TCNQ-based organic cocrystal integrated red emission and n-type charge transport

Mengjia Jiang, Shuyu Li, Chun Zhen, Lingsong Wang, Fei Li, Yihan Zhang, Weibing Dong, Xiaotao Zhang, Wenping Hu

PDF(1782 KB)
PDF(1782 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (2) : 21. DOI: 10.1007/s12200-022-00022-7
RESEARCH ARTICLE

TCNQ-based organic cocrystal integrated red emission and n-type charge transport

Author information +
History +

Abstract

Simultaneously realizing the optical and electrical properties of organic materials is always challenging. Herein, a convenient and promising strategy for designing organic materials with integrated optoelectronic properties based on cocrystal engineering has been put forward. By selecting the fluorene (Flu) and the 7,7′,8,8′-tetracyanoquinodimethane (TCNQ) as functional constituents, the Flu-TCNQ cocrystal prepared shows deep red emission at 702 nm, which is comparable to the commercialized red quantum dot. The highest electron mobility of organic field-effect transistor (OFET) based on Flu-TCNQ is 0.32 cm2 V-1s-1. Spectroscopic analysis indicates that the intermolecular driving force contributing to the co-assembly of Flu-TCNQ is mainly charge transfer (CT) interaction, which leads to its different optoelectronic properties from constituents.

Graphical abstract

Keywords

Organic cocrystal / Charge transfer (CT) / Integrated optoelectronic properties / Red emission / n-type charge transport

Cite this article

Download citation ▾
Mengjia Jiang, Shuyu Li, Chun Zhen, Lingsong Wang, Fei Li, Yihan Zhang, Weibing Dong, Xiaotao Zhang, Wenping Hu. TCNQ-based organic cocrystal integrated red emission and n-type charge transport. Front. Optoelectron., 2022, 15(2): 21 https://doi.org/10.1007/s12200-022-00022-7

References

[1]
Dong, H., Fu, X., Liu, J., Wang, Z., Hu, W.: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25(43), 6158–6183 (2013)
CrossRef Google scholar
[2]
Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)
CrossRef Google scholar
[3]
Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C.: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012)
CrossRef Google scholar
[4]
Lee, S.M., Kwon, J.H., Kwon, S., Choi, K.C.: A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron. Devices 64(5), 1922–1931 (2017)
CrossRef Google scholar
[5]
Yao, Y., Chen, Y., Wang, H., Samorì, P.: Organic photodetectors based on supramolecular nanostructures. SmartMat. 1(1), e1009 (2020)
CrossRef Google scholar
[6]
Brus, V.V., Lee, J., Luginbuhl, B.R., Ko, S.J., Bazan, G.C., Nguyen, T.Q.: Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater. 31(30), e1900904 (2019)
CrossRef Google scholar
[7]
McCarthy, M.A., Liu, B., Donoghue, E.P., Kravchenko, I., Kim, D.Y., So, F., Rinzler, A.G.: Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011)
CrossRef Google scholar
[8]
Ding, R., An, M.H., Feng, J., Sun, H.B.: Organic single-crystalline semiconductors for light-emitting applications: recent advances and developments. Laser Photonics Rev. 13(10), 1900009 (2019)
CrossRef Google scholar
[9]
Lin, J., Hu, Y., Lv, Y., Guo, X., Liu, X.: Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping. Sci. Bull. 62(24), 1637–1638 (2017)
CrossRef Google scholar
[10]
Chénais, S., Forget, S.: Recent advances in solid-state organic lasers. Polym. Int. 61(3), 390–406 (2012)
CrossRef Google scholar
[11]
Qin, Z., Gao, H., Dong, H., Hu, W.: Organic light-emitting transistors entering a new development stage. Adv. Mater. 33(31), e2007149 (2021)
CrossRef Google scholar
[12]
Liu, J., Zhang, H., Dong, H., Meng, L., Jiang, L., Jiang, L., Wang, Y., Yu, J., Sun, Y., Hu, W., Heeger, A.J.: High mobility emissive organic semiconductor. Nat. Commun. 6(1), 10032 (2015)
CrossRef Google scholar
[13]
Melucci, M., Favaretto, L., Zambianchi, M., Durso, M., Gazzano, M., Zanelli, A., Monari, M., Lobello, M.G., De Angelis, F., Biondo, V., Generali, G., Troisi, S., Koopman, W., Toffanin, S., Capelli, R., Muccini, M.: Molecular tailoring of new thieno(bis) imide-based semiconductors for single layer ambipolar light emitting transistors. Chem. Mater. 25(5), 668–676 (2013)
CrossRef Google scholar
[14]
Deng, J., Xu, Y., Liu, L., Feng, C., Tang, J., Gao, Y., Wang, Y., Yang, B., Lu, P., Yang, W., Ma, Y.: An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm2·V-1·s-1. Chem. Commun. 52(12), 2647 (2016)
CrossRef Google scholar
[15]
Yomogida, Y., Takenobu, T., Shimotani, H., Sawabe, K., Bisri, S.Z., Yamao, T., Hotta, S., Iwasa, Y.: Green light emission from the edges of organic single-crystal transistors. Appl. Phys. Lett. 97(17), 173301 (2010)
CrossRef Google scholar
[16]
Liu, D., De, J., Gao, H., Ma, S., Ou, Q., Li, S., Qin, Z., Dong, H., Liao, Q., Xu, B., Peng, Q., Shuai, Z., Tian, W., Fu, H., Zhang, X., Zhen, Y., Hu, W.: Organic laser molecule with high mobility, high photoluminescence quantum yield, and deep-blue lasing characteristics. J. Am. Chem. Soc. 142(13), 6332–6339 (2020)
CrossRef Google scholar
[17]
Kono, T., Kumaki, D., Nishida, J., Sakanoue, T., Kakita, M., Tada, H., Tokito, S., Yamashita, Y.: High-performance and light-emitting n-type organic field-effect transistors based on dithienylbenzothiadiazole and related heterocycles. Chem. Mater. 19(6), 1218–1220 (2007)
CrossRef Google scholar
[18]
Oh, S., Kim, J.H., Park, S.K., Ryoo, C.H., Park, S.Y.: Fabrication of pixelated organic light-emitting transistor (OLET) with a pure red-emitting organic semiconductor. Adv. Opt. Mater. 7(23), 1901274 (2019)
CrossRef Google scholar
[19]
Zhu, W., Dong, H., Zhen, Y., Hu, W.: Challenges of organic “cocrystals.”. Sci. China Mater. 58(11), 854–859 (2015)
CrossRef Google scholar
[20]
Huang, Y., Wang, Z., Chen, Z., Zhang, Q.: Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew Chem. Int. Ed. 58(29), 9696–9711 (2019)
CrossRef Google scholar
[21]
Zhang, J., Xu, W., Sheng, P., Zhao, G., Zhu, D.: Organic donor–acceptor complexes as novel organic semiconductors. Acc. Chem. Res. 50(7), 1654–1662 (2017)
CrossRef Google scholar
[22]
Sun, L., Yang, F., Zhang, X., Hu, W.: Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. Mater. Chem. Front. 4(3), 715–728 (2020)
CrossRef Google scholar
[23]
Sun, L., Wang, Y., Yang, F., Zhang, X., Hu, W.: Cocrystal engineering: a collaborative strategy toward functional materials. Adv. Mater. 31(39), e1902328 (2019)
CrossRef Google scholar
[24]
Wang, Y., Wu, H., Li, P., Chen, S., Jones, L.O., Mosquera, M.A., Zhang, L., Cai, K., Chen, H., Chen, X.Y., Stern, C.L., Wasielewski, M.R., Ratner, M.A., Schatz, G.C., Stoddart, J.F.: Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nat. Commun. 11(1), 4633 (2020)
CrossRef Google scholar
[25]
Bhowal, R., Biswas, S., Thumbarathil, A., Koner, A.L., Chopra, D.: Exploring the relationship between intermolecular interactions and solid-state photophysical properties of organic cocrystals. J. Chem. Phys. 123(14), 9311–9322 (2019)
CrossRef Google scholar
[26]
Black, H.T., Perepichka, D.F.: Crystal engineering of dual channel p/n organic semiconductors by complementary hydrogen bonding. Angew Chem. Int. Ed. 53(8), 2138–2142 (2014)
CrossRef Google scholar
[27]
Liu, H., Liu, Z., Jiang, W., Fu, H.: Tuning the charge transfer properties by optimized donor–acceptor cocrystal for FET applications: from P type to N type. J. Solid State Chem. 274, 47–51 (2019)
CrossRef Google scholar
[28]
Liang, Y., Qin, Y., Chen, J., Xing, W., Zou, Y., Sun, Y., Xu, W., Zhu, D.: Band engineering and majority carrier switching in isostructural donor–acceptor complexes DPTTA-FXTCNQ crystals (X = 1, 2, 4). Adv. Sci. 7(3), 1902456–1902464 (2019)
CrossRef Google scholar
[29]
Park, S.K., Varghese, S., Kim, J.H., Yoon, S.J., Kwon, O.K., An, B.K., Gierschner, J., Park, S.Y.: Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals: an isometric donor–acceptor approach. J. Am. Chem. Soc. 135(12), 4757–4764 (2013)
CrossRef Google scholar
[30]
Park, S.K., Kim, J.H., Ohto, T., Yamada, R., Jones, A.O.F., Whang, D.R., Cho, I., Oh, S., Hong, S.H., Kwon, J.E., Kim, J.H., Olivier, Y., Fischer, R., Resel, R., Gierschner, J., Tada, H., Park, S.Y.: Highly luminescent 2D-type slab crystals based on a molecular charge-transfer complex as promising organic light-emitting transistor materials. Adv. Mater. 29(36), 1701346 (2017)
CrossRef Google scholar
[31]
Chiang, C.L., Wu, M.T., Dai, D.C., Wen, Y.S., Wang, J.K., Chen, C.T.: Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting diodes. Adv. Funct. Mater. 15(2), 231–238 (2005)
CrossRef Google scholar
[32]
Sun, L., Zhu, W., Yang, F., Li, B., Ren, X., Zhang, X., Hu, W.: Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Phys. Chem. Chem. Phys. 20(9), 6009–6023 (2018)
CrossRef Google scholar
[33]
Jiang, L., Gao, J., Wang, E., Li, H., Wang, Z., Hu, W., Jiang, L.: Organic single-crystalline ribbons of a rigid “H”-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an “organic ribbon mask” technique. Adv. Mater. 20(14), 2735–2740 (2008)
CrossRef Google scholar
[34]
Wang, W., Luo, L., Sheng, P., Zhang, J., Zhang, Q.: Multifunctional features of organic charge-transfer complexes: advances and perspectives. Chemistry (Weinheim an der Bergstrasse, Germany) 27(2), 464–490 (2021)
CrossRef Google scholar
[35]
Qin, Y., Cheng, C., Geng, H., Wang, C., Hu, W., Xu, W., Shuai, Z., Zhu, D.: Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory. Phys. Chem. Chem. Phys. 18(20), 14094–14103 (2016)
CrossRef Google scholar
[36]
Croce, G., Arrais, A., Diana, E., Civalleri, B., Viterbo, D., Milanesio, M.: The interpretation of the short range disorder in the fluorene TCNE crystal structure. Int. J. Mol. Sci. 5(3), 93–100 (2004)
CrossRef Google scholar
[37]
Zhang, J., Geng, H., Virk, T.S., Zhao, Y., Tan, J., Di, C.A., Xu, W., Singh, K., Hu, W., Shuai, Z., Liu, Y., Zhu, D.: Sulfur-bridged annulene-TCNQ co-crystal: a self-assembled “molecular level heterojunction” with air stable ambipolar charge transport behavior. Adv. Mater. 24(19), 2603–2607 (2012)
CrossRef Google scholar
[38]
Usman, R., Khan, A., Sun, H., Wang, M.: Study of charge transfer interaction modes in the mixed donor–acceptor cocrystals of pyrene derivatives and TCNQ: a combined structural, thermal, spectroscopic, and hirshfeld surfaces analysis. J. Solid State Chem. 266, 112–120 (2018)
CrossRef Google scholar
[39]
Wakahara, T., Nagaoka, K., Nakagawa, A., Hirata, C., Matsushita, Y., Miyazawa, K., Ito, O., Wada, Y., Takagi, M., Ishimoto, T., Tachikawa, M., Tsukagoshi, K.: One-dimensional fullerene/porphyrin cocrystals: near-infrared light sensing through component interactions. ACS Appl. Mater. Interfaces 12(2), 2878–2883 (2020)
CrossRef Google scholar
[40]
Wang, Y., Zhu, W., Du, W., Liu, X., Zhang, X., Dong, H., Hu, W.: Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew Chem. Int. Ed. 57(15), 3963–3967 (2018)
CrossRef Google scholar
[41]
Liang, Y., Xing, W., Liu, L., Sun, Y., Xu, W., Zhu, D.: Charge transport behaviors of a novel 2:1 charge transfer complex based on coronene and HAT(CN)6. Org. Electron. 78, 105608 (2020)
CrossRef Google scholar
[42]
Mandal, A., Swain, P., Nath, B., Sau, S., Mal, P.: Unipolar to ambipolar semiconductivity switching in charge transfer cocrystals of 2,7-di-tertbutylpyrene. CrystEngComm. 21(6), 981–989 (2019)
CrossRef Google scholar
[43]
Ye, H., Liu, G., Liu, S., Casanova, D., Ye, X., Tao, X., Zhang, Q., Xiong, Q.: Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency. Angew Chem. Int. Ed. 57(7), 1928–1932 (2018)
CrossRef Google scholar
[44]
Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X., Chen, L., Wang, J., Peng, X.: Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014)
CrossRef Google scholar
[45]
Wu, H., Sun, Y., Sun, L., Wang, L., Zhang, X., Hu, W.: Deep insight into the charge transfer interactions in 1,2,4,5-tetracy-anobenzene-phenazine cocrystal. Chin. Chem. Lett. 32(10), 3007–3010 (2021)
CrossRef Google scholar
[46]
Tsutsumi, J., Matsuoka, S., Inoue, S., Minemawari, H., Yamada, T., Hasegawa, T.: N-type field-effect transistors based on layered crystalline donor–acceptor semiconductors with dialkylated benzothienobenzothiophenes as electron donors. J. Mater. Chem. C Mater. Opt. Electron. Dev. 3(9), 1976–1981 (2015)
CrossRef Google scholar
[47]
Geng, H., Zhu, L., Yi, Y., Zhu, D., Shuai, Z.: Superexchange induced charge transport in organic donor–acceptor cocrystals and copolymers: a theoretical perspective. Chem. Mater. 31(17), 6424–6434 (2019)
CrossRef Google scholar
[48]
Geng, H., Zheng, X., Shuai, Z., Zhu, L., Yi, Y.: Understanding the charge transport and polarities in organic donor–acceptor mixed-stack crystals: molecular insights from the super-exchange couplings. Adv. Mater. 27(8), 1443–1449 (2015)
CrossRef Google scholar
[49]
Zhu, L., Geng, H., Yi, Y., Wei, Z.: Charge transport in organic donor–acceptor mixed-stack crystals: the role of nonlocal electron–phonon couplings. Phys. Chem. Chem. Phys. 19(6), 4418–4425 (2017)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(1782 KB)

Accesses

Citations

Detail

Sections
Recommended

/