Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence

Qin Xue, Mingfang Huo, Guohua Xie

PDF(1737 KB)
PDF(1737 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (1) : 2. DOI: 10.1007/s12200-022-00056-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence

Author information +
History +

Abstract

Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.

Graphical abstract

Keywords

Thermally activated delayed fluorescence (TADF) / Organic light-emitting device (OLED) / Sensitization / Energy transfer / Solution process

Cite this article

Download citation ▾
Qin Xue, Mingfang Huo, Guohua Xie. Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence. Front. Optoelectron., 2023, 16(1): 2 https://doi.org/10.1007/s12200-022-00056-x

References

[1]
Tang, C. , VanSlyke, S. : Organic electroluminescent diodes. Appl. Phys. Lett. 51 (12), 913- 915 (1987)
[2]
Baldo, M. , O’Brien, D. , You, Y. , Shoustikov, A. , Sibley, S. , Thompson, M. , Forrest, S. : Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395 (6698), 151- 154 (1998)
[3]
Baldo, M. , Lamansky, S. , Burrows, P. , Thompson, M. , Forrest, S. : Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75 (1), 4- 6 (1999)
[4]
Adachi, C. , Baldo, M. , Thompson, M. , Forrest, S. : Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90 (10), 5048- 5051 (2001)
[5]
Uoyama, H. , Goushi, K. , Shizu, K. , Nomura, H. , Adachi, C. : Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492 (7428), 234- 238 (2012)
[6]
Nakanotani, H. , Higuchi, T. , Furukawa, T. , Masui, K. , Morimoto, K. , Numata, M. , Tanaka, H. , Sagara, Y. , Yasuda, T. , Adachi, C. : High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 5 (1), 4016 (2014)
[7]
Tao, Y. , Yuan, K. , Chen, T. , Xu, P. , Li, H. , Chen, R. , Zheng, C. , Zhang, L. , Huang, W. : Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 26 (47), 7931- 7958 (2014)
[8]
Zhang, D. , Duan, L. , Li, C. , Li, Y. , Li, H. , Zhang, D. , Qiu, Y. : High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy. Adv. Mater. 26 (29), 5050- 5055 (2014)
[9]
Higuchi, T. , Nakanotani, H. , Adachi, C. : High-efficiency white organic light-emitting diodes based on a blue thermally activated delayed fluorescent emitter combined with green and red fluorescent emitters. Adv. Mater. 27 (12), 2019- 2023 (2015)
[10]
Lee, I. , Song, W. , Lee, J. , Hwang, S.H. : High efficiency blue fluorescent organic light-emitting diodes using a conventional blue fluorescent emitter. J. Mater. Chem. C Mater. Opt. Electron. Devices 3 (34), 8834- 8838 (2015)
[11]
Liu, X.K. , Chen, Z. , Qing, J. , Zhang, W.J. , Wu, B. , Tam, H.L. , Zhu, F. , Zhang, X.H. , Lee, C.S. : Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex. Adv. Mater. 27 (44), 7079- 7085 (2015)
[12]
Marian, C. : Mechanism of the triplet-to-singlet upconversion in the assistant dopant ACRXTN. J. Phys. Chem. C 120 (7), 3715- 3721 (2016)
[13]
Chen, D. , Cai, X. , Li, X.L. , He, Z. , Cai, C. , Chen, D. , Su, S.J. : Efficient solution-processed red all-fluorescent organic light-emitting diodes employing thermally activated delayed fluorescence materials as assistant hosts: molecular design strategy and exciton dynamic analysis. J. Mater. Chem. C Mater. Opt. Electron. Devices 5 (21), 5223- 5231 (2017)
[14]
Chen, L. , Zhang, S. , Li, H. , Chen, R. , Jin, L. , Yuan, K. , Li, H. , Lu, P. , Yang, B. , Huang, W. : Breaking the efficiency limit of fluorescent OLEDs by hybridized local and charge-transfer host materials. J. Phys. Chem. Lett. 9 (18), 5240- 5245 (2018)
[15]
Zhang, D. , Song, X. , Cai, M. , Duan, L. : Blocking energy-loss pathways for ideal fluorescent organic light-emitting diodes with thermally activated delayed fluorescent sensitizers. Adv. Mater. 30 (6), 1705250 (2018)
[16]
Kim, H.G. , Kim, K.H. , Moon, C.K. , Kim, J.J. : Harnessing triplet excited states by fluorescent dopant utilizing codoped phosphorescent dopant in exciplex host for efficient fluorescent organic light emitting diodes. Adv. Opt. Mater. 5 (3), 1600749 (2017)
[17]
Kim, H.G. , Kim, K.H. , Kim, J.J. : Highly efficient, conventional, fluorescent organic light-emitting diodes with extended lifetime. Adv. Mater. 29 (39), 1702159 (2017)
[18]
Jou, J.H. , Fu, S.C. , An, C.C. , Shyue, J.J. , Chin, C.L. , He, Z.K. : High efficiency yellow organic light-emitting diodes with a solution-process feasible iridium based emitter. J. Mater. Chem. C Mater. Opt. Electron. Devices 5 (22), 5478- 5486 (2017)
[19]
Xue, J. , Liang, Q. , Zhang, Y. , Zhang, R. , Duan, L. , Qiao, J. : High-efficiency near-infrared fluorescent organic light-emitting diodes with small efficiency roll-off: a combined design from emitters to devices. Adv. Funct. Mater. 27 (45), 1703283 (2017)
[20]
Ahn, D.H. , Jeong, J.H. , Song, J. , Lee, J.Y. , Kwon, J.H. : Highly efficient deep blue fluorescent organic light-emitting diodes boosted by thermally activated delayed fluorescence sensitization. ACS Appl. Mater. Interfaces 10 (12), 10246- 10253 (2018)
[21]
Han, S. , Lee, J. : Spatial separation of sensitizer and fluorescent emitter for high quantum efficiency in hyperfluorescent organic light-emitting diodes. J. Mater. Chem. C Mater. Opt. Electron. Devices 6 (6), 1504- 1508 (2018)
[22]
Furukawa, T. , Nakanotani, H. , Inoue, M. , Adachi, C. : Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Sci. Rep. 5 (1), 8429 (2015)
[23]
Song, W. , Lee, I. , Lee, J.Y. : Host engineering for high quantum efficiency blue and white fluorescent organic light-emitting diodes. Adv. Mater. 27 (29), 4358- 4363 (2015)
[24]
Wu, Z. , Wang, Q. , Yu, L. , Chen, J. , Qiao, X. , Ahamad, T. , Alshehri, S.M. , Yang, C. , Ma, D. : Managing excitons and charges for high-performance fluorescent white organic light-emitting diodes. ACS Appl. Mater. Interfaces 8 (42), 28780- 28788 (2016)
[25]
Wu, Z. , Yu, L. , Zhou, X. , Guo, Q. , Luo, J. , Qiao, X. , Yang, D. , Chen, J. , Yang, C. , Ma, D. : Management of singlet and triplet excitons: a universal approach to high-efficiency all fluorescent WOLEDs with reduced efficiency roll-off using a conventional fluorescent emitter. Adv. Opt. Mater. 4 (7), 1067- 1074 (2016)
[26]
Wu, K. , Wang, Z. , Zhan, L. , Zhong, C. , Gong, S. , Xie, G. , Yang, C. : Realizing highly efficient solution-processed homojunctionlike sky-blue OLEDs by using thermally activated delayed fluorescent emitters featuring an aggregation-induced emission property. J. Phys. Chem. Lett. 9 (7), 1547- 1553 (2018)
[27]
Demir, N. , Oner, I. , Varlikli, C. , Ozsoy, C. , Zafer, C. : Efficiency enhancement in a single emission layer yellow organic light emitting device: contribution of CIS/ZnS quantum dot. Thin Solid Films 589, 153- 160 (2015)
[28]
Liu, F. , Chen, Z. , Du, X. , Zeng, Q. , Ji, T. , Cheng, Z. , Jin, G. , Yang, B. : High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4. 20%. J. Mater. Chem. A Mater. Energy Sustain. 4 (3), 1105- 1111 (2016)
[29]
Bolink, H. , Coronado, E. , Orozco, J. , Sessolo, M. : Efficient polymer light-emitting diode using air-stable metal oxides as electrodes. Adv. Mater. 21 (1), 79- 82 (2009). https://doi.org/10.1002/adma.200802155
[30]
Kim, Y.H. , Han, T.H. , Cho, H. , Min, S.Y. , Lee, C.L. , Lee, T.W. : Polyethylene imine as an ideal interlayer for highly efficient inverted polymer light-emitting diodes. Adv. Funct. Mater. 24 (24), 3808- 3814 (2014)
[31]
Yin, X. , Xie, G. , Peng, Y. , Wang, B. , Chen, T. , Li, S. , Zhang, W. , Wang, L. , Yang, C. : Self-doping cathode interfacial material simultaneously enabling high electron mobility and powerful work function tunability for high-efficiency all-solution-processed polymer light-emitting diodes. Adv. Funct. Mater. 27 (26), 1700695 (2017)
[32]
Yin, X. , Xie, G. , Zhou, T. , Xiang, Y. , Wu, K. , Qin, J. , Yang, C. : Simple pyridine hydrochlorides as bifunctional electron injection and transport materials for high-performance all-solution-processed organic light emitting diodes. J. Mater. Chem. C Mater. Opt. Electron. Devices 4 (26), 6224- 6229 (2016)
[33]
Sasaki, S. , Drummen, G. , Konishi, G. : Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J. Mater. Chem. C Mater. Opt. Electron. Devices 4 (14), 2731- 2743 (2016)

RIGHTS & PERMISSIONS

2023 The Author(s)
AI Summary AI Mindmap
PDF(1737 KB)

Accesses

Citations

Detail

Sections
Recommended

/