Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence
Qin Xue, Mingfang Huo, Guohua Xie
Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence
Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.
Thermally activated delayed fluorescence (TADF) / Organic light-emitting device (OLED) / Sensitization / Energy transfer / Solution process
[1] |
Tang, C. , VanSlyke, S. : Organic electroluminescent diodes. Appl. Phys. Lett. 51 (12), 913- 915 (1987)
|
[2] |
Baldo, M. , O’Brien, D. , You, Y. , Shoustikov, A. , Sibley, S. , Thompson, M. , Forrest, S. : Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395 (6698), 151- 154 (1998)
|
[3] |
Baldo, M. , Lamansky, S. , Burrows, P. , Thompson, M. , Forrest, S. : Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75 (1), 4- 6 (1999)
|
[4] |
Adachi, C. , Baldo, M. , Thompson, M. , Forrest, S. : Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90 (10), 5048- 5051 (2001)
|
[5] |
Uoyama, H. , Goushi, K. , Shizu, K. , Nomura, H. , Adachi, C. : Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492 (7428), 234- 238 (2012)
|
[6] |
Nakanotani, H. , Higuchi, T. , Furukawa, T. , Masui, K. , Morimoto, K. , Numata, M. , Tanaka, H. , Sagara, Y. , Yasuda, T. , Adachi, C. : High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 5 (1), 4016 (2014)
|
[7] |
Tao, Y. , Yuan, K. , Chen, T. , Xu, P. , Li, H. , Chen, R. , Zheng, C. , Zhang, L. , Huang, W. : Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 26 (47), 7931- 7958 (2014)
|
[8] |
Zhang, D. , Duan, L. , Li, C. , Li, Y. , Li, H. , Zhang, D. , Qiu, Y. : High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy. Adv. Mater. 26 (29), 5050- 5055 (2014)
|
[9] |
Higuchi, T. , Nakanotani, H. , Adachi, C. : High-efficiency white organic light-emitting diodes based on a blue thermally activated delayed fluorescent emitter combined with green and red fluorescent emitters. Adv. Mater. 27 (12), 2019- 2023 (2015)
|
[10] |
Lee, I. , Song, W. , Lee, J. , Hwang, S.H. : High efficiency blue fluorescent organic light-emitting diodes using a conventional blue fluorescent emitter. J. Mater. Chem. C Mater. Opt. Electron. Devices 3 (34), 8834- 8838 (2015)
|
[11] |
Liu, X.K. , Chen, Z. , Qing, J. , Zhang, W.J. , Wu, B. , Tam, H.L. , Zhu, F. , Zhang, X.H. , Lee, C.S. : Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex. Adv. Mater. 27 (44), 7079- 7085 (2015)
|
[12] |
Marian, C. : Mechanism of the triplet-to-singlet upconversion in the assistant dopant ACRXTN. J. Phys. Chem. C 120 (7), 3715- 3721 (2016)
|
[13] |
Chen, D. , Cai, X. , Li, X.L. , He, Z. , Cai, C. , Chen, D. , Su, S.J. : Efficient solution-processed red all-fluorescent organic light-emitting diodes employing thermally activated delayed fluorescence materials as assistant hosts: molecular design strategy and exciton dynamic analysis. J. Mater. Chem. C Mater. Opt. Electron. Devices 5 (21), 5223- 5231 (2017)
|
[14] |
Chen, L. , Zhang, S. , Li, H. , Chen, R. , Jin, L. , Yuan, K. , Li, H. , Lu, P. , Yang, B. , Huang, W. : Breaking the efficiency limit of fluorescent OLEDs by hybridized local and charge-transfer host materials. J. Phys. Chem. Lett. 9 (18), 5240- 5245 (2018)
|
[15] |
Zhang, D. , Song, X. , Cai, M. , Duan, L. : Blocking energy-loss pathways for ideal fluorescent organic light-emitting diodes with thermally activated delayed fluorescent sensitizers. Adv. Mater. 30 (6), 1705250 (2018)
|
[16] |
Kim, H.G. , Kim, K.H. , Moon, C.K. , Kim, J.J. : Harnessing triplet excited states by fluorescent dopant utilizing codoped phosphorescent dopant in exciplex host for efficient fluorescent organic light emitting diodes. Adv. Opt. Mater. 5 (3), 1600749 (2017)
|
[17] |
Kim, H.G. , Kim, K.H. , Kim, J.J. : Highly efficient, conventional, fluorescent organic light-emitting diodes with extended lifetime. Adv. Mater. 29 (39), 1702159 (2017)
|
[18] |
Jou, J.H. , Fu, S.C. , An, C.C. , Shyue, J.J. , Chin, C.L. , He, Z.K. : High efficiency yellow organic light-emitting diodes with a solution-process feasible iridium based emitter. J. Mater. Chem. C Mater. Opt. Electron. Devices 5 (22), 5478- 5486 (2017)
|
[19] |
Xue, J. , Liang, Q. , Zhang, Y. , Zhang, R. , Duan, L. , Qiao, J. : High-efficiency near-infrared fluorescent organic light-emitting diodes with small efficiency roll-off: a combined design from emitters to devices. Adv. Funct. Mater. 27 (45), 1703283 (2017)
|
[20] |
Ahn, D.H. , Jeong, J.H. , Song, J. , Lee, J.Y. , Kwon, J.H. : Highly efficient deep blue fluorescent organic light-emitting diodes boosted by thermally activated delayed fluorescence sensitization. ACS Appl. Mater. Interfaces 10 (12), 10246- 10253 (2018)
|
[21] |
Han, S. , Lee, J. : Spatial separation of sensitizer and fluorescent emitter for high quantum efficiency in hyperfluorescent organic light-emitting diodes. J. Mater. Chem. C Mater. Opt. Electron. Devices 6 (6), 1504- 1508 (2018)
|
[22] |
Furukawa, T. , Nakanotani, H. , Inoue, M. , Adachi, C. : Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Sci. Rep. 5 (1), 8429 (2015)
|
[23] |
Song, W. , Lee, I. , Lee, J.Y. : Host engineering for high quantum efficiency blue and white fluorescent organic light-emitting diodes. Adv. Mater. 27 (29), 4358- 4363 (2015)
|
[24] |
Wu, Z. , Wang, Q. , Yu, L. , Chen, J. , Qiao, X. , Ahamad, T. , Alshehri, S.M. , Yang, C. , Ma, D. : Managing excitons and charges for high-performance fluorescent white organic light-emitting diodes. ACS Appl. Mater. Interfaces 8 (42), 28780- 28788 (2016)
|
[25] |
Wu, Z. , Yu, L. , Zhou, X. , Guo, Q. , Luo, J. , Qiao, X. , Yang, D. , Chen, J. , Yang, C. , Ma, D. : Management of singlet and triplet excitons: a universal approach to high-efficiency all fluorescent WOLEDs with reduced efficiency roll-off using a conventional fluorescent emitter. Adv. Opt. Mater. 4 (7), 1067- 1074 (2016)
|
[26] |
Wu, K. , Wang, Z. , Zhan, L. , Zhong, C. , Gong, S. , Xie, G. , Yang, C. : Realizing highly efficient solution-processed homojunctionlike sky-blue OLEDs by using thermally activated delayed fluorescent emitters featuring an aggregation-induced emission property. J. Phys. Chem. Lett. 9 (7), 1547- 1553 (2018)
|
[27] |
Demir, N. , Oner, I. , Varlikli, C. , Ozsoy, C. , Zafer, C. : Efficiency enhancement in a single emission layer yellow organic light emitting device: contribution of CIS/ZnS quantum dot. Thin Solid Films 589, 153- 160 (2015)
|
[28] |
Liu, F. , Chen, Z. , Du, X. , Zeng, Q. , Ji, T. , Cheng, Z. , Jin, G. , Yang, B. : High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4. 20%. J. Mater. Chem. A Mater. Energy Sustain. 4 (3), 1105- 1111 (2016)
|
[29] |
Bolink, H. , Coronado, E. , Orozco, J. , Sessolo, M. : Efficient polymer light-emitting diode using air-stable metal oxides as electrodes. Adv. Mater. 21 (1), 79- 82 (2009).
|
[30] |
Kim, Y.H. , Han, T.H. , Cho, H. , Min, S.Y. , Lee, C.L. , Lee, T.W. : Polyethylene imine as an ideal interlayer for highly efficient inverted polymer light-emitting diodes. Adv. Funct. Mater. 24 (24), 3808- 3814 (2014)
|
[31] |
Yin, X. , Xie, G. , Peng, Y. , Wang, B. , Chen, T. , Li, S. , Zhang, W. , Wang, L. , Yang, C. : Self-doping cathode interfacial material simultaneously enabling high electron mobility and powerful work function tunability for high-efficiency all-solution-processed polymer light-emitting diodes. Adv. Funct. Mater. 27 (26), 1700695 (2017)
|
[32] |
Yin, X. , Xie, G. , Zhou, T. , Xiang, Y. , Wu, K. , Qin, J. , Yang, C. : Simple pyridine hydrochlorides as bifunctional electron injection and transport materials for high-performance all-solution-processed organic light emitting diodes. J. Mater. Chem. C Mater. Opt. Electron. Devices 4 (26), 6224- 6229 (2016)
|
[33] |
Sasaki, S. , Drummen, G. , Konishi, G. : Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J. Mater. Chem. C Mater. Opt. Electron. Devices 4 (14), 2731- 2743 (2016)
|
/
〈 | 〉 |