Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells

Xianglang Sun, Zonglong Zhu, Zhong’an Li

PDF(4248 KB)
PDF(4248 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (4) : 46. DOI: 10.1007/s12200-022-00050-3
REVIEW ARTICLE
REVIEW ARTICLE

Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells

Author information +
History +

Abstract

Inverted perovskite solar cells (PVSCs) have recently made exciting progress, showing high power conversion efficiencies (PCEs) of 25% in single-junction devices and 30.5% in silicon/perovskite tandem devices. The hole transporting material (HTM) in an inverted PVSC plays an important role in determining the device performance, since it not only extracts/transports holes but also affects the growth and crystallization of perovskite film. Currently, polymer and self-assembled monolayer (SAM) have been considered as two types of most promising HTM candidates for inverted PVSCs owing to their high PCEs, high stability and adaptability to large area devices. In this review, recent encouraging progress of high-performance polymer and SAM-based HTMs is systematically reviewed and summarized, including molecular design strategies and the correlation between molecular structure and device performance. We hope this review can inspire further innovative development of HTMs for wide applications in highly efficient and stable inverted PVSCs and the tandem devices.

Graphical abstract

Keywords

Inverted perovskite solar cells / High-performance / Hole transporting materials / Polymer semiconductors / Self-assembled monolayer

Cite this article

Download citation ▾
Xianglang Sun, Zonglong Zhu, Zhong’an Li. Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells. Front. Optoelectron., 2022, 15(4): 46 https://doi.org/10.1007/s12200-022-00050-3

References

[1]
Hammarström, L., Hammes-Schiffer, S.: Artificial photosynthesis and solar fuels. Acc. Chem. Res. 42(12), 1859–1860 (2009)
CrossRef Google scholar
[2]
Khalid, S., Sultan, M., Ahmed, E., Ahmed, W.: Nanotechnology for energy production. In: Ahmed, W., Booth, M., Nourafkan, E. (eds.) Emerging Nanotechnologies for Renewable Energy, pp. 3–35. Elsevier, San Diego (2021)
CrossRef Google scholar
[3]
Roy, P., Kumar Sinha, N., Tiwari, S., Khare, A.: A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 198, 665–688 (2020)
CrossRef Google scholar
[4]
Huang, F., Li, M., Siffalovic, P., Cao, G., Tian, J.: From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 12(2), 518–549 (2019)
CrossRef Google scholar
[5]
Wu, X., Li, B., Zhu, Z., Chueh, C.C., Jen, A.K.Y.: Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem. Soc. Rev. 50(23), 13090–13128 (2021)
CrossRef Google scholar
[6]
Jena, A.K., Kulkarni, A., Miyasaka, T.: Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019)
CrossRef Google scholar
[7]
Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)
CrossRef Google scholar
[8]
National Renewable Energy Laboratory: best research-cell efficiencies chart. Available at nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf (2020)
[9]
Li, Z., Klein, T.R., Kim, D.H., Yang, M., Berry, J.J., van Hest, M.F.A.M., Zhu, K.: Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3(4), 18017(2018)
CrossRef Google scholar
[10]
Calió, L., Kazim, S., Grätzel, M., Ahmad, S.: Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. Engl. 55(47), 14522–14545 (2016)
CrossRef Google scholar
[11]
Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4(1), 2761(2013)
CrossRef Google scholar
[12]
Gao, K., Zhu, Z., Xu, B., Jo, S.B., Kan, Y., Peng, X., Jen, A.K.Y.: Highly efficient porphyrin-based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 29(47), 1703980(2017)
CrossRef Google scholar
[13]
Zuo, C., Bolink, H.J., Han, H., Huang, J., Cahen, D., Ding, L.: Advances in perovskite solar cells. Adv. Sci. 3(7), 1500324(2016)
CrossRef Google scholar
[14]
Bai, Y., Meng, X., Yang, S.: Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv. Energy Mater. 8(5), 1701883(2018)
CrossRef Google scholar
[15]
Pham, H.D., Yang, T.C.J., Jain, S.M., Wilson, G.J., Sonar, P.: Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv. Energy Mater. 10(13), 1903326(2020)
CrossRef Google scholar
[16]
Meng, L., You, J., Guo, T.F., Yang, Y.: Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49(1), 155–165 (2016)
CrossRef Google scholar
[17]
Lin, X., Cui, D., Luo, X., Zhang, C., Han, Q., Wang, Y., Han, L.: Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13(11), 3823–3847 (2020)
CrossRef Google scholar
[18]
Li, Z., Li, B., Wu, X., Sheppard, S.A., Zhang, S., Gao, D., Long, N.J., Zhu, Z.: Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022)
CrossRef Google scholar
[19]
Sun, X., Zhao, D., Li, Z.: Recent advances in the design of dopantfree hole transporting materials for highly efficient perovskite solar cells. Chin. Chem. Lett. 29(2), 219–231 (2018)
CrossRef Google scholar
[20]
Liu, F., Li, Q., Li, Z.: Hole-transporting materials for perovskite solar cells. Asian J. Org. Chem. 7(11), 2182–2200 (2018)
CrossRef Google scholar
[21]
Bakr, Z.H., Wali, Q., Fakharuddin, A., Schmidt-Mende, L., Brown, T.M., Jose, R.: Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34, 271–305 (2017)
CrossRef Google scholar
[22]
Urieta-Mora, J., García-Benito, I., Molina-Ontoria, A., Martín, N.: Hole transporting materials for perovskite solar cells: a chemical approach. Chem. Soc. Rev. 47(23), 8541–8571 (2018)
CrossRef Google scholar
[23]
Sun, X., Deng, X., Li, Z., Xiong, B., Zhong, C., Zhu, Z., Li, Z., Jen, A.K.Y.: Dopant-free crossconjugated hole-transporting polymers for highly efficient perovskite solar cells. Adv. Sci. 7(13), 1903331(2020)
CrossRef Google scholar
[24]
Tang, G., You, P., Tai, Q., Yang, A., Cao, J., Zheng, F., Zhou, Z., Zhao, J., Chan, P.K.L., Yan, F.: Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31(24), e1807689 (2019)
CrossRef Google scholar
[25]
Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z., Huang, J.: Nonwetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6(1), 7747(2015)
CrossRef Google scholar
[26]
Lee, J., Kang, H., Kim, G., Back, H., Kim, J., Hong, S., Park, B., Lee, E., Lee, K.: Achieving large-area planar perovskite solar cells by introducing an interfacial compatibilizer. Adv. Mater. 29(22), 1606363(2017)
CrossRef Google scholar
[27]
Wang, Z.K., Gong, X., Li, M., Hu, Y., Wang, J.M., Ma, H., Liao, L.S.: Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells. ACS Nano 10(5), 5479–5489 (2016)
CrossRef Google scholar
[28]
Xiao, Q., Wu, F., Han, M., Li, Z., Zhu, L., Li, Z.: A pseudotwo- dimensional conjugated polysquaraine: an efficient P-type polymer semiconductor for organic photovoltaics and perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 6(28), 13644–13651 (2018)
CrossRef Google scholar
[29]
Bella, F., Griffini, G., Correa-Baena, J.P., Saracco, G., Grätzel, M., Hagfeldt, A., Turri, S., Gerbaldi, C.: Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309), 203–206 (2016)
CrossRef Google scholar
[30]
Sun, X., Yu, X., Li, Z.: Recent advances of dopant-free polymer hole-transporting materials for perovskite solar cells. ACS Appl. Energy Mater. 3(11), 10282–10302 (2020)
CrossRef Google scholar
[31]
Zhang, J., Sun, Q., Chen, Q., Wang, Y., Zhou, Y., Song, B., Yuan, N., Ding, J., Li, Y.: High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv. Funct. Mater. 29(22), 1900484(2019)
CrossRef Google scholar
[32]
Liu, J., De Bastiani, M., Aydin, E., Harrison, G.T., Gao, Y., Pradhan, R.R., Eswaran, M.K., Mandal, M., Yan, W., Seitkhan, A., Babics, M., Subbiah, A.S., Ugur, E., Xu, F., Xu, L., Wang, M., Rehman, A.U., Razzaq, A., Kang, J., Azmi, R., Said, A.A., Isikgor, F.H., Allen, T.G., Andrienko, D., Schwingenschlögl, U., Laquai, F., De Wolf, S.: Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377(6603), 302–306 (2022)
CrossRef Google scholar
[33]
Magomedov, A., Al-Ashouri, A., Kasparavičius, E., Strazdaite, S., Niaura, G., Jošt, M., Malinauskas, T., Albrecht, S., Getautis, V.: Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8(32), 1801892(2018)
CrossRef Google scholar
[34]
Pron, A., Rannou, P.: Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27(1), 135–190 (2002)
CrossRef Google scholar
[35]
Allard, S., Forster, M., Souharce, B., Thiem, H., Scherf, U.: Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. Engl. 47(22), 4070–4098 (2008)
CrossRef Google scholar
[36]
Kim, M., Ryu, S.U., Park, S.A., Choi, K., Kim, T., Chung, D., Park, T.: Donor–acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater. 30(20), 1904545(2020)
CrossRef Google scholar
[37]
Li, G., Zhu, R., Yang, Y.: Polymer solar cells. Nat. Photonics 6(3), 153–161 (2012)
CrossRef Google scholar
[38]
Li, Z., Chueh, C.C., Jen, A.K.Y.: Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Prog. Polym. Sci. 99, 101175(2019)
CrossRef Google scholar
[39]
Kong, X., Jiang, Y., Wu, X., Chen, C., Guo, J., Liu, S., Gao, X., Zhou, G., Liu, J.M., Kempa, K., Gao, J.: Dopant-free F-substituted benzodithiophene copolymer hole-transporting materials for efficient and stable perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 8(4), 1858–1864 (2020)
CrossRef Google scholar
[40]
Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., Sirringhaus, H.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515(7527), 384–388 (2014)
CrossRef Google scholar
[41]
Jung, E.H., Jeon, N.J., Park, E.Y., Moon, C.S., Shin, T.J., Yang, T.Y., Noh, J.H., Seo, J.: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749), 511–515 (2019)
CrossRef Google scholar
[42]
Guo, Y., He, L., Guo, J., Guo, Y., Zhang, F., Wang, L., Yang, H., Xiao, C., Liu, Y., Chen, Y., Yao, Z., Sun, L.: A phenanthrocarbazole- based dopant-free hole-transport polymer with noncovalent conformational locking for efficient perovskite solar cells. Angew. Chem. Int. Ed. Engl. 61(6), e202114341 (2022)
CrossRef Google scholar
[43]
Fu, Q., Tang, X., Liu, H., Wang, R., Liu, T., Wu, Z., Woo, H.Y., Zhou, T., Wan, X., Chen, Y., Liu, Y.: Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 144(21), 9500–9509 (2022)
CrossRef Google scholar
[44]
Li, Y., Wang, B., Liu, T., Zeng, Q., Cao, D., Pan, H., Xing, G.: Interfacial engineering of PTAA/perovskites for improved crystallinity and hole extraction in inverted perovskite solar cells. ACS Appl. Mater. Interfaces 14(2), 3284–3292 (2022)
CrossRef Google scholar
[45]
Xu, J., Dai, J., Dong, H., Li, P., Chen, J., Zhu, X., Wang, Z., Jiao, B., Hou, X., Li, J., Wu, Z.: Surface-tension release in PTAA-based inverted perovskite solar cells. Org. Electron. 100, 106378(2022)
CrossRef Google scholar
[46]
Chen, S., Dai, X., Xu, S., Jiao, H., Zhao, L., Huang, J.: Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373(6557), 902–907 (2021)
CrossRef Google scholar
[47]
Jung, E.D., Harit, A.K., Kim, D.H., Jang, C.H., Park, J.H., Cho, S., Song, M.H., Woo, H.Y.: Multiply charged conjugated polyelectrolytes as a multifunctional interlayer for efficient and scalable perovskite solar cells. Adv. Mater. 32(30), e2002333 (2020)
CrossRef Google scholar
[48]
Yang, G., Ni, Z., Yu, Z.J., Larson, B.W., Yu, Z., Chen, B., Alasfour, A., Xiao, X., Luther, J.M., Holman, Z.C., Huang, J.: Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photonics 16(8), 588–594 (2022)
CrossRef Google scholar
[49]
Wang, C., Zhao, Y., Ma, T., An, Y., He, R., Zhu, J., Chen, C., Ren, S., Fu, F., Zhao, D., Li, X.: A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7(8), 744–753 (2022)
CrossRef Google scholar
[50]
Sun, X., Li, Z., Yu, X., Wu, X., Zhong, C., Liu, D., Lei, D., Jen, A.K., Li, Z., Zhu, Z.: Efficient inverted perovskite solar cells with low voltage loss achieved by a pyridine-based dopant-free polymer semiconductor. Angew. Chem. Int. Ed. Engl. 60(13), 7227–7233 (2021)
CrossRef Google scholar
[51]
Xu, X., Ji, X., Chen, R., Ye, F., Liu, S., Zhang, S., Chen, W., Wu, Y., Zhu, W.H.: Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells. Adv. Funct. Mater. 32(9), 2109968(2022)
CrossRef Google scholar
[52]
Chen, R., Liu, S., Xu, X., Ren, F., Zhou, J., Tian, X., Yang, Z., Guanz, X., Liu, Z., Zhang, S., Zhang, Y., Wu, Y., Han, L., Qi, Y., Chen, W.: Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15(6), 2567–2580 (2022)
CrossRef Google scholar
[53]
Scherf, U.: Counterion pinning in conjugated polyelectrolytes for applications in organic electronics. Angew. Chem. Int. Ed. Engl. 50(22), 5016–5017 (2011)
CrossRef Google scholar
[54]
Seo, J.H., Gutacker, A., Sun, Y., Wu, H., Huang, F., Cao, Y., Scherf, U., Heeger, A.J., Bazan, G.C.: Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J. Am. Chem. Soc. 133(22), 8416–8419 (2011)
CrossRef Google scholar
[55]
Duan, C., Zhang, K., Zhong, C., Huang, F., Cao, Y.: Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. Chem. Soc. Rev. 42(23), 9071–9104 (2013)
CrossRef Google scholar
[56]
Li, X., Wang, Y.C., Zhu, L., Zhang, W., Wang, H.Q., Fang, J.: Improving efficiency and reproducibility of perovskite solar cells through aggregation control in polyelectrolytes hole transport layer. ACS Appl. Mater. Interfaces 9(37), 31357–31361 (2017)
CrossRef Google scholar
[57]
Li, X., Zhang, W., Guo, X., Lu, C., Wei, J., Fang, J.: Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022)
CrossRef Google scholar
[58]
Ali, F., Roldán-Carmona, C., Sohail, M., Nazeeruddin, M.K.: Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10(48), 2002989(2020)
CrossRef Google scholar
[59]
Yalcin, E., Can, M., Rodriguez-Seco, C., Aktas, E., Pudi, R., Cambarau, W., Demic, S., Palomares, E.: Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells. Energy Environ. Sci. 12(1), 230–237 (2019)
CrossRef Google scholar
[60]
Al-Ashouri, A., Köhnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J.A., Morales Vilches, A.B., Kasparavicius, E., Smith, J.A., Phung, N., Menzel, D., Grischek, M., Kegelmann, L., Skroblin, D., Gollwitzer, C., Malinauskas, T., Jošt, M., Matič, G., Rech, B., Schlatmann, R., Topič, M., Korte, L., Abate, A., Stannowski, B., Neher, D., Stolterfoht, M., Unold, T., Getautis, V., Albrecht, S.: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020)
CrossRef Google scholar
[61]
Al-Ashouri, A., Magomedov, A., Roß, M., Jošt, M., Talaikis, M., Chistiakova, G., Bertram, T., Márquez, J.A., Köhnen, E., Kasparavičius, E., Levcenco, S., Gil-Escrig, L., Hages, C.J., Schlatmann, R., Rech, B., Malinauskas, T., Unold, T., Kaufmann, C.A., Korte, L., Niaura, G., Getautis, V., Albrecht, S.: Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019)
CrossRef Google scholar
[62]
Deng, X., Qi, F., Li, F., Wu, S., Lin, F.R., Zhang, Z., Guan, Z., Yang, Z., Lee, C.S., Jen, A.K.Y.: Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. Engl. 61(30), e202203088 (2022)
CrossRef Google scholar
[63]
Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533–1554 (1996)
CrossRef Google scholar
[64]
Bauer, T., Schmaltz, T., Lenz, T., Halik, M., Meyer, B., Clark, T.: Phosphonate- and carboxylate-based self-assembled monolayers for organic devices: a theoretical study of surface binding on aluminum oxide with experimental support. ACS Appl. Mater. Interfaces 5(13), 6073–6080 (2013)
CrossRef Google scholar
[65]
Hotchkiss, P.J., Jones, S.C., Paniagua, S.A., Sharma, A., Kippelen, B., Armstrong, N.R., Marder, S.R.: The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc. Chem. Res. 45(3), 337–346 (2012)
CrossRef Google scholar
[66]
Ambrosio, F., Martsinovich, N., Troisi, A.: What is the best anchoring group for a dye in a dye-sensitized solar cell? J. Phys. Chem. Lett. 3(11), 1531–1535 (2012)
CrossRef Google scholar
[67]
Brinkmann, K.O., Becker, T., Zimmermann, F., Kreusel, C., Gahlmann, T., Theisen, M., Haeger, T., Olthof, S., Tückmantel, C., Günster, M., Maschwitz, T., Göbelsmann, F., Koch, C., Hertel, D., Caprioglio, P., Peña-Camargo, F., Perdigón-Toro, L., Al-Ashouri, A., Merten, L., Hinderhofer, A., Gomell, L., Zhang, S., Schreiber, F., Albrecht, S., Meerholz, K., Neher, D., Stolterfoht, M., Riedl, T.: Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022)
CrossRef Google scholar
[68]
AbdollahiNejand, B., Ritzer, D.B., Hu, H., Schackmar, F., Moghadamzadeh, S., Feeney, T., Singh, R., Laufer, F., Schmager, R., Azmi, R., Kaiser, M., Abzieher, T., Gharibzadeh, S., Ahlswede, E., Lemmer, U., Richards, B.S., Paetzold, U.W.: Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7(7), 620–630 (2022)
CrossRef Google scholar
[69]
Lange, I., Reiter, S., Pätzel, M., Zykov, A., Nefedov, A., Hildebrandt, J., Hecht, S., Kowarik, S., Wöll, C., Heimel, G., Neher, D.: Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 24(44), 7014–7024 (2014)
CrossRef Google scholar
[70]
Li, L., Wang, Y., Wang, X., Lin, R., Luo, X., Liu, Z., Zhou, K., Xiong, S., Bao, Q., Chen, G., Tian, Y., Deng, Y., Xiao, K., Wu, J., Saidaminov, M.I., Lin, H., Ma, C.Q., Zhao, Z., Wu, Y., Zhang, L., Tan, H.: Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022)
CrossRef Google scholar
[71]
Aktas, E., Phung, N., Köbler, H., González, D.A., Méndez, M., Kafedjiska, I., Turren-Cruz, S.H., Wenisch, R., Lauermann, I., Abate, A., Palomares, E.: Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells. Energy Environ. Sci. 14(7), 3976–3985 (2021)
CrossRef Google scholar
[72]
Li, E., Bi, E., Wu, Y., Zhang, W., Li, L., Chen, H., Han, L., Tian, H., Zhu, W.H.: Synergistic coassembly of highly wettable and uniform hole-extraction monolayers for scaling-up perovskite solar cells. Adv. Funct. Mater. 30(7), 1909509(2020)
CrossRef Google scholar
[73]
Li, E., Liu, C., Lin, H., Xu, X., Liu, S., Zhang, S., Yu, M., Cao, X.M., Wu, Y., Zhu, W.H.: Bonding strength regulates anchoringbased self-assembly monolayers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 31(35), 2103847(2021)
CrossRef Google scholar
[74]
Ullah, A., Park, K.H., Nguyen, H.D., Siddique, Y., Shah, S.F.A., Tran, H., Park, S., Lee, S.I., Lee, K.K., Han, C.H., Kim, K., Ahn, S., Jeong, I., Park, Y.S., Hong, S.: Novel phenothiazine-based selfassembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells. Adv. Energy Mater. 12(2), 2103175(2022)
CrossRef Google scholar
[75]
Usluer, Ö., Abbas, M., Wantz, G., Vignau, L., Hirsch, L., Grana, E., Brochon, C., Cloutet, E., Hadziioannou, G.: Metal residues in semiconducting polymers: impact on the performance of organic electronic devices. ACS Macro Lett. 3(11), 1134–1138 (2014)
CrossRef Google scholar
[76]
Bryan, Z.J., McNeil, A.J.: Conjugated polymer synthesis via catalyst- transfer polycondensation (CTP): mechanism, scope, and applications. Macromolecules 46(21), 8395–8405 (2013)
CrossRef Google scholar
[77]
Lee, S.W., Bae, S., Kim, D., Lee, H.S.: Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. 32(51), e2002202 (2020)
CrossRef Google scholar
[78]
Park, N.G., Zhu, K.: Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(4248 KB)

Accesses

Citations

Detail

Sections
Recommended

/