Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells
Xianglang Sun, Zonglong Zhu, Zhong’an Li
Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells
Inverted perovskite solar cells (PVSCs) have recently made exciting progress, showing high power conversion efficiencies (PCEs) of 25% in single-junction devices and 30.5% in silicon/perovskite tandem devices. The hole transporting material (HTM) in an inverted PVSC plays an important role in determining the device performance, since it not only extracts/transports holes but also affects the growth and crystallization of perovskite film. Currently, polymer and self-assembled monolayer (SAM) have been considered as two types of most promising HTM candidates for inverted PVSCs owing to their high PCEs, high stability and adaptability to large area devices. In this review, recent encouraging progress of high-performance polymer and SAM-based HTMs is systematically reviewed and summarized, including molecular design strategies and the correlation between molecular structure and device performance. We hope this review can inspire further innovative development of HTMs for wide applications in highly efficient and stable inverted PVSCs and the tandem devices.
Inverted perovskite solar cells / High-performance / Hole transporting materials / Polymer semiconductors / Self-assembled monolayer
[1] |
Hammarström, L., Hammes-Schiffer, S.: Artificial photosynthesis and solar fuels. Acc. Chem. Res. 42(12), 1859–1860 (2009)
CrossRef
Google scholar
|
[2] |
Khalid, S., Sultan, M., Ahmed, E., Ahmed, W.: Nanotechnology for energy production. In: Ahmed, W., Booth, M., Nourafkan, E. (eds.) Emerging Nanotechnologies for Renewable Energy, pp. 3–35. Elsevier, San Diego (2021)
CrossRef
Google scholar
|
[3] |
Roy, P., Kumar Sinha, N., Tiwari, S., Khare, A.: A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 198, 665–688 (2020)
CrossRef
Google scholar
|
[4] |
Huang, F., Li, M., Siffalovic, P., Cao, G., Tian, J.: From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 12(2), 518–549 (2019)
CrossRef
Google scholar
|
[5] |
Wu, X., Li, B., Zhu, Z., Chueh, C.C., Jen, A.K.Y.: Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem. Soc. Rev. 50(23), 13090–13128 (2021)
CrossRef
Google scholar
|
[6] |
Jena, A.K., Kulkarni, A., Miyasaka, T.: Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019)
CrossRef
Google scholar
|
[7] |
Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)
CrossRef
Google scholar
|
[8] |
National Renewable Energy Laboratory: best research-cell efficiencies chart. Available at nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf (2020)
|
[9] |
Li, Z., Klein, T.R., Kim, D.H., Yang, M., Berry, J.J., van Hest, M.F.A.M., Zhu, K.: Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3(4), 18017(2018)
CrossRef
Google scholar
|
[10] |
Calió, L., Kazim, S., Grätzel, M., Ahmad, S.: Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. Engl. 55(47), 14522–14545 (2016)
CrossRef
Google scholar
|
[11] |
Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4(1), 2761(2013)
CrossRef
Google scholar
|
[12] |
Gao, K., Zhu, Z., Xu, B., Jo, S.B., Kan, Y., Peng, X., Jen, A.K.Y.: Highly efficient porphyrin-based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 29(47), 1703980(2017)
CrossRef
Google scholar
|
[13] |
Zuo, C., Bolink, H.J., Han, H., Huang, J., Cahen, D., Ding, L.: Advances in perovskite solar cells. Adv. Sci. 3(7), 1500324(2016)
CrossRef
Google scholar
|
[14] |
Bai, Y., Meng, X., Yang, S.: Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv. Energy Mater. 8(5), 1701883(2018)
CrossRef
Google scholar
|
[15] |
Pham, H.D., Yang, T.C.J., Jain, S.M., Wilson, G.J., Sonar, P.: Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv. Energy Mater. 10(13), 1903326(2020)
CrossRef
Google scholar
|
[16] |
Meng, L., You, J., Guo, T.F., Yang, Y.: Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49(1), 155–165 (2016)
CrossRef
Google scholar
|
[17] |
Lin, X., Cui, D., Luo, X., Zhang, C., Han, Q., Wang, Y., Han, L.: Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13(11), 3823–3847 (2020)
CrossRef
Google scholar
|
[18] |
Li, Z., Li, B., Wu, X., Sheppard, S.A., Zhang, S., Gao, D., Long, N.J., Zhu, Z.: Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022)
CrossRef
Google scholar
|
[19] |
Sun, X., Zhao, D., Li, Z.: Recent advances in the design of dopantfree hole transporting materials for highly efficient perovskite solar cells. Chin. Chem. Lett. 29(2), 219–231 (2018)
CrossRef
Google scholar
|
[20] |
Liu, F., Li, Q., Li, Z.: Hole-transporting materials for perovskite solar cells. Asian J. Org. Chem. 7(11), 2182–2200 (2018)
CrossRef
Google scholar
|
[21] |
Bakr, Z.H., Wali, Q., Fakharuddin, A., Schmidt-Mende, L., Brown, T.M., Jose, R.: Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34, 271–305 (2017)
CrossRef
Google scholar
|
[22] |
Urieta-Mora, J., García-Benito, I., Molina-Ontoria, A., Martín, N.: Hole transporting materials for perovskite solar cells: a chemical approach. Chem. Soc. Rev. 47(23), 8541–8571 (2018)
CrossRef
Google scholar
|
[23] |
Sun, X., Deng, X., Li, Z., Xiong, B., Zhong, C., Zhu, Z., Li, Z., Jen, A.K.Y.: Dopant-free crossconjugated hole-transporting polymers for highly efficient perovskite solar cells. Adv. Sci. 7(13), 1903331(2020)
CrossRef
Google scholar
|
[24] |
Tang, G., You, P., Tai, Q., Yang, A., Cao, J., Zheng, F., Zhou, Z., Zhao, J., Chan, P.K.L., Yan, F.: Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31(24), e1807689 (2019)
CrossRef
Google scholar
|
[25] |
Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z., Huang, J.: Nonwetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6(1), 7747(2015)
CrossRef
Google scholar
|
[26] |
Lee, J., Kang, H., Kim, G., Back, H., Kim, J., Hong, S., Park, B., Lee, E., Lee, K.: Achieving large-area planar perovskite solar cells by introducing an interfacial compatibilizer. Adv. Mater. 29(22), 1606363(2017)
CrossRef
Google scholar
|
[27] |
Wang, Z.K., Gong, X., Li, M., Hu, Y., Wang, J.M., Ma, H., Liao, L.S.: Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells. ACS Nano 10(5), 5479–5489 (2016)
CrossRef
Google scholar
|
[28] |
Xiao, Q., Wu, F., Han, M., Li, Z., Zhu, L., Li, Z.: A pseudotwo- dimensional conjugated polysquaraine: an efficient P-type polymer semiconductor for organic photovoltaics and perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 6(28), 13644–13651 (2018)
CrossRef
Google scholar
|
[29] |
Bella, F., Griffini, G., Correa-Baena, J.P., Saracco, G., Grätzel, M., Hagfeldt, A., Turri, S., Gerbaldi, C.: Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309), 203–206 (2016)
CrossRef
Google scholar
|
[30] |
Sun, X., Yu, X., Li, Z.: Recent advances of dopant-free polymer hole-transporting materials for perovskite solar cells. ACS Appl. Energy Mater. 3(11), 10282–10302 (2020)
CrossRef
Google scholar
|
[31] |
Zhang, J., Sun, Q., Chen, Q., Wang, Y., Zhou, Y., Song, B., Yuan, N., Ding, J., Li, Y.: High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv. Funct. Mater. 29(22), 1900484(2019)
CrossRef
Google scholar
|
[32] |
Liu, J., De Bastiani, M., Aydin, E., Harrison, G.T., Gao, Y., Pradhan, R.R., Eswaran, M.K., Mandal, M., Yan, W., Seitkhan, A., Babics, M., Subbiah, A.S., Ugur, E., Xu, F., Xu, L., Wang, M., Rehman, A.U., Razzaq, A., Kang, J., Azmi, R., Said, A.A., Isikgor, F.H., Allen, T.G., Andrienko, D., Schwingenschlögl, U., Laquai, F., De Wolf, S.: Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377(6603), 302–306 (2022)
CrossRef
Google scholar
|
[33] |
Magomedov, A., Al-Ashouri, A., Kasparavičius, E., Strazdaite, S., Niaura, G., Jošt, M., Malinauskas, T., Albrecht, S., Getautis, V.: Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8(32), 1801892(2018)
CrossRef
Google scholar
|
[34] |
Pron, A., Rannou, P.: Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27(1), 135–190 (2002)
CrossRef
Google scholar
|
[35] |
Allard, S., Forster, M., Souharce, B., Thiem, H., Scherf, U.: Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. Engl. 47(22), 4070–4098 (2008)
CrossRef
Google scholar
|
[36] |
Kim, M., Ryu, S.U., Park, S.A., Choi, K., Kim, T., Chung, D., Park, T.: Donor–acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater. 30(20), 1904545(2020)
CrossRef
Google scholar
|
[37] |
Li, G., Zhu, R., Yang, Y.: Polymer solar cells. Nat. Photonics 6(3), 153–161 (2012)
CrossRef
Google scholar
|
[38] |
Li, Z., Chueh, C.C., Jen, A.K.Y.: Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Prog. Polym. Sci. 99, 101175(2019)
CrossRef
Google scholar
|
[39] |
Kong, X., Jiang, Y., Wu, X., Chen, C., Guo, J., Liu, S., Gao, X., Zhou, G., Liu, J.M., Kempa, K., Gao, J.: Dopant-free F-substituted benzodithiophene copolymer hole-transporting materials for efficient and stable perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 8(4), 1858–1864 (2020)
CrossRef
Google scholar
|
[40] |
Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., Sirringhaus, H.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515(7527), 384–388 (2014)
CrossRef
Google scholar
|
[41] |
Jung, E.H., Jeon, N.J., Park, E.Y., Moon, C.S., Shin, T.J., Yang, T.Y., Noh, J.H., Seo, J.: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749), 511–515 (2019)
CrossRef
Google scholar
|
[42] |
Guo, Y., He, L., Guo, J., Guo, Y., Zhang, F., Wang, L., Yang, H., Xiao, C., Liu, Y., Chen, Y., Yao, Z., Sun, L.: A phenanthrocarbazole- based dopant-free hole-transport polymer with noncovalent conformational locking for efficient perovskite solar cells. Angew. Chem. Int. Ed. Engl. 61(6), e202114341 (2022)
CrossRef
Google scholar
|
[43] |
Fu, Q., Tang, X., Liu, H., Wang, R., Liu, T., Wu, Z., Woo, H.Y., Zhou, T., Wan, X., Chen, Y., Liu, Y.: Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 144(21), 9500–9509 (2022)
CrossRef
Google scholar
|
[44] |
Li, Y., Wang, B., Liu, T., Zeng, Q., Cao, D., Pan, H., Xing, G.: Interfacial engineering of PTAA/perovskites for improved crystallinity and hole extraction in inverted perovskite solar cells. ACS Appl. Mater. Interfaces 14(2), 3284–3292 (2022)
CrossRef
Google scholar
|
[45] |
Xu, J., Dai, J., Dong, H., Li, P., Chen, J., Zhu, X., Wang, Z., Jiao, B., Hou, X., Li, J., Wu, Z.: Surface-tension release in PTAA-based inverted perovskite solar cells. Org. Electron. 100, 106378(2022)
CrossRef
Google scholar
|
[46] |
Chen, S., Dai, X., Xu, S., Jiao, H., Zhao, L., Huang, J.: Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373(6557), 902–907 (2021)
CrossRef
Google scholar
|
[47] |
Jung, E.D., Harit, A.K., Kim, D.H., Jang, C.H., Park, J.H., Cho, S., Song, M.H., Woo, H.Y.: Multiply charged conjugated polyelectrolytes as a multifunctional interlayer for efficient and scalable perovskite solar cells. Adv. Mater. 32(30), e2002333 (2020)
CrossRef
Google scholar
|
[48] |
Yang, G., Ni, Z., Yu, Z.J., Larson, B.W., Yu, Z., Chen, B., Alasfour, A., Xiao, X., Luther, J.M., Holman, Z.C., Huang, J.: Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photonics 16(8), 588–594 (2022)
CrossRef
Google scholar
|
[49] |
Wang, C., Zhao, Y., Ma, T., An, Y., He, R., Zhu, J., Chen, C., Ren, S., Fu, F., Zhao, D., Li, X.: A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7(8), 744–753 (2022)
CrossRef
Google scholar
|
[50] |
Sun, X., Li, Z., Yu, X., Wu, X., Zhong, C., Liu, D., Lei, D., Jen, A.K., Li, Z., Zhu, Z.: Efficient inverted perovskite solar cells with low voltage loss achieved by a pyridine-based dopant-free polymer semiconductor. Angew. Chem. Int. Ed. Engl. 60(13), 7227–7233 (2021)
CrossRef
Google scholar
|
[51] |
Xu, X., Ji, X., Chen, R., Ye, F., Liu, S., Zhang, S., Chen, W., Wu, Y., Zhu, W.H.: Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells. Adv. Funct. Mater. 32(9), 2109968(2022)
CrossRef
Google scholar
|
[52] |
Chen, R., Liu, S., Xu, X., Ren, F., Zhou, J., Tian, X., Yang, Z., Guanz, X., Liu, Z., Zhang, S., Zhang, Y., Wu, Y., Han, L., Qi, Y., Chen, W.: Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15(6), 2567–2580 (2022)
CrossRef
Google scholar
|
[53] |
Scherf, U.: Counterion pinning in conjugated polyelectrolytes for applications in organic electronics. Angew. Chem. Int. Ed. Engl. 50(22), 5016–5017 (2011)
CrossRef
Google scholar
|
[54] |
Seo, J.H., Gutacker, A., Sun, Y., Wu, H., Huang, F., Cao, Y., Scherf, U., Heeger, A.J., Bazan, G.C.: Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J. Am. Chem. Soc. 133(22), 8416–8419 (2011)
CrossRef
Google scholar
|
[55] |
Duan, C., Zhang, K., Zhong, C., Huang, F., Cao, Y.: Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. Chem. Soc. Rev. 42(23), 9071–9104 (2013)
CrossRef
Google scholar
|
[56] |
Li, X., Wang, Y.C., Zhu, L., Zhang, W., Wang, H.Q., Fang, J.: Improving efficiency and reproducibility of perovskite solar cells through aggregation control in polyelectrolytes hole transport layer. ACS Appl. Mater. Interfaces 9(37), 31357–31361 (2017)
CrossRef
Google scholar
|
[57] |
Li, X., Zhang, W., Guo, X., Lu, C., Wei, J., Fang, J.: Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022)
CrossRef
Google scholar
|
[58] |
Ali, F., Roldán-Carmona, C., Sohail, M., Nazeeruddin, M.K.: Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10(48), 2002989(2020)
CrossRef
Google scholar
|
[59] |
Yalcin, E., Can, M., Rodriguez-Seco, C., Aktas, E., Pudi, R., Cambarau, W., Demic, S., Palomares, E.: Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells. Energy Environ. Sci. 12(1), 230–237 (2019)
CrossRef
Google scholar
|
[60] |
Al-Ashouri, A., Köhnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J.A., Morales Vilches, A.B., Kasparavicius, E., Smith, J.A., Phung, N., Menzel, D., Grischek, M., Kegelmann, L., Skroblin, D., Gollwitzer, C., Malinauskas, T., Jošt, M., Matič, G., Rech, B., Schlatmann, R., Topič, M., Korte, L., Abate, A., Stannowski, B., Neher, D., Stolterfoht, M., Unold, T., Getautis, V., Albrecht, S.: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020)
CrossRef
Google scholar
|
[61] |
Al-Ashouri, A., Magomedov, A., Roß, M., Jošt, M., Talaikis, M., Chistiakova, G., Bertram, T., Márquez, J.A., Köhnen, E., Kasparavičius, E., Levcenco, S., Gil-Escrig, L., Hages, C.J., Schlatmann, R., Rech, B., Malinauskas, T., Unold, T., Kaufmann, C.A., Korte, L., Niaura, G., Getautis, V., Albrecht, S.: Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019)
CrossRef
Google scholar
|
[62] |
Deng, X., Qi, F., Li, F., Wu, S., Lin, F.R., Zhang, Z., Guan, Z., Yang, Z., Lee, C.S., Jen, A.K.Y.: Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. Engl. 61(30), e202203088 (2022)
CrossRef
Google scholar
|
[63] |
Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533–1554 (1996)
CrossRef
Google scholar
|
[64] |
Bauer, T., Schmaltz, T., Lenz, T., Halik, M., Meyer, B., Clark, T.: Phosphonate- and carboxylate-based self-assembled monolayers for organic devices: a theoretical study of surface binding on aluminum oxide with experimental support. ACS Appl. Mater. Interfaces 5(13), 6073–6080 (2013)
CrossRef
Google scholar
|
[65] |
Hotchkiss, P.J., Jones, S.C., Paniagua, S.A., Sharma, A., Kippelen, B., Armstrong, N.R., Marder, S.R.: The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc. Chem. Res. 45(3), 337–346 (2012)
CrossRef
Google scholar
|
[66] |
Ambrosio, F., Martsinovich, N., Troisi, A.: What is the best anchoring group for a dye in a dye-sensitized solar cell? J. Phys. Chem. Lett. 3(11), 1531–1535 (2012)
CrossRef
Google scholar
|
[67] |
Brinkmann, K.O., Becker, T., Zimmermann, F., Kreusel, C., Gahlmann, T., Theisen, M., Haeger, T., Olthof, S., Tückmantel, C., Günster, M., Maschwitz, T., Göbelsmann, F., Koch, C., Hertel, D., Caprioglio, P., Peña-Camargo, F., Perdigón-Toro, L., Al-Ashouri, A., Merten, L., Hinderhofer, A., Gomell, L., Zhang, S., Schreiber, F., Albrecht, S., Meerholz, K., Neher, D., Stolterfoht, M., Riedl, T.: Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022)
CrossRef
Google scholar
|
[68] |
AbdollahiNejand, B., Ritzer, D.B., Hu, H., Schackmar, F., Moghadamzadeh, S., Feeney, T., Singh, R., Laufer, F., Schmager, R., Azmi, R., Kaiser, M., Abzieher, T., Gharibzadeh, S., Ahlswede, E., Lemmer, U., Richards, B.S., Paetzold, U.W.: Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7(7), 620–630 (2022)
CrossRef
Google scholar
|
[69] |
Lange, I., Reiter, S., Pätzel, M., Zykov, A., Nefedov, A., Hildebrandt, J., Hecht, S., Kowarik, S., Wöll, C., Heimel, G., Neher, D.: Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 24(44), 7014–7024 (2014)
CrossRef
Google scholar
|
[70] |
Li, L., Wang, Y., Wang, X., Lin, R., Luo, X., Liu, Z., Zhou, K., Xiong, S., Bao, Q., Chen, G., Tian, Y., Deng, Y., Xiao, K., Wu, J., Saidaminov, M.I., Lin, H., Ma, C.Q., Zhao, Z., Wu, Y., Zhang, L., Tan, H.: Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022)
CrossRef
Google scholar
|
[71] |
Aktas, E., Phung, N., Köbler, H., González, D.A., Méndez, M., Kafedjiska, I., Turren-Cruz, S.H., Wenisch, R., Lauermann, I., Abate, A., Palomares, E.: Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells. Energy Environ. Sci. 14(7), 3976–3985 (2021)
CrossRef
Google scholar
|
[72] |
Li, E., Bi, E., Wu, Y., Zhang, W., Li, L., Chen, H., Han, L., Tian, H., Zhu, W.H.: Synergistic coassembly of highly wettable and uniform hole-extraction monolayers for scaling-up perovskite solar cells. Adv. Funct. Mater. 30(7), 1909509(2020)
CrossRef
Google scholar
|
[73] |
Li, E., Liu, C., Lin, H., Xu, X., Liu, S., Zhang, S., Yu, M., Cao, X.M., Wu, Y., Zhu, W.H.: Bonding strength regulates anchoringbased self-assembly monolayers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 31(35), 2103847(2021)
CrossRef
Google scholar
|
[74] |
Ullah, A., Park, K.H., Nguyen, H.D., Siddique, Y., Shah, S.F.A., Tran, H., Park, S., Lee, S.I., Lee, K.K., Han, C.H., Kim, K., Ahn, S., Jeong, I., Park, Y.S., Hong, S.: Novel phenothiazine-based selfassembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells. Adv. Energy Mater. 12(2), 2103175(2022)
CrossRef
Google scholar
|
[75] |
Usluer, Ö., Abbas, M., Wantz, G., Vignau, L., Hirsch, L., Grana, E., Brochon, C., Cloutet, E., Hadziioannou, G.: Metal residues in semiconducting polymers: impact on the performance of organic electronic devices. ACS Macro Lett. 3(11), 1134–1138 (2014)
CrossRef
Google scholar
|
[76] |
Bryan, Z.J., McNeil, A.J.: Conjugated polymer synthesis via catalyst- transfer polycondensation (CTP): mechanism, scope, and applications. Macromolecules 46(21), 8395–8405 (2013)
CrossRef
Google scholar
|
[77] |
Lee, S.W., Bae, S., Kim, D., Lee, H.S.: Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. 32(51), e2002202 (2020)
CrossRef
Google scholar
|
[78] |
Park, N.G., Zhu, K.: Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020)
CrossRef
Google scholar
|
/
〈 | 〉 |