Band-like transport in non-fullerene acceptor semiconductor Y6

Kaixuan Chen, Huan Wei, Ping-An Chen, Yu Liu, Jing Guo, Jiangnan Xia, Haihong Xie, Xincan Qiu, Yuanyuan Hu

PDF(3829 KB)
PDF(3829 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (2) : 26. DOI: 10.1007/s12200-022-00019-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Band-like transport in non-fullerene acceptor semiconductor Y6

Author information +
History +

Abstract

The recently reported non-fullerene acceptor (NFA) Y6 has been extensively investigated for high-performance organic solar cells. However, its charge transport property and physics have not been fully studied. In this work, we acquired a deeper understanding of the charge transport in Y6 by fabricating and characterizing thin-film transistors (TFTs), and found that the electron mobility of Y6 is over 0.3–0.4 cm2/(V·s) in top-gate bottom-contact devices, which is at least one order of magnitude higher than that of another well-known NFA ITIC. More importantly, we observed band-like transport in Y6 spin-coated films through temperature-dependent measurements on TFTs. This is particularly amazing since such transport behavior is rarely seen in polycrystalline organic semiconductor films. Further morphology characterization and discussions indicate that the band-like transport originates from the unique molecule packing motif of Y6 and the special phase of the film. As such, this work not only demonstrates the superior charge transport property of Y6, but also suggests the great potential of developing high-mobility n-type organic semiconductors, on the basis of Y6.

Graphical abstract

Keywords

Y6 / Thin-film transistors (TFTs) / Mobility / Band-like transport / Film morphology

Cite this article

Download citation ▾
Kaixuan Chen, Huan Wei, Ping-An Chen, Yu Liu, Jing Guo, Jiangnan Xia, Haihong Xie, Xincan Qiu, Yuanyuan Hu. Band-like transport in non-fullerene acceptor semiconductor Y6. Front. Optoelectron., 2022, 15(2): 26 https://doi.org/10.1007/s12200-022-00019-2

References

[1]
Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.L., Lau, T.K., Lu, X., Zhu, C., Peng, H., Johnson, P.A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y., Zou, Y.: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4), 1140–1151 (2019)
CrossRef Google scholar
[2]
Ma, X., Zeng, A., Gao, J., Hu, Z., Xu, C., Son, J.H., Jeong, S.Y., Zhang, C., Li, M., Wang, K., Yan, H., Ma, Z., Wang, Y., Woo, H.Y., Zhang, F.: Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6:Y6–1O as acceptor. Natl. Sci. Rev. 8(8), a305 (2021)
CrossRef Google scholar
[3]
Wang, X., Sun, Q., Gao, J., Ma, X., Son, J.H., Jeong, S.Y., Hu, Z., Niu, L., Woo, H.Y., Zhang, J., Zhang, F.: Ternary organic photovoltaic cells exhibiting 17.59% efficiency with two compatible Y6 derivations as acceptor. Solar RRL. 5(3), 2100007 (2021)
CrossRef Google scholar
[4]
Tokmoldin, N., Hosseini, S.M., Raoufi, M., Phuong, L.Q., Sandberg, O.J., Guan, H., Zou, Y., Neher, D., Shoaee, S.: Extraordinarily long diffusion length in PM6:Y6 organic solar cells. J. Mater. Chem. A. 8(16), 7854–7860 (2020)
CrossRef Google scholar
[5]
Chai, G., Chang, Y., Zhang, J., Xu, X., Yu, L., Zou, X., Li, X., Chen, Y., Luo, S., Liu, B., Bai, F., Luo, Z., Yu, H., Liang, J., Liu, T., Wong, K.S., Zhou, H., Peng, Q., Yan, H.: Fine-tuning of sidechain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy Environ. Sci. 14(6), 3469–3479 (2021)
CrossRef Google scholar
[6]
Umeyama, T., Igarashi, K., Sasada, D., Tamai, Y., Ishida, K., Koganezawa, T., Ohtani, S., Tanaka, K., Ohkita, H., Imahori, H.: Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state. Chem. Sci. (Cambridge) 11(12), 3250–3257 (2020)
CrossRef Google scholar
[7]
Park, J.S., Kim, G.U., Lee, D., Lee, S., Ma, B., Cho, S., Kim, B.J.: Importance of optimal crystallinity and hole mobility of BDTbased polymer donor for simultaneous enhancements of Voc, Jsc, and FF in efficient nonfullerene organic solar cells. Adv. Func. Mater. 30(51), 2005787 (2020)
CrossRef Google scholar
[8]
Yang, Y.: The original design principles of the Y-series nonfullerene acceptors, from Y1 to Y6. ACS Nano. 15(12), 18679–18682 (2021)
CrossRef Google scholar
[9]
Xiao, C., Li, C., Liu, F., Zhang, L., Li, W.: Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities. J. Mater. Chem. C. 8(16), 5370–5374 (2020)
CrossRef Google scholar
[10]
Gutierrez-Fernandez, E., Scaccabarozzi, A.D., Basu, A., Solano, E., Anthopoulos, T.D., Martín, J.: Y6 organic thin-film transistors with electron mobilities of 2.4 cm2 V-1 s-1 via microstructural tuning. Adv. Sci. 9(1), 2104977 (2022)
CrossRef Google scholar
[11]
Kupgan, G., Chen, X.K., Brédas, J.L.: Molecular packing of nonfullerene acceptors for organic solar cells: distinctive local morphology in Y6 vs. ITIC derivatives. Mater. Today Adv. 11, 100154 (2021)
CrossRef Google scholar
[12]
Lin, Y., Wang, J., Zhang, Z.G., Bai, H., Li, Y., Zhu, D., Zhan, X.: An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27(7), 1170–1174 (2015)
CrossRef Google scholar
[13]
Xiao, Y., Yuan, J., Zhou, G., Ngan, K.C., Xia, X., Zhu, J., Zou, Y., Zhao, N., Zhan, X., Lu, X.: Unveiling the crystalline packing of Y6 in thin films by thermally induced “backbone-on” orientation. J. Mater. Chem. A 9(31), 17030–17038 (2021)
CrossRef Google scholar
[14]
Chen, S., Yan, T., Fanady, B., Song, W., Ge, J., Wei, Q., Peng, R., Chen, G., Zou, Y., Ge, Z.: High efficiency ternary organic solar cells enabled by compatible dual-donor strategy with planar conjugated structures. Sci. China Chem. 63(7), 917–923 (2020)
CrossRef Google scholar
[15]
Yang, Y., Zhang, Z.G., Bin, H., Chen, S., Gao, L., Xue, L., Yang, C., Li, Y.: Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells. J. Am. Chem. Soc. 138(45), 15011–15018 (2016)
CrossRef Google scholar
[16]
Wei, H., Liu, Y., Liu, Z., Guo, J., Chen, P.A., Qiu, X., Dai, G., Li, Y., Yuan, J., Liao, L., Hu, Y.: Effect of backbone fluorine and chlorine substitution on charge-transport properties of naphthalenediimide-based polymer semiconductors. Adv. Electron. Mater. 6(4), 1901241 (2020)
CrossRef Google scholar
[17]
Wei, H., Chen, P.A., Guo, J., Liu, Y., Qiu, X., Chen, H., Zeng, Z., Nguyen, T.Q., Hu, Y.: Low-cost nucleophilic organic bases as n-dopants for organic field-effect transistors and thermoelectric devices. Adv. Func. Mater. 31(30), 2102768 (2021)
CrossRef Google scholar
[18]
Tiwari, S.P., Namdas, E.B., Ramgopal Rao, V., Fichou, D., Mhaisalkar, S.G.: Solution-processed n-type organic field-effect transistors with high on /off current ratios based on fullerene derivatives. IEEE Electron. Device Lett. 28(10), 880–883 (2007)
CrossRef Google scholar
[19]
Hu, Y., Li, G., Chen, Z.: The importance of contact resistance in high-mobility organic field-effect transistors studied by scanning kelvin probe microscopy. IEEE Electron. Device Lett. 39(2), 276–279 (2018)
CrossRef Google scholar
[20]
Ji, D., Li, T., Liu, J., Amirjalayer, S., Zhong, M., Zhang, Z.Y., Huang, X., Wei, Z., Dong, H., Hu, W., Fuchs, H.: Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nat. Commun. 10(1), 12 (2019)
CrossRef Google scholar
[21]
Zhang, F., Di, C.A., Berdunov, N., Hu, Y., Hu, Y., Gao, X., Meng, Q., Sirringhaus, H., Zhu, D.: Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating. Adv. Mater. 25(10), 1401–1407 (2013)
CrossRef Google scholar
[22]
Hu, Y., Berdunov, N., Di, C.A., Nandhakumar, I., Zhang, F., Gao, X., Zhu, D., Sirringhaus, H.: Effect of molecular asymmetry on the charge transport physics of high mobility n-type molecular semiconductors investigated by scanning Kelvin probe microscopy. ACS Nano. 8(7), 6778–6787 (2014)
CrossRef Google scholar
[23]
Hu, Y., Cao, D.X., Lill, A.T., Jiang, L., Di, C.A., Gao, X., Sirringhaus, H., Nguyen, T.Q.: Effect of alkyl-chain length on charge transport properties of organic semiconductors and organic field-effect transistors. Adv. Electron. Mater. 4(8), 1800175 (2018)
CrossRef Google scholar
[24]
Stoeckel, M.A., Olivier, Y., Gobbi, M., Dudenko, D., Lemaur, V., Zbiri, M., Guilbert, A.A.Y., D’Avino, G., Liscio, F., Migliori, A., Ortolani, L., Demitri, N., Jin, X., Jeong, Y.G., Liscio, A., Nardi, M.V., Pasquali, L., Razzari, L., Beljonne, D., Samorì, P., Orgiu, E.: Analysis of external and internal disorder to understand band-like transport in n-type organic semiconductors. Adv. Mater. 33(13), e2007870 (2021)
CrossRef Google scholar
[25]
Zhang, G., Chen, X.K., Xiao, J., Chow, P.C.Y., Ren, M., Kupgan, G., Jiao, X., Chan, C.C.S., Du, X., Xia, R., Chen, Z., Yuan, J., Zhang, Y., Zhang, S., Liu, Y., Zou, Y., Yan, H., Wong, K.S., Coropceanu, V., Li, N., Brabec, C.J., Bredas, J.L., Yip, H.L., Cao, Y.: Delocalization of exciton and electron wavefunction in nonfullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 11(1), 3943 (2020)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(3829 KB)

Accesses

Citations

Detail

Sections
Recommended

/