predicts outcome in borderline oestrogen receptor positive breast carcinoma. Br J Cancer. 2016;115(3):322-331.
15 L Lessard, LR Begin, ME Gleave, et al. Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: an immunohistochemical study. Br J Cancer. 2005;93(9):1019-1023.
16 V Imbert,JF Peyron. NF-kappaB in hematological malignancies. Biomedicines. 2017;5(2):27.
17 RH Moy, A Nguyen, JM Loo, et al. Functional genetic screen identifies ITPR3/calcium/RELB axis as a driver of colorectal cancer metastatic liver colonization. Dev Cell. 2022;57(9):1146-1159. e1147.
18 Y Tao, Z Liu, Y Hou, et al. Alternative NF-kappaB signaling promotes colorectal tumorigenesis through transcriptionally upregulating Bcl-3. Oncogene. 2018;37(44):5887-5900.
19 C Klemann, N Camacho-Ordonez, L Yang, et al. Clinical and immunological phenotype of patients with primary immunodeficiency due to damaging mutations in NFKB2. Front Immunol. 2019;10: 297.
20 RC Wirasinha, AR Davies, M Srivastava, et al. Nfkb2 variants reveal a p100-degradation threshold that defines autoimmune susceptibility. J Exp Med. 2021;218(2):e20200476.
21 M Chawla, T Mukherjee, A Deka, et al. An epithelial Nfkb2 pathway exacerbates intestinal inflammation by supplementing latent RelA dimers to the canonical NF-kappaB module. Proc Natl Acad Sci U S A. 2021;118(25):e202482811.
22 P De Leo, L Gazzurelli, M Baronio, et al. NFKB2 regulates human Tfh and Tfr pool formation and germinal center potential. Clin Immunol. 2020;210:108309.
23 J Goc, M Lv, NJ Bessman, et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell. 2021;184(19):5015-5030. e5016.
24 X Wang, L Yang, F Huang, et al. Inflammatory cytokines IL-17 and TNF-alpha up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett. 2017;184: 7-14.
25 AM Gamero, MR Young, R Mentor-Marcel, et al. STAT2 contributes to promotion of colorectal and skin carcinogenesis. Cancer Prev Res (Phila). 2010;3(4):495-504.
26 J Ryu, HW Lee, J Yoon, et al. Effect of hydrothermal processing on ginseng extract. J Ginseng Res. 2017;41(4):572-577.
27 CS Garris, SP Arlauckas, RH Kohler, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-gamma and IL-12. Immunity. 2018;49(6):1148-1161. e1147.
28 DE Johnson, RA O'Keefe, JR Grandis. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234-248.
29 W Zhong, K Wu, Z Long, et al. Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-kappaB-IL6-STAT3 axis. Microbiome. 2022;10(1):94.
30 S Liu, C Zhang, B Wang, et al. Regulatory T cells promote glioma cell stemness through TGF-beta-NF-kappaB-IL6-STAT3 signaling. Cancer Immunol Immunother. 2021;70(9):2601-2616.
31 PA Ott, S Hu-Lieskovan, B Chmielowski, et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell. 2020;183(2):347-362. e324.
32 W Rae, D Ward, CJ Mattocks, et al. Autoimmunity/inflammation in a monogenic primary immunodeficiency cohort. Clin Transl Immunology. 2017;6(9):e155.
33 LA O'Reilly, TL Putoczki, LA Mielke, et al. Loss of NF-kappaB1 causes gastric cancer with aberrant inflammation and expression of immune checkpoint regulators in a STAT-1-dependent manner. Immunity. 2018;48(3):570-583. e578.
34 MD Burkitt, JM Williams, CA Duckworth, et al. Signaling mediated by the NF-kappaB sub-units NF-kappaB1, NF-kappaB2 and c-Rel differentially regulate Helicobacter felis-induced gastric carcinogenesis in C57BL/6 mice. Oncogene. 2013;32(50):5563-5573.
35 X Ju, H Zhang, Z Zhou, et al. Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-a signaling. Exp Cell Res. 2020;396(2):112315.
36 G Abril-Rodriguez,A Ribas. SnapShot: immune checkpoint inhibitors. Cancer Cell. 2017;31(6):848-848. e841.
37 E Soularue, P Lepage, JF Colombel, et al. Enterocolitis due to immune checkpoint inhibitors: a systematic review. Gut. 2018;67(11):2056-2067.
38 AK Talukder, MS Yousef, MB Rashid, et al. Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro: possible involvement of interferon tau as an intermediator. J Reprod Dev. 2017;63(4):425-434.
39 MS Saddala, X Yang, S Tang, et al. Transcriptome-wide analysis reveals core sets of transcriptional regulators of sensome and inflammation genes in retinal microglia. Genomics. 2021;113(5):3058-3071.
40 OI Iweala, SK Choudhary, CT Addison, et al. T and B lymphocyte transcriptional states differentiate between sensitized and unsensitized individuals in alpha-gal syndrome. Int J Mol Sci. 2021;22(6):3185.
41 TW Kim, EH Joh, B Kim, et al. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol. 2012;12(1):110-116.
42 Z Cheng, M Zhang, C Ling, et al. Neuroprotective effects of ginsenosides against cerebral ischemia. Molecules. 2019;24(6):1102.
43 W Li, MH Yan, Y Liu, et al. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients. 2016;8(9):566.
44 F Antonangeli, A Natalini, MC Garassino, et al. Regulation of PD-L1 expression by NF-kappaB in cancer. Front Immunol. 2020;11:584626.
45 J Xu, T Shao, M Song, et al. MIR22HG acts as a tumor suppressor via TGFbeta/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol Cancer. 2020;19(1):51.
46 L Strauss, MAA Mahmoud, JD Weaver, et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci Immunol. 2020;5(43):eaay1863.
47 H Chen, J Yao, R Bao, et al. Cross-talk of four types of RNA modification writers defines tumor microenvironment and pharmacogenomic landscape in colorectal cancer. Mol Cancer. 2021;20(1):29.
48 T Le Voyer, AV Parent, X Liu, et al. Autoantibodies against type I IFNs in humans with alternative NF-kappaB pathway deficiency. Nature. 2023;623(7988):803-813.
49 J Zhang, S Li, L Zhang, et al. RBP EIF2S2 promotes tumorigenesis and progression by regulating MYC-mediated inhibition via FHIT-related enhancers. Mol Ther. 2020;28(4):1105-1118.
PDF

Accesses

Citations

Detail

Sections
Recommended

/