Collections

Organic Optoelectronics
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • RESEARCH ARTICLE
    Qin Xue, Mingfang Huo, Guohua Xie
    Frontiers of Optoelectronics, 2023, 16(1): 2. https://doi.org/10.1007/s12200-022-00056-x

    Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.

  • REVIEW ARTICLE
    Tong Shan, Xiao Hou, Xiaokuan Yin, Xiaojun Guo
    Frontiers of Optoelectronics, 2022, 15(4): 49. https://doi.org/10.1007/s12200-022-00049-w

    Organic photodiodes (OPDs) have shown great promise for potential applications in optical imaging, sensing, and communication due to their wide-range tunable photoelectrical properties, low-temperature facile processes, and excellent mechanical flexibility. Extensive research work has been carried out on exploring materials, device structures, physical mechanisms, and processing approaches to improve the performance of OPDs to the level of their inorganic counterparts. In addition, various system prototypes have been built based on the exhibited and attractive features of OPDs. It is vital to link the device optimal design and engineering to the system requirements and examine the existing deficiencies of OPDs towards practical applications, so this review starts from discussions on the required key performance metrics for different envisioned applications. Then the fundamentals of the OPD device structures and operation mechanisms are briefly introduced, and the latest development of OPDs for improving the key performance merits is reviewed. Finally, the trials of OPDs for various applications including wearable medical diagnostics, optical imagers, spectrometers, and light communications are reviewed, and both the promises and challenges are revealed.

  • EDITORIAL
    Yinhua Zhou, Chengliang Wang
    Frontiers of Optoelectronics, 2022, 15(4): 51. https://doi.org/10.1007/s12200-022-00052-1
  • REVIEW ARTICLE
    Xianglang Sun, Zonglong Zhu, Zhong’an Li
    Frontiers of Optoelectronics, 2022, 15(4): 46. https://doi.org/10.1007/s12200-022-00050-3

    Inverted perovskite solar cells (PVSCs) have recently made exciting progress, showing high power conversion efficiencies (PCEs) of 25% in single-junction devices and 30.5% in silicon/perovskite tandem devices. The hole transporting material (HTM) in an inverted PVSC plays an important role in determining the device performance, since it not only extracts/transports holes but also affects the growth and crystallization of perovskite film. Currently, polymer and self-assembled monolayer (SAM) have been considered as two types of most promising HTM candidates for inverted PVSCs owing to their high PCEs, high stability and adaptability to large area devices. In this review, recent encouraging progress of high-performance polymer and SAM-based HTMs is systematically reviewed and summarized, including molecular design strategies and the correlation between molecular structure and device performance. We hope this review can inspire further innovative development of HTMs for wide applications in highly efficient and stable inverted PVSCs and the tandem devices.

  • REVIEW ARTICLE
    Yaqin Li, Maosong Liu, Jinjun Wu, Junbo Li, Xianglin Yu, Qichun Zhang
    Frontiers of Optoelectronics, 2022, 15(3): 38. https://doi.org/10.1007/s12200-022-00032-5

    Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.

  • RESEARCH ARTICLE
    Kaixuan Chen, Huan Wei, Ping-An Chen, Yu Liu, Jing Guo, Jiangnan Xia, Haihong Xie, Xincan Qiu, Yuanyuan Hu
    Frontiers of Optoelectronics, 2022, 15(2): 26. https://doi.org/10.1007/s12200-022-00019-2

    The recently reported non-fullerene acceptor (NFA) Y6 has been extensively investigated for high-performance organic solar cells. However, its charge transport property and physics have not been fully studied. In this work, we acquired a deeper understanding of the charge transport in Y6 by fabricating and characterizing thin-film transistors (TFTs), and found that the electron mobility of Y6 is over 0.3–0.4 cm2/(V·s) in top-gate bottom-contact devices, which is at least one order of magnitude higher than that of another well-known NFA ITIC. More importantly, we observed band-like transport in Y6 spin-coated films through temperature-dependent measurements on TFTs. This is particularly amazing since such transport behavior is rarely seen in polycrystalline organic semiconductor films. Further morphology characterization and discussions indicate that the band-like transport originates from the unique molecule packing motif of Y6 and the special phase of the film. As such, this work not only demonstrates the superior charge transport property of Y6, but also suggests the great potential of developing high-mobility n-type organic semiconductors, on the basis of Y6.

  • RESEARCH ARTICLE
    Mengjia Jiang, Shuyu Li, Chun Zhen, Lingsong Wang, Fei Li, Yihan Zhang, Weibing Dong, Xiaotao Zhang, Wenping Hu
    Frontiers of Optoelectronics, 2022, 15(2): 21. https://doi.org/10.1007/s12200-022-00022-7

    Simultaneously realizing the optical and electrical properties of organic materials is always challenging. Herein, a convenient and promising strategy for designing organic materials with integrated optoelectronic properties based on cocrystal engineering has been put forward. By selecting the fluorene (Flu) and the 7,7′,8,8′-tetracyanoquinodimethane (TCNQ) as functional constituents, the Flu-TCNQ cocrystal prepared shows deep red emission at 702 nm, which is comparable to the commercialized red quantum dot. The highest electron mobility of organic field-effect transistor (OFET) based on Flu-TCNQ is 0.32 cm2 V-1s-1. Spectroscopic analysis indicates that the intermolecular driving force contributing to the co-assembly of Flu-TCNQ is mainly charge transfer (CT) interaction, which leads to its different optoelectronic properties from constituents.

  • Tae Wook Kim, Sung Hyun Kim, Jae Won Shim, Do Kyung Hwang
    Frontiers of Optoelectronics, 2022, 15(2): 18. https://doi.org/10.1007/s12200-022-00024-5

    Energy harvesting and light detection are key technologies in various emerging optoelectronic applications. The high absorption capability and bandgap tunability of organic semiconductors make them promising candidates for such applications. Herein, a poly(3-hexylthiophene-2,5-diyl) (P3HT):indene-C60 bisadduct (ICBA) bulk heterojunction-based organic photodiode (OPD) was reported, demonstrating dual functionality as an indoor photovoltaic (PV) and as a high-speed photodetector. This OPD demonstrated decent indoor PV performance with a power conversion efficiency (PCE) of (11.6 ± 0.5)% under a light emitting diode (LED) lamp with a luminance of 1000 lx. As a photodetector, this device exhibited a decent photoresponsivity of 0.15 A/W (green light) with an excellent linear dynamic range (LDR) of over 127 dB within the optical power range of 3.74 × 10-7 to 9.6 × 10-2 W/cm2. Furthermore, fast photoswitching behaviors could be observed with the rising/falling times of 14.5/10.4 µs and a cutoff (3 dB) frequency of 37 kHz. These results might pave the way for further development of organic optoelectronic applications.

  • RESEARCH ARTICLE
    Yuan Liu, Xu Lian, Zhangdi Xie, Jinlin Yang, Yishui Ding, Wei Chen
    Frontiers of Optoelectronics, 2022, 15(2): 19. https://doi.org/10.1007/s12200-022-00026-3

    Sodium metal batteries (SMBs) are receiving broad attention due to the high specific capacity of sodium metal anodes and the material abundance on earth. However, the growth of dendrites results in poor battery performance and severe safety problems, inhibiting the commercial application of SMBs. To stabilize sodium metal anodes, various methods have been developed to optimize the solid electrolyte interphase (SEI) layer and adjust the electroplating/stripping behavior of sodium. Among the methods, developing anode host materials and adding electrolyte additives to build a protective layer are promising and convenient. However, the understanding of the interaction process between sodium metal and those organic materials is still limited, but is essential for the rational design of advanced anode hosts and electrolyte additives. In this study, we use copper(II) hexadecafluorophthalocyanine (F16CuPc), and copper(II) phthalocyanine (CuPc), as model systems to unravel the sodium interaction with polar functional groups by in-situ photoelectron spectroscopy and density functional theory (DFT) calculations. It is found that sodium atoms prefer to interact with the inner pyrrolic nitrogen sites of CuPc, while they prefer to interact with the outer aza bridge nitrogen atoms, owing to Na-F interaction at the Na/F16CuPc interface. Besides, for the both organic molecules, the central Cu(II) ions are reduced to Cu(I) ions by charge transfer from deposited sodium. The fluorine-containing groups are proven to promote the interaction process of sodium in organic materials, which sheds light on the design of functional interfaces in host materials and anode protective layers for sodium metal anodes.