TCNQ-based organic cocrystal integrated red emission and n-type charge transport
Mengjia Jiang, Shuyu Li, Chun Zhen, Lingsong Wang, Fei Li, Yihan Zhang, Weibing Dong, Xiaotao Zhang, Wenping Hu
TCNQ-based organic cocrystal integrated red emission and n-type charge transport
Simultaneously realizing the optical and electrical properties of organic materials is always challenging. Herein, a convenient and promising strategy for designing organic materials with integrated optoelectronic properties based on cocrystal engineering has been put forward. By selecting the fluorene (Flu) and the 7,7′,8,8′-tetracyanoquinodimethane (TCNQ) as functional constituents, the Flu-TCNQ cocrystal prepared shows deep red emission at 702 nm, which is comparable to the commercialized red quantum dot. The highest electron mobility of organic field-effect transistor (OFET) based on Flu-TCNQ is 0.32 cm2 V-1s-1. Spectroscopic analysis indicates that the intermolecular driving force contributing to the co-assembly of Flu-TCNQ is mainly charge transfer (CT) interaction, which leads to its different optoelectronic properties from constituents.
Organic cocrystal / Charge transfer (CT) / Integrated optoelectronic properties / Red emission / n-type charge transport
[1] |
Dong, H., Fu, X., Liu, J., Wang, Z., Hu, W.: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25(43), 6158–6183 (2013)
CrossRef
Google scholar
|
[2] |
Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)
CrossRef
Google scholar
|
[3] |
Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C.: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012)
CrossRef
Google scholar
|
[4] |
Lee, S.M., Kwon, J.H., Kwon, S., Choi, K.C.: A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron. Devices 64(5), 1922–1931 (2017)
CrossRef
Google scholar
|
[5] |
Yao, Y., Chen, Y., Wang, H., Samorì, P.: Organic photodetectors based on supramolecular nanostructures. SmartMat. 1(1), e1009 (2020)
CrossRef
Google scholar
|
[6] |
Brus, V.V., Lee, J., Luginbuhl, B.R., Ko, S.J., Bazan, G.C., Nguyen, T.Q.: Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater. 31(30), e1900904 (2019)
CrossRef
Google scholar
|
[7] |
McCarthy, M.A., Liu, B., Donoghue, E.P., Kravchenko, I., Kim, D.Y., So, F., Rinzler, A.G.: Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011)
CrossRef
Google scholar
|
[8] |
Ding, R., An, M.H., Feng, J., Sun, H.B.: Organic single-crystalline semiconductors for light-emitting applications: recent advances and developments. Laser Photonics Rev. 13(10), 1900009 (2019)
CrossRef
Google scholar
|
[9] |
Lin, J., Hu, Y., Lv, Y., Guo, X., Liu, X.: Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping. Sci. Bull. 62(24), 1637–1638 (2017)
CrossRef
Google scholar
|
[10] |
Chénais, S., Forget, S.: Recent advances in solid-state organic lasers. Polym. Int. 61(3), 390–406 (2012)
CrossRef
Google scholar
|
[11] |
Qin, Z., Gao, H., Dong, H., Hu, W.: Organic light-emitting transistors entering a new development stage. Adv. Mater. 33(31), e2007149 (2021)
CrossRef
Google scholar
|
[12] |
Liu, J., Zhang, H., Dong, H., Meng, L., Jiang, L., Jiang, L., Wang, Y., Yu, J., Sun, Y., Hu, W., Heeger, A.J.: High mobility emissive organic semiconductor. Nat. Commun. 6(1), 10032 (2015)
CrossRef
Google scholar
|
[13] |
Melucci, M., Favaretto, L., Zambianchi, M., Durso, M., Gazzano, M., Zanelli, A., Monari, M., Lobello, M.G., De Angelis, F., Biondo, V., Generali, G., Troisi, S., Koopman, W., Toffanin, S., Capelli, R., Muccini, M.: Molecular tailoring of new thieno(bis) imide-based semiconductors for single layer ambipolar light emitting transistors. Chem. Mater. 25(5), 668–676 (2013)
CrossRef
Google scholar
|
[14] |
Deng, J., Xu, Y., Liu, L., Feng, C., Tang, J., Gao, Y., Wang, Y., Yang, B., Lu, P., Yang, W., Ma, Y.: An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm2·V-1·s-1. Chem. Commun. 52(12), 2647 (2016)
CrossRef
Google scholar
|
[15] |
Yomogida, Y., Takenobu, T., Shimotani, H., Sawabe, K., Bisri, S.Z., Yamao, T., Hotta, S., Iwasa, Y.: Green light emission from the edges of organic single-crystal transistors. Appl. Phys. Lett. 97(17), 173301 (2010)
CrossRef
Google scholar
|
[16] |
Liu, D., De, J., Gao, H., Ma, S., Ou, Q., Li, S., Qin, Z., Dong, H., Liao, Q., Xu, B., Peng, Q., Shuai, Z., Tian, W., Fu, H., Zhang, X., Zhen, Y., Hu, W.: Organic laser molecule with high mobility, high photoluminescence quantum yield, and deep-blue lasing characteristics. J. Am. Chem. Soc. 142(13), 6332–6339 (2020)
CrossRef
Google scholar
|
[17] |
Kono, T., Kumaki, D., Nishida, J., Sakanoue, T., Kakita, M., Tada, H., Tokito, S., Yamashita, Y.: High-performance and light-emitting n-type organic field-effect transistors based on dithienylbenzothiadiazole and related heterocycles. Chem. Mater. 19(6), 1218–1220 (2007)
CrossRef
Google scholar
|
[18] |
Oh, S., Kim, J.H., Park, S.K., Ryoo, C.H., Park, S.Y.: Fabrication of pixelated organic light-emitting transistor (OLET) with a pure red-emitting organic semiconductor. Adv. Opt. Mater. 7(23), 1901274 (2019)
CrossRef
Google scholar
|
[19] |
Zhu, W., Dong, H., Zhen, Y., Hu, W.: Challenges of organic “cocrystals.”. Sci. China Mater. 58(11), 854–859 (2015)
CrossRef
Google scholar
|
[20] |
Huang, Y., Wang, Z., Chen, Z., Zhang, Q.: Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew Chem. Int. Ed. 58(29), 9696–9711 (2019)
CrossRef
Google scholar
|
[21] |
Zhang, J., Xu, W., Sheng, P., Zhao, G., Zhu, D.: Organic donor–acceptor complexes as novel organic semiconductors. Acc. Chem. Res. 50(7), 1654–1662 (2017)
CrossRef
Google scholar
|
[22] |
Sun, L., Yang, F., Zhang, X., Hu, W.: Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. Mater. Chem. Front. 4(3), 715–728 (2020)
CrossRef
Google scholar
|
[23] |
Sun, L., Wang, Y., Yang, F., Zhang, X., Hu, W.: Cocrystal engineering: a collaborative strategy toward functional materials. Adv. Mater. 31(39), e1902328 (2019)
CrossRef
Google scholar
|
[24] |
Wang, Y., Wu, H., Li, P., Chen, S., Jones, L.O., Mosquera, M.A., Zhang, L., Cai, K., Chen, H., Chen, X.Y., Stern, C.L., Wasielewski, M.R., Ratner, M.A., Schatz, G.C., Stoddart, J.F.: Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nat. Commun. 11(1), 4633 (2020)
CrossRef
Google scholar
|
[25] |
Bhowal, R., Biswas, S., Thumbarathil, A., Koner, A.L., Chopra, D.: Exploring the relationship between intermolecular interactions and solid-state photophysical properties of organic cocrystals. J. Chem. Phys. 123(14), 9311–9322 (2019)
CrossRef
Google scholar
|
[26] |
Black, H.T., Perepichka, D.F.: Crystal engineering of dual channel p/n organic semiconductors by complementary hydrogen bonding. Angew Chem. Int. Ed. 53(8), 2138–2142 (2014)
CrossRef
Google scholar
|
[27] |
Liu, H., Liu, Z., Jiang, W., Fu, H.: Tuning the charge transfer properties by optimized donor–acceptor cocrystal for FET applications: from P type to N type. J. Solid State Chem. 274, 47–51 (2019)
CrossRef
Google scholar
|
[28] |
Liang, Y., Qin, Y., Chen, J., Xing, W., Zou, Y., Sun, Y., Xu, W., Zhu, D.: Band engineering and majority carrier switching in isostructural donor–acceptor complexes DPTTA-FXTCNQ crystals (X = 1, 2, 4). Adv. Sci. 7(3), 1902456–1902464 (2019)
CrossRef
Google scholar
|
[29] |
Park, S.K., Varghese, S., Kim, J.H., Yoon, S.J., Kwon, O.K., An, B.K., Gierschner, J., Park, S.Y.: Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals: an isometric donor–acceptor approach. J. Am. Chem. Soc. 135(12), 4757–4764 (2013)
CrossRef
Google scholar
|
[30] |
Park, S.K., Kim, J.H., Ohto, T., Yamada, R., Jones, A.O.F., Whang, D.R., Cho, I., Oh, S., Hong, S.H., Kwon, J.E., Kim, J.H., Olivier, Y., Fischer, R., Resel, R., Gierschner, J., Tada, H., Park, S.Y.: Highly luminescent 2D-type slab crystals based on a molecular charge-transfer complex as promising organic light-emitting transistor materials. Adv. Mater. 29(36), 1701346 (2017)
CrossRef
Google scholar
|
[31] |
Chiang, C.L., Wu, M.T., Dai, D.C., Wen, Y.S., Wang, J.K., Chen, C.T.: Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting diodes. Adv. Funct. Mater. 15(2), 231–238 (2005)
CrossRef
Google scholar
|
[32] |
Sun, L., Zhu, W., Yang, F., Li, B., Ren, X., Zhang, X., Hu, W.: Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Phys. Chem. Chem. Phys. 20(9), 6009–6023 (2018)
CrossRef
Google scholar
|
[33] |
Jiang, L., Gao, J., Wang, E., Li, H., Wang, Z., Hu, W., Jiang, L.: Organic single-crystalline ribbons of a rigid “H”-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an “organic ribbon mask” technique. Adv. Mater. 20(14), 2735–2740 (2008)
CrossRef
Google scholar
|
[34] |
Wang, W., Luo, L., Sheng, P., Zhang, J., Zhang, Q.: Multifunctional features of organic charge-transfer complexes: advances and perspectives. Chemistry (Weinheim an der Bergstrasse, Germany) 27(2), 464–490 (2021)
CrossRef
Google scholar
|
[35] |
Qin, Y., Cheng, C., Geng, H., Wang, C., Hu, W., Xu, W., Shuai, Z., Zhu, D.: Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory. Phys. Chem. Chem. Phys. 18(20), 14094–14103 (2016)
CrossRef
Google scholar
|
[36] |
Croce, G., Arrais, A., Diana, E., Civalleri, B., Viterbo, D., Milanesio, M.: The interpretation of the short range disorder in the fluorene TCNE crystal structure. Int. J. Mol. Sci. 5(3), 93–100 (2004)
CrossRef
Google scholar
|
[37] |
Zhang, J., Geng, H., Virk, T.S., Zhao, Y., Tan, J., Di, C.A., Xu, W., Singh, K., Hu, W., Shuai, Z., Liu, Y., Zhu, D.: Sulfur-bridged annulene-TCNQ co-crystal: a self-assembled “molecular level heterojunction” with air stable ambipolar charge transport behavior. Adv. Mater. 24(19), 2603–2607 (2012)
CrossRef
Google scholar
|
[38] |
Usman, R., Khan, A., Sun, H., Wang, M.: Study of charge transfer interaction modes in the mixed donor–acceptor cocrystals of pyrene derivatives and TCNQ: a combined structural, thermal, spectroscopic, and hirshfeld surfaces analysis. J. Solid State Chem. 266, 112–120 (2018)
CrossRef
Google scholar
|
[39] |
Wakahara, T., Nagaoka, K., Nakagawa, A., Hirata, C., Matsushita, Y., Miyazawa, K., Ito, O., Wada, Y., Takagi, M., Ishimoto, T., Tachikawa, M., Tsukagoshi, K.: One-dimensional fullerene/porphyrin cocrystals: near-infrared light sensing through component interactions. ACS Appl. Mater. Interfaces 12(2), 2878–2883 (2020)
CrossRef
Google scholar
|
[40] |
Wang, Y., Zhu, W., Du, W., Liu, X., Zhang, X., Dong, H., Hu, W.: Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew Chem. Int. Ed. 57(15), 3963–3967 (2018)
CrossRef
Google scholar
|
[41] |
Liang, Y., Xing, W., Liu, L., Sun, Y., Xu, W., Zhu, D.: Charge transport behaviors of a novel 2:1 charge transfer complex based on coronene and HAT(CN)6. Org. Electron. 78, 105608 (2020)
CrossRef
Google scholar
|
[42] |
Mandal, A., Swain, P., Nath, B., Sau, S., Mal, P.: Unipolar to ambipolar semiconductivity switching in charge transfer cocrystals of 2,7-di-tertbutylpyrene. CrystEngComm. 21(6), 981–989 (2019)
CrossRef
Google scholar
|
[43] |
Ye, H., Liu, G., Liu, S., Casanova, D., Ye, X., Tao, X., Zhang, Q., Xiong, Q.: Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency. Angew Chem. Int. Ed. 57(7), 1928–1932 (2018)
CrossRef
Google scholar
|
[44] |
Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X., Chen, L., Wang, J., Peng, X.: Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014)
CrossRef
Google scholar
|
[45] |
Wu, H., Sun, Y., Sun, L., Wang, L., Zhang, X., Hu, W.: Deep insight into the charge transfer interactions in 1,2,4,5-tetracy-anobenzene-phenazine cocrystal. Chin. Chem. Lett. 32(10), 3007–3010 (2021)
CrossRef
Google scholar
|
[46] |
Tsutsumi, J., Matsuoka, S., Inoue, S., Minemawari, H., Yamada, T., Hasegawa, T.: N-type field-effect transistors based on layered crystalline donor–acceptor semiconductors with dialkylated benzothienobenzothiophenes as electron donors. J. Mater. Chem. C Mater. Opt. Electron. Dev. 3(9), 1976–1981 (2015)
CrossRef
Google scholar
|
[47] |
Geng, H., Zhu, L., Yi, Y., Zhu, D., Shuai, Z.: Superexchange induced charge transport in organic donor–acceptor cocrystals and copolymers: a theoretical perspective. Chem. Mater. 31(17), 6424–6434 (2019)
CrossRef
Google scholar
|
[48] |
Geng, H., Zheng, X., Shuai, Z., Zhu, L., Yi, Y.: Understanding the charge transport and polarities in organic donor–acceptor mixed-stack crystals: molecular insights from the super-exchange couplings. Adv. Mater. 27(8), 1443–1449 (2015)
CrossRef
Google scholar
|
[49] |
Zhu, L., Geng, H., Yi, Y., Wei, Z.: Charge transport in organic donor–acceptor mixed-stack crystals: the role of nonlocal electron–phonon couplings. Phys. Chem. Chem. Phys. 19(6), 4418–4425 (2017)
CrossRef
Google scholar
|
/
〈 | 〉 |