Organic photodiodes: device engineering and applications

Tong Shan, Xiao Hou, Xiaokuan Yin, Xiaojun Guo

PDF(6048 KB)
PDF(6048 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (4) : 49. DOI: 10.1007/s12200-022-00049-w
REVIEW ARTICLE
REVIEW ARTICLE

Organic photodiodes: device engineering and applications

Author information +
History +

Abstract

Organic photodiodes (OPDs) have shown great promise for potential applications in optical imaging, sensing, and communication due to their wide-range tunable photoelectrical properties, low-temperature facile processes, and excellent mechanical flexibility. Extensive research work has been carried out on exploring materials, device structures, physical mechanisms, and processing approaches to improve the performance of OPDs to the level of their inorganic counterparts. In addition, various system prototypes have been built based on the exhibited and attractive features of OPDs. It is vital to link the device optimal design and engineering to the system requirements and examine the existing deficiencies of OPDs towards practical applications, so this review starts from discussions on the required key performance metrics for different envisioned applications. Then the fundamentals of the OPD device structures and operation mechanisms are briefly introduced, and the latest development of OPDs for improving the key performance merits is reviewed. Finally, the trials of OPDs for various applications including wearable medical diagnostics, optical imagers, spectrometers, and light communications are reviewed, and both the promises and challenges are revealed.

Graphical abstract

Keywords

Organic photodiodes / Wearable electronics / Photoplethysmography / Optical imagers / Spectrometers / Optical communications

Cite this article

Download citation ▾
Tong Shan, Xiao Hou, Xiaokuan Yin, Xiaojun Guo. Organic photodiodes: device engineering and applications. Front. Optoelectron., 2022, 15(4): 49 https://doi.org/10.1007/s12200-022-00049-w

References

[1]
García de Arquer, F.P., Armin, A., Meredith, P., Sargent, E.H.: Solution-processed semiconductors for next-generation photo-detectors. Nat. Rev. Mater. 2(3), 1–17(2017)
CrossRef Google scholar
[2]
Tan, C.L., Mohseni, H.: Emerging technologies for high performance infrared detectors. Nanophotonics 7(1), 169–197(2018)
CrossRef Google scholar
[3]
Rogalski, A., Kopytko, M., Martyniuk, P.: 2D material infrared and terahertz detectors: status and outlook. Opto-Electron. Rev. 28(3), 107–154(2020)
[4]
Saran, R., Curry, R.J.: Lead sulphide nanocrystal photodetector technologies. Nat. Photon. 10(2), 81–92(2016)
CrossRef Google scholar
[5]
Bruns, O.T., Bischof, T.S., Harris, D.K., Franke, D., Shi, Y., Riedemann, L., Bartelt, A., Jaworski, F.B., Carr, J.A., Rowlands, C.J., Wilson, M.W.B., Chen, O., Wei, H., Hwang, G.W., Montana, D.M., Coropceanu, I., Achorn, O.B., Kloepper, J., Heeren, J., So, P.T.C., Fukumura, D., Jensen, K.F., Jain, R.K., Bawendi, M.G.: Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1(4), 1–11(2017)
CrossRef Google scholar
[6]
Xu, Y., Lin, Q.: Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Appl. Phys. Rev. 7(1), 011315(2020)
CrossRef Google scholar
[7]
Lau, Y.S., Lan, Z., Cai, L., Zhu, F.: High-performance solution-processed large-area transparent self-powered organic near-infrared photodetectors. Mater. Today Energy. 21, 100708(2021)
CrossRef Google scholar
[8]
Ng, T.N., Wong, W.S., Chabinyc, M.L., Sambandan, S., Street, R.A.: Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 92(21), 213303(2008)
CrossRef Google scholar
[9]
Pierre, A., Deckman, I., Lechêne, P.B., Arias, A.C.: High detectivity all-printed organic photodiodes. Adv. Mater. 27(41), 6411–6417(2015)
CrossRef Google scholar
[10]
Verstraeten, F., Gielen, S., Verstappen, P., Raymakers, J., Penxten, H., Lutsen, L., Vandewal, K., Maes, W.: Efficient and readily tuneable near-infrared photodetection up to 1500 nm enabled by thiadiazoloquinoxaline-based push–pull type conjugated polymers. J. Mater. Chem. C Mater. Opt. Electron. Devices. 8(29), 10098–10103(2020)
CrossRef Google scholar
[11]
Guo, D., Yang, L., Zhao, J., Li, J., He, G., Yang, D., Wang, L., Vadim, A., Ma, D.: Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1000000. Mater. Horiz. 8(8), 2293–2302(2021)
CrossRef Google scholar
[12]
Ding, N., Wu, Y., Xu, W., Lyu, J., Wang, Y., Zi, L., Shao, L., Sun, R., Wang, N., Liu, S., Zhou, D., Bai, X., Zhou, J., Song, H.: A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. Light Sci. Appl. 11(1), 91(2022)
CrossRef Google scholar
[13]
Jacoutot, P., Scaccabarozzi, A.D., Zhang, T., Qiao, Z., Aniés, F., Neophytou, M., Bristow, H., Kumar, R., Moser, M., Nega, A.D., Schiza, A., Dimitrakopoulou-Strauss, A., Gregoriou, V.G., Anthopoulos, T.D., Heeney, M., McCulloch, I., Bakulin, A.A., Chochos, C.L., Gasparini, N.: Infrared organic photodetectors employing ultralow bandgap polymer and non-fullerene acceptors for biometric monitoring. Small 18(15), e2200580(2022)
CrossRef Google scholar
[14]
Fuentes-Hernandez, C., Chou, W.F., Khan, T.M., Diniz, L., Lukens, J., Larrain, F.A., Rodriguez-Toro, V.A., Kippelen, B.: Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370(6517), 698–701(2020)
CrossRef Google scholar
[15]
Park, S., Fukuda, K., Wang, M., Lee, C., Yokota, T., Jin, H., Jinno, H., Kimura, H., Zalar, P., Matsuhisa, N., Umezu, S., Bazan, G.C., Someya, T.: Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater. 30(34), e1802359(2018)
CrossRef Google scholar
[16]
Chow, P.C.Y., Someya, T.: Organic photodetectors for nextgeneration wearable electronics. Adv. Mater. 32(15), e1902045(2020)
CrossRef Google scholar
[17]
Wang, C., Zhang, X., Hu, W.: Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chem. Soc. Rev. 49(3), 653–670(2020)
CrossRef Google scholar
[18]
Simone, G., Dyson, M.J., Meskers, S.C.J., Janssen, R.A.J., Gelinck, G.H.: Organic photodetectors and their application in large area and flexible image sensors: the role of dark current. Adv. Funct. Mater. 30(20), 1904205(2020)
CrossRef Google scholar
[19]
Ren, H., Chen, J.D., Li, Y.Q., Tang, J.X.: Recent progress in organic photodetectors and their applications. Adv. Sci. (Weinh.) 8(1), 2002418(2021)
CrossRef Google scholar
[20]
Yokota, T., Fukuda, K., Someya, T.: Recent progress of flexible image sensors for biomedical applications. Adv. Mater. 33(19), e2004416(2021)
CrossRef Google scholar
[21]
Matheus, L.E.M., Vieira, A.B., Vieira, L.F., Vieira, M.A., Gnawali, O.: Visible light communication: concepts, applications and challenges. IEEE Comm. Surv. Tutor. 21(4), 3204–3237(2019)
CrossRef Google scholar
[22]
Lau, Y., Zhu, F.: Visualization of near-infrared light and applications. Chin. J. Liq. Crys. Disp. 36(1), 78–104(2021)
CrossRef Google scholar
[23]
Naseer, N., Hong, K.S.: fNIRS-based brain-computer interfaces: a review. Front. Hum. Neurosci. 9, 3(2015)
CrossRef Google scholar
[24]
Li, N., Eedugurala, N., Azoulay, J.D., Ng, T.N.: A filterless organic photodetector electrically switchable between visible and infrared detection. Cell Rep. Phys. Sci. 3(1), 100711(2022)
CrossRef Google scholar
[25]
Zhang, D., Fuentes-Hernandez, C., Vijayan, R., Zhang, Y., Li, Y., Park, J.W., Wang, Y., Zhao, Y., Arora, N., Mirzazadeh, A., Do, Y., Cheng, T., Swaminathan, S., Starner, T., Andrew, T.L., Abowd, G.D.: Flexible computational photodetectors for self-powered activity sensing. NPJ Flex. Electron. 6(1), 1–8(2022)
CrossRef Google scholar
[26]
Li, N., Eedugurala, N., Leem, D.S., Azoulay, J.D., Ng, T.N.: Organic upconversion imager with dual electronic and optical readouts for shortwave infrared light detection. Adv. Funct. Mater. 31(16), 2100565(2021)
CrossRef Google scholar
[27]
Li, N., Lan, Z., Lau, Y.S., Xie, J., Zhao, D., Zhu, F.: Swir photo-detection and visualization realized by incorporating an organic SWIR sensitive bulk heterojunction. Adv. Sci. (Weinh.) 7(14), 2000444(2020)
CrossRef Google scholar
[28]
Du, X., Han, J., He, Z., Han, C., Wang, X., Wang, J., Jiang, Y., Tao, S.: Efficient organic upconversion devices for low energy consumption and high-quality noninvasive imaging. Adv. Mater. 33(42), e2102812(2021)
CrossRef Google scholar
[29]
Yang, D., Zhou, X., Ma, D., Vadim, A., Ahamad, T., Alshehri, S.M.: Near infrared to visible light organic up-conversion devices with photon-to-photon conversion efficiency approaching 30%. Mater. Horiz. 5(5), 874–882(2018)
CrossRef Google scholar
[30]
Tedde, S., Zaus, E., Furst, J., Henseler, D., Lugli, P.: Active pixel concept combined with organic photodiode for imaging devices. IEEE Electron Device Lett. 28(10), 893–895(2007)
CrossRef Google scholar
[31]
Yokota, T., Nakamura, T., Kato, H., Mochizuki, M., Tada, M., Uchida, M., Lee, S., Koizumi, M., Yukita, W., Takimoto, A., Someya, T.: A conformable imager for biometric authentication and vital sign measurement. Nat. Electron. 3(2), 113–121(2020)
CrossRef Google scholar
[32]
Zhao, C., Kanicki, J.: Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor X-ray imager for digital breast tomosynthesis. Med. Phys. 41(9), 091902(2014)
CrossRef Google scholar
[33]
Hou, X., Chen, S., Tang, W., Liang, J., Ouyang, B., Li, M., Song, Y., Shan, T., Chen, C.C., Too, P., Wei, X., Jin, L., Qi, G., Guo, X.: Low-temperature solution-processed all organic integration for large-area and flexible high-resolution imaging. IEEE J. Electron Devices Soc. 10, 821–826(2022)
CrossRef Google scholar
[34]
Gelinck, G.H., Kumar, A., Moet, D., van der Steen, J.L., Shafique, U., Malinowski, P.E., Myny, K., Rand, B.P., Simon, M., Rütten, W., Douglas, A., Jorritsma, J., Heremans, P., Andriessen, R.: X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate. Org. Electron. 14(10), 2602–2609(2013)
CrossRef Google scholar
[35]
Xing, S., Nikolis, V.C., Kublitski, J., Guo, E., Jia, X., Wang, Y., Spoltore, D., Vandewal, K., Kleemann, H., Benduhn, J., Leo, K.: Miniaturized Vis-NIR spectrometers based on narrowband and tunable transmission cavity organic photodetectors with ultra-high specific detectivity above 1014 Jones. Adv. Mater. 33(44), e2102967(2021)
CrossRef Google scholar
[36]
Tang, Z., Ma, Z., Sánchez-Díaz, A., Ullbrich, S., Liu, Y., Siegmund, B., Mischok, A., Leo, K., Campoy-Quiles, M., Li, W., Vandewal, K.: Polymer: fullerene bimolecular crystals for near-infrared spectroscopic photodetectors. Adv. Mater. 29(33), 1702184(2017)
CrossRef Google scholar
[37]
Chow, C.W., Wang, H.Y., Chen, C.H., Zan, H.W., Yeh, C.H., Meng, H.F.: Pre-distortion scheme to enhance the transmission performance of organic photo-detector (OPD) based visible light communication (VLC). IEEE Access 6, 7625–7630(2018)
CrossRef Google scholar
[38]
Li, W., Li, S., Duan, L., Chen, H., Wang, L., Dong, G., Xu, Z.: Squarylium and rubrene based filterless narrowband photodetectors for an all-organic two-channel visible light communication system. Org. Electron. 37, 346–351(2016)
CrossRef Google scholar
[39]
Lan, Z., Lau, Y.S., Cai, L., Han, J., Suen, C.W., Zhu, F.: Dualband organic photodetectors for dual-channel optical communications. Laser Photon. Rev. 16(7), 2100602(2022)
CrossRef Google scholar
[40]
Strobel, N., Droseros, N., Köntges, W., Seiberlich, M., Pietsch, M., Schlisske, S., Lindheimer, F., Schröder, R.R., Lemmer, U., Pfannmöller, M., Banerji, N., Hernandez-Sosa, G.: Color-selective printed organic photodiodes for filterless multichannel visible light communication. Adv. Mater. 32(12), e1908258(2020)
CrossRef Google scholar
[41]
Babics, M., Bristow, H., Zhang, W., Wadsworth, A., Neophytou, M., Gasparini, N., McCulloch, I.: Non-fullerene-based organic photodetectors for infrared communication. J. Mater. Chem. C Mater. Opt. Electron. Devices 9(7), 2375–2380(2021)
CrossRef Google scholar
[42]
Lee, S.H., Yusoff, A., Lee, C., Yoon, S.C., Noh, Y.Y.: Toward color-selective printed organic photodetectors for high-resolution image sensors: from fundamentals to potential commercialization. Mater. Sci. Eng. Rep. 147, 100660(2022)
CrossRef Google scholar
[43]
Song, J.K., Kim, M.S., Yoo, S., Koo, J.H., Kim, D.H.: Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res. 14(9), 2919–2937(2021)
CrossRef Google scholar
[44]
Lan, Z., Lee, M.H., Zhu, F.: Recent advances in solution-processable organic photodetectors and applications in flexible electronics. Adv. Intell. Syst. 4(3), 2100167(2022)
CrossRef Google scholar
[45]
Li, N., Mahalingavelar, P., Vella, J.H., Leem, D.S., Azoulay, J.D., Ng, T.N.: Solution-processable infrared photodetectors: materials, device physics, and applications. Mater. Sci. Eng. Rep. 146, 100643(2021)
CrossRef Google scholar
[46]
Simone, G., Dyson, M.J., Weijtens, C.H.L., Meskers, S.C.J., Coehoorn, R., Janssen, R.A.J., Gelinck, G.H.: On the origin of dark current in organic photodiodes. Adv. Opt. Mater. 8(1), 1901568(2020)
CrossRef Google scholar
[47]
Fang, Y., Armin, A., Meredith, P., Huang, J.: Accurate characterization of next-generation thin-film photodetectors. Nat. Photon. 13(1), 1–4(2019)
CrossRef Google scholar
[48]
Lee, H., Park, C., Sin, D.H., Park, J.H., Cho, K.: Recent advances in morphology optimization for organic photovoltaics. Adv. Mater. 30(34), e1800453(2018)
CrossRef Google scholar
[49]
Gaspar, H., Figueira, F., Pereira, L., Mendes, A., Viana, J.C., Bernardo, G.: Recent developments in the optimization of the bulk heterojunction morphology of polymer: fullerene solar cells. Materials (Basel) 11(12), E2560(2018)
CrossRef Google scholar
[50]
Brabec, C.J., Durrant, J.R.: Solution-processed organic solar cells. MRS Bull. 33(7), 670–675(2008)
CrossRef Google scholar
[51]
Ma, L., Zhang, S., Wang, J., Xu, Y., Hou, J.: Recent advances in non-fullerene organic solar cells: from lab to fab. Chem. Commun. (Camb.) 56(92), 14337–14352(2020)
CrossRef Google scholar
[52]
Dou, L., Liu, Y., Hong, Z., Li, G., Yang, Y.: Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115(23), 12633–12665(2015)
CrossRef Google scholar
[53]
Pivrikas, A., Sariciftci, N.S., Juška, G., Österbacka, R.: A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog. Photovolt. Res. Appl. 15(8), 677–696(2007)
CrossRef Google scholar
[54]
Ameri, T., Heumüller, T., Min, J., Li, N., Matt, G., Scherf, U., Brabec, C.J.: IR sensitization of an indene-C60 bisadduct (ICBA) in ternary organic solar cells. Energy Environ. Sci. 6(6), 1796–1801 (2013)
CrossRef Google scholar
[55]
Zhang, J., Tan, H.S., Guo, X., Facchetti, A., Yan, H.: Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3(9), 720–731(2018)
CrossRef Google scholar
[56]
Liu, W., Zhang, R., Wei, Q., Zhu, C., Yuan, J., Gao, F., Zou, Y.: Manipulating molecular aggregation and crystalline behavior of A-DA’D-A type acceptors by side chain engineering in organic solar cells. Aggregate 3(3), e183(2022)
CrossRef Google scholar
[57]
Zhang, X., Li, G., Mukherjee, S., Huang, W., Zheng, D., Feng, L.W., Chen, Y., Wu, J., Sangwan, V.K., Hersam, M.C., DeLongchamp, D.M., Yu, J., Facchetti, A., Marks, T.J.: Systematically controlling acceptor fluorination optimizes hierarchical morphology, vertical phase separation, and efficiency in non-fullerene organic solar cells. Adv. Energy Mater. 12(1), 2102172(2022)
CrossRef Google scholar
[58]
Wang, Z., Zhu, L., Shuai, Z., Wei, Z.: A–π–D–π–A electron-donating small molecules for solution-processed organic solar cells: a review. Macromol. Rapid Commun. 38(22), 1700470(2017)
CrossRef Google scholar
[59]
Shan, T., Ding, K., Yu, L., Wang, X., Zhang, Y., Zheng, X., Chen, C.C., Peng, Q., Zhong, H.: Spatially orthogonal 2d sidechains optimize morphology in all-small-molecule organic solar cells. Adv. Funct. Mater. 31(24), 2100750(2021)
CrossRef Google scholar
[60]
Li, Y., Chen, H., Zhang, J.: Carrier blocking layer materials and application in organic photodetectors. Nanomaterials (Basel) 11(6), 1404(2021)
CrossRef Google scholar
[61]
Lim, S.B., Ji, C.H., Oh, I.S., Oh, S.Y.: Reduced leakage current and improved performance of an organic photodetector using an ytterbium cathode interlayer. J. Mater. Chem. C Mater. Opt. Electron. Devices 4(22), 4920–4926(2016)
CrossRef Google scholar
[62]
Bouthinon, B., Clerc, R., Verilhac, J., Racine, B., De Girolamo, J., Jacob, S., Lienhard, P., Joimel, J., Dhez, O., Revaux, A.: On the front and back side quantum efficiency differences in semitransparent organic solar cells and photodiodes. J. Appl. Phys. 123(12), 125501(2018)
CrossRef Google scholar
[63]
Sato, Y., Kajii, H., Ohmori, Y.: Improved performance of polymer photodetectors using indium–tin-oxide modified by phosphonic acid-based self-assembled monolayer treatment. Org. Electron. 15(8), 1753–1758(2014)
CrossRef Google scholar
[64]
Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A.J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T.M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J.L., Marder, S.R., Kahn, A., Kippelen, B.: A universal method to produce low-work function electrodes for organic electronics. Science 336(6079), 327–332(2012)
CrossRef Google scholar
[65]
He, Z., Zhang, C., Xu, X., Zhang, L., Huang, L., Chen, J., Wu, H., Cao, Y.: Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor. Adv. Mater. 23(27), 3086–3089(2011)
CrossRef Google scholar
[66]
Wang, T., Wang, Y., Zhu, L., Lv, L., Hu, Y., Deng, Z., Cui, Q., Lou, Z., Hou, Y., Teng, F.: High sensitivity and fast response sol-gel ZnO electrode buffer layer based organic photodetectors with large linear dynamic range at low operating voltage. Org. Electron. 56, 51–58(2018)
CrossRef Google scholar
[67]
Zhu, H.L., Choy, W.C., Sha, W.E., Ren, X.: Photovoltaic mode ultraviolet organic photodetectors with high on/off ratio and fast response. Adv. Opt. Mater. 2(11), 1082–1089(2014)
CrossRef Google scholar
[68]
Deng, R., Yan, C., Deng, Y., Hu, Y., Deng, Z., Cui, Q., Lou, Z., Hou, Y., Teng, F.: High-performance polymer photodetector using the non-thermal-and-non-ultraviolet–ozone-treated SnO2 interfacial layer. Physica Status Solidi (RRL) - Rapid Res. Lett. 14(3), 1900531(2020)
CrossRef Google scholar
[69]
Zheng, Z., Wang, J., Bi, P., Ren, J., Wang, Y., Yang, Y., Liu, X., Zhang, S., Hou, J.: Tandem organic solar cell with 20.2% efficiency. Joule 6(1), 171–184(2022)
CrossRef Google scholar
[70]
Lu, H., Lin, J., Wu, N., Nie, S., Luo, Q., Ma, C.Q., Cui, Z.: Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Appl. Phys. Lett. 106(9), 093302(2015)
CrossRef Google scholar
[71]
Baeg, K.J., Binda, M., Natali, D., Caironi, M., Noh, Y.Y.: Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25(31), 4267–4295(2013)
CrossRef Google scholar
[72]
Tam, K.C., Kubis, P., Maisch, P., Brabec, C.J., Egelhaaf, H.J.: Fully printed organic solar modules with bottom and top silver nanowire electrodes. Prog. Photovolt. Res. Appl. 30(5), 528–542(2022)
CrossRef Google scholar
[73]
Cao, W., Li, J., Chen, H., Xue, J.: Transparent electrodes for organic optoelectronic devices: a review. J. Photon. Energy 4(1), 040990(2014)
CrossRef Google scholar
[74]
Kim, D.H., Kim, K.S., Shim, H.S., Moon, C.K., Jin, Y.W., Kim, J.J.: A high performance semitransparent organic photodetector with green color selectivity. Appl. Phys. Lett. 105(21), 213301(2014)
CrossRef Google scholar
[75]
Kim, H., Lee, K.T., Zhao, C., Guo, L.J., Kanicki, J.: Top illuminated organic photodetectors with dielectric/metal/dielectric transparent anode. Org. Electron. 20, 103–111(2015)
CrossRef Google scholar
[76]
Zhang, H., Jenatsch, S., De Jonghe, J., Nüesch, F., Steim, R., Véron, A.C., Hany, R.: Transparent organic photodetector using a near-infrared absorbing cyanine dye. Sci. Rep. 5(1), 9439(2015)
CrossRef Google scholar
[77]
Qi, Z., Cao, J., Ding, L., Wang, J.: Transparent and transferrable organic optoelectronic devices based on WO3/Ag/WO3 electrodes. Appl. Phys. Lett. 106(5), 053304(2015)
CrossRef Google scholar
[78]
Lee, D., So, S., Hu, G., Kim, M., Badloe, T., Cho, H., Kim, J., Kim, H., Qiu, C.-W., Rho, J.: Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight 2(1), 1–23(2022)
CrossRef Google scholar
[79]
Shan, T., Zhang, Y., Wang, Y., Xie, Z., Wei, Q., Xu, J., Zhang, M., Wang, C., Bao, Q., Wang, X., Chen, C.C., Huang, J., Chen, Q., Liu, F., Chen, L., Zhong, H.: Universal and versatile morphology engineering via hot fluorous solvent soaking for organic bulk heterojunction. Nat. Commun. 11(1), 5585(2020)
CrossRef Google scholar
[80]
Luo, D., Zhang, Y., Li, L., Shan, C., Liu, Q., Wang, Z., Choy, W.C., Kyaw, A.K.K.: Near-infrared non-fused ring acceptors with light absorption up to 1000 nm for efficient and low-energy loss organic solar cells. Mater. Today Energy 24, 100938(2022)
CrossRef Google scholar
[81]
Li, Y., Huang, W., Zhao, D., Wang, L., Jiao, Z., Huang, Q., Wang, P., Sun, M., Yuan, G.: Recent progress in organic solar cells: a review on materials from acceptor to donor. Molecules 27(6), 1800(2022)
CrossRef Google scholar
[82]
Wang, Z., Peng, Z., Xiao, Z., Seyitliyev, D., Gundogdu, K., Ding, L., Ade, H.: Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv. Mater. 32(49), e2005386(2020)
CrossRef Google scholar
[83]
Wei, Q., Yuan, J., Yi, Y., Zhang, C., Zou, Y.: Y6 and its derivatives: molecular design and physical mechanism. Natl. Sci. Rev. 8(8), nwa121(2021)
CrossRef Google scholar
[84]
Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.L., Lau, T.K., Lu, X., Zhu, C., Peng, H., Johnson, P.A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y., Zou, Y.: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electrondeficient core. Joule 3(4), 1140–1151(2019)
CrossRef Google scholar
[85]
Park, B., Jung, J., Lim, D.H., Lee, H., Park, S., Kyeong, M., Ko, S.J., Eom, S.H., Lee, S.H., Lee, C., Yoon, S.C.: Significant dark current suppression in organic photodetectors using side chain fluorination of conjugated polymer. Adv. Funct. Mater. 32(4), 2108026(2022)
CrossRef Google scholar
[86]
Zhang, D., Zhao, D., Wang, Z., Yu, J.: Processes controlling the distribution of vertical organic composition in organic photodetectors by ultrasonic-assisted solvent vapor annealing. ACS Appl. Electron. Mater. 2(7), 2188–2195(2020)
CrossRef Google scholar
[87]
Biele, M., Montenegro Benavides, C., Hürdler, J., Tedde, S.F., Brabec, C.J., Schmidt, O.: Spray-coated organic photodetectors and image sensors with silicon-like performance. Adv. Mater. Technol. 4(1), 1800158(2019)
CrossRef Google scholar
[88]
Huang, J., Lee, J., Vollbrecht, J., Brus, V.V., Dixon, A.L., Cao, D.X., Zhu, Z., Du, Z., Wang, H., Cho, K., Bazan, G.C., Nguyen, T.Q.: A high-performance solution-processed organic photodetector for near-infrared sensing. Adv. Mater. 32(1), e1906027(2020)
CrossRef Google scholar
[89]
Xu, Y., Yuan, J., Liang, S., Chen, J.D., Xia, Y., Larson, B.W., Wang, Y., Su, G.M., Zhang, Y., Cui, C., Wang, M., Zhao, H., Ma, W.: Simultaneously improved efficiency and stability in all-polymer solar cells by a p–i–n architecture. ACS Energy Lett. 4(9), 2277–2286(2019)
CrossRef Google scholar
[90]
Shan, T., Hong, Y., Zhu, L., Wang, X., Zhang, Y., Ding, K., Liu, F., Chen, C.C., Zhong, H.: Achieving optimal bulk hetero-junction in all-polymer solar cells by sequential processing with nonorthogonal solvents. ACS Appl. Mater. Interfaces 11(45), 42438–42446(2019)
CrossRef Google scholar
[91]
Kim, M.S., Jang, W., Nguyen, T.Q., Wang, D.H.: Morphology inversion of a non-fullerene acceptor via adhesion controlled decal-coating for efficient conversion and detection in organic electronics. Adv. Funct. Mater. 31(38), 2103705(2021)
CrossRef Google scholar
[92]
Zhong, Z., Bu, L., Zhu, P., Xiao, T., Fan, B., Ying, L., Lu, G., Yu, G., Huang, F., Cao, Y.: Dark current reduction strategy via a layer-by-layer solution process for a high-performance all-polymer photodetector. ACS Appl. Mater. Interfaces 11(8), 8350–8356(2019)
CrossRef Google scholar
[93]
Sun, R., Guo, J., Sun, C., Wang, T., Luo, Z., Zhang, Z., Jiao, X., Tang, W., Yang, C., Li, Y., Min, J.: A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 12(1), 384–395(2019)
CrossRef Google scholar
[94]
Wei, Y., Chen, H., Liu, T., Wang, S., Jiang, Y., Song, Y., Zhang, J., Zhang, X., Lu, G., Huang, F., Wei, Z., Huang, H.: Self-powered organic photodetectors with high detectivity for near infrared light detection enabled by dark current reduction. Adv. Funct. Mater. 31(52), 2106326(2021)
CrossRef Google scholar
[95]
Xiong, S., Li, J., Peng, J., Dong, X., Qin, F., Wang, W., Sun, L., Xu, Y., Lin, Q., Zhou, Y.: Water transfer printing of multi-layered near-infrared organic photodetectors. Adv. Opt. Mater. 10(1), 2101837(2022)
CrossRef Google scholar
[96]
Huang, Z., Zhong, Z., Peng, F., Ying, L., Yu, G., Huang, F., Cao, Y.: Copper thiocyanate as an anode interfacial layer for efficient near-infrared organic photodetector. ACS Appl. Mater. Interfaces 13(1), 1027–1034(2021)
CrossRef Google scholar
[97]
Xu, X., Zhou, X., Zhou, K., Xia, Y., Ma, W., Inganäs, O.: Largearea, semitransparent, and flexible all-polymer photodetectors. Adv. Funct. Mater. 28(48), 1805570(2018)
CrossRef Google scholar
[98]
Saracco, E., Bouthinon, B., Verilhac, J.M., Celle, C., Chevalier, N., Mariolle, D., Dhez, O., Simonato, J.P.: Work function tuning for high-performance solution-processed organic photodetectors with inverted structure. Adv. Mater. 25(45), 6534–6538(2013)
CrossRef Google scholar
[99]
Binda, M., Iacchetti, A., Natali, D., Beverina, L., Sassi, M., Sampietro, M.: High detectivity squaraine-based near infrared photodetector with NA/cm2 dark current. Appl. Phys. Lett. 98(7), 073303(2011)
CrossRef Google scholar
[100]
Zhou, X., Yang, D., Ma, D.: Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Opt. Mater. 3(11), 1570–1576(2015)
CrossRef Google scholar
[101]
Benavides, C.M., Murto, P., Chochos, C.L., Gregoriou, V.G., Avgeropoulos, A., Xu, X., Bini, K., Sharma, A., Andersson, M.R., Schmidt, O., Brabec, C.J., Wang, E., Tedde, S.F.: High-performance organic photodetectors from a high-bandgap indacenodithiophene-based π-conjugated donor-acceptor polymer. ACS Appl. Mater. Interfaces 10(15), 12937–12946(2018)
CrossRef Google scholar
[102]
Sim, K.M., Yoon, S., Kim, S.K., Ko, H., Hassan, S.Z., Chung, D.S.: Surfactant-induced solubility control to realize water-processed high-precision patterning of polymeric semiconductors for full color organic image sensor. ACS Nano 14(1), 415–421(2020)
CrossRef Google scholar
[103]
Lan, Z., Zhu, F.: Electrically switchable color-selective organic photodetectors for full-color imaging. ACS Nano 15(8), 13674–13682(2021)
CrossRef Google scholar
[104]
Yang, J., Huang, J., Li, R., Li, H., Sun, B., Lin, Q., Wang, M., Ma, Z., Vandewal, K., Tang, Z.: Cavity-enhanced near-infrared organic photodetectors based on a conjugated polymer containing [1,2,5]selenadiazolo[3,4-c]pyridine. Chem. Mater. 33(13), 5147–5155(2021)
CrossRef Google scholar
[105]
Lan, Z., Lau, Y.S., Wang, Y., Xiao, Z., Ding, L., Luo, D., Zhu, F.: Filter-free band-selective organic photodetectors. Adv. Opt. Mater. 8(24), 2001388(2020)
CrossRef Google scholar
[106]
Vanderspikken, J., Maes, W., Vandewal, K.: Wavelength-selective organic photodetectors. Adv. Funct. Mater. 31(36), 2104060(2021)
CrossRef Google scholar
[107]
Schembri, T., Kim, J.H., Liess, A., Stepanenko, V., Stolte, M., Würthner, F.: Semitransparent layers of social self-sorting merocyanine dyes for ultranarrow bandwidth organic photodiodes. Adv. Opt. Mater. 9(15), 2100213(2021)
CrossRef Google scholar
[108]
Wang, Y., Kublitski, J., Xing, S., Dollinger, F., Spoltore, D., Benduhn, J., Leo, K.: Narrowband organic photodetectors-towards miniaturized, spectroscopic sensing. Mater. Horiz. 9(1), 220–251(2022)
CrossRef Google scholar
[109]
Armin, A., Jansen-van Vuuren, R.D., Kopidakis, N., Burn, P.L., Meredith, P.: Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6(1), 6343(2015)
CrossRef Google scholar
[110]
Wang, W., Zhang, F., Du, M., Li, L., Zhang, M., Wang, K., Wang, Y., Hu, B., Fang, Y., Huang, J.: Highly narrowband photomultiplication type organic photodetectors. Nano Lett. 17(3), 1995–2002(2017)
CrossRef Google scholar
[111]
Xie, B., Xie, R., Zhang, K., Yin, Q., Hu, Z., Yu, G., Huang, F., Cao, Y.: Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 11(1), 2871(2020)
CrossRef Google scholar
[112]
Xing, S., Wang, X., Guo, E., Kleemann, H., Leo, K.: Organic thin-film red-light photodiodes with tunable spectral response via selective exciton activation. ACS Appl. Mater. Interfaces 12(11), 13061–13067(2020)
CrossRef Google scholar
[113]
Wang, C., Zhang, C., Chen, Q., Chen, L.: Improving the photomultiplication in organic photodetectors with narrowband response by interfacial engineering. Acta Chim. Sin. 79(8), 1030–1036(2021)
CrossRef Google scholar
[114]
Ünlü, M.S., Strite, S.: Resonant cavity enhanced photonic devices. J. Appl. Phys. 78(2), 607–639(1995)
CrossRef Google scholar
[115]
Xiong, J., Wu, S.-T.: Planar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applications. eLight 1(3), 1–20(2021)
CrossRef Google scholar
[116]
Du, Y., Zou, C.L., Zhang, C., Wang, K., Qiao, C., Yao, J., Zhao, Y.S.: Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light Sci. Appl. 9(1), 151(2020)
CrossRef Google scholar
[117]
Zang, C., Liu, S., Xu, M., Wang, R., Cao, C., Zhu, Z., Zhang, J., Wang, H., Zhang, L., Xie, W., Lee, C.S.: Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light Sci. Appl. 10(1), 116(2021)
CrossRef Google scholar
[118]
Zhao, Z., Xu, C., Ma, Y., Yang, K., Liu, M., Zhu, X., Zhou, Z., Shen, L., Yuan, G., Zhang, F.: Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry–Pérot resonator architecture. Adv. Funct. Mater. 32(29), 2203606(2022)
CrossRef Google scholar
[119]
Wang, J., Ullbrich, S., Hou, J.L., Spoltore, D., Wang, Q., Ma, Z., Tang, Z., Vandewal, K.: Organic cavity photodetectors based on nanometer-thick active layers for tunable monochromatic spectral response. ACS Photon. 6(6), 1393–1399(2019)
CrossRef Google scholar
[120]
Siegmund, B., Mischok, A., Benduhn, J., Zeika, O., Ullbrich, S., Nehm, F., Böhm, M., Spoltore, D., Fröb, H., Körner, C., Leo, K., Vandewal, K.: Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8(1), 15421(2017)
CrossRef Google scholar
[121]
Kublitski, J., Fischer, A., Xing, S., Baisinger, L., Bittrich, E., Spoltore, D., Benduhn, J., Vandewal, K., Leo, K.: Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nat. Commun. 12(1), 4259(2021)
CrossRef Google scholar
[122]
Wang, Y., Siegmund, B., Tang, Z., Ma, Z., Kublitski, J., Xing, S., Nikolis, V.C., Ullbrich, S., Li, Y., Benduhn, J., Spoltore, D., Vandewal, K., Leo, K.: Stacked dual-wavelength near-infrared organic photodetectors. Adv. Opt. Mater. 9(6), 2001784(2021)
CrossRef Google scholar
[123]
Suganuma, N., Heo, C.J., Minami, D., Yun, S., Park, S., Lim, Y., Fang, F., Choi, B., Park, K.B.: High speed response organic photodetectors with cascade buffer layers. Adv. Electron. Mater. 8(2), 2100539(2022)
CrossRef Google scholar
[124]
Saggar, S., Sanderson, S., Gedefaw, D., Pan, X., Philippa, B., Andersson, M.R., Lo, S.C., Namdas, E.B.: Toward faster organic photodiodes: tuning of blend composition ratio. Adv. Funct. Mater. 31(19), 2010661(2021)
CrossRef Google scholar
[125]
Salamandra, L., La Notte, L., Fazolo, C., Di Natali, M., Penna, S., Mattiello, L., Cinà, L., Del Duca, R., Reale, A.: A comparative study of organic photodetectors based on P3HT and PTB7 polymers for visible light communication. Org. Electron. 81, 105666(2020)
CrossRef Google scholar
[126]
Liu, J., Jiang, J., Wang, S., Li, T., Jing, X., Liu, Y., Wang, Y., Wen, H., Yao, M., Zhan, X., Shen, L.: Fast response organic tandem photodetector for visible and near-infrared digital optical communications. Small 17(43), e2101316(2021)
CrossRef Google scholar
[127]
Shen, L., Fang, Y., Wang, D., Bai, Y., Deng, Y., Wang, M., Lu, Y., Huang, J.: A self-powered, sub-nanosecond-response solution- processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 28(48), 10794–10800(2016)
CrossRef Google scholar
[128]
Wang, X., Wang, J., Zhao, H., Jin, H., Yu, J.: Detectivity enhancement of double-layer organic photodetectors consisting of solution-processed interconnecting layers. Mater. Lett. 243, 81–83(2019)
CrossRef Google scholar
[129]
Xing, S., Kublitski, J., Hänisch, C., Winkler, L.C., Li, T.Y., Kleemann, H., Benduhn, J., Leo, K.: Photomultiplication-type organic photodetectors for near-infrared sensing with high and bias-independent specific detectivity. Adv. Sci. (Weinh.) 9(7), e2105113(2022)
CrossRef Google scholar
[130]
Shi, L., Liang, Q., Wang, W., Zhang, Y., Li, G., Ji, T., Hao, Y., Cui, Y.: Research progress in organic photomultiplication photodetectors. Nanomaterials (Basel) 8(9), 713(2018)
CrossRef Google scholar
[131]
Yan, Y., Wu, X., Chen, Q., Liu, Y., Chen, H., Guo, T.: High-performance low-voltage flexible photodetector arrays based on all-solid-state organic electrochemical transistors for photosensing and imaging. ACS Appl. Mater. Interfaces 11(22), 20214–20224(2019)
CrossRef Google scholar
[132]
Lv, L., Dang, W., Wu, X., Chen, H., Wang, T., Qin, L., Wei, Z., Zhang, K., Shen, G., Huang, H.: Flexible short-wave infrared image sensors enabled by high-performance polymeric photo-detectors. Macromolecules 53(23), 10636–10643(2020)
CrossRef Google scholar
[133]
Webster, J.G.: Design of pulse oximeters. CRC Press, Boca Raton (1997)
CrossRef Google scholar
[134]
Lochner, C.M., Khan, Y., Pierre, A., Arias, A.C.: All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5(1), 5745(2014)
CrossRef Google scholar
[135]
Khan, Y., Han, D., Pierre, A., Ting, J., Wang, X., Lochner, C.M., Bovo, G., Yaacobi-Gross, N., Newsome, C., Wilson, R., Arias, A.C.: A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. U.S.A. 115(47), E11015–E11024(2018)
CrossRef Google scholar
[136]
Eun, H.J., Lee, H., Shim, Y., Seo, G.U., Lee, A.Y., Park, J.J., Heo, J., Park, S., Kim, J.H.: Strain-durable dark current in near-infrared organic photodetectors for skin-conformal photoplethysmographic sensors. iScience 25(5), 104194(2022)
CrossRef Google scholar
[137]
Pan, T., Liu, S., Zhang, L., Xie, W., Yu, C.: A flexible, multi-functional, optoelectronic anticounterfeiting device from high-performance organic light-emitting paper. Light Sci. Appl. 11(1), 59(2022)
CrossRef Google scholar
[138]
Yokota, T., Zalar, P., Kaltenbrunner, M., Jinno, H., Matsuhisa, N., Kitanosako, H., Tachibana, Y., Yukita, W., Koizumi, M., Someya, T.: Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856(2016)
CrossRef Google scholar
[139]
Khan, Y., Han, D., Ting, J., Ahmed, M., Nagisetty, R., Arias, A.C.: Organic multi-channel optoelectronic sensors for wearable health monitoring. IEEE Access 7, 128114–128124(2019)
CrossRef Google scholar
[140]
Lee, H., Kim, E., Lee, Y., Kim, H., Lee, J., Kim, M., Yoo, H.J., Yoo, S.: Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 4(11), eaas9530(2018)
CrossRef Google scholar
[141]
Park, Y., Fuentes-Hernandez, C., Kim, K., Chou, W.F., Larrain, F.A., Graham, S., Pierron, O.N., Kippelen, B.: Skin-like low-noise elastomeric organic photodiodes. Sci. Adv. 7(51), eabj6565(2021)
CrossRef Google scholar
[142]
Pierre, A., Arias, A.C.: Solution-processed image sensors on flexible substrates. Flex. Print. Electron. 1(4), 043001(2016)
CrossRef Google scholar
[143]
Hou, X., Tang, W., Chen, S., Liang, J., Xu, H., Ouyang, B., Li, M., Song, Y., Chen, C.C., Too, P., Wei, X., Jin, L., Qi, G., Guo, X.: Large area and flexible organic active matrix image sensor array fabricated by solution coating processes at low temperature. In: Proceedings of 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 1–3(2021).
CrossRef Google scholar
[144]
Wu, Y.L., Fukuda, K., Yokota, T., Someya, T.: A highly responsive organic image sensor based on a two-terminal organic photodetector with photomultiplication. Adv. Mater. 31(43), e1903687(2019)
CrossRef Google scholar
[145]
Tordera, D., van Breemen, A., Kronemeijer, A., van der Steen, J.L., Peeters, B., Shanmugan, S., Akkerman, H., Gelinck, G.: Flexible and large-area imagers using organic photodetectors. In: Organic Flexible Electronics, pp 575–597. Elsevier, Amsterdam (2021).
CrossRef Google scholar
[146]
Yang, W., Qiu, W., Georgitzikis, E., Simoen, E., Serron, J., Lee, J., Lieberman, I., Cheyns, D., Malinowski, P., Genoe, J., Chen, H., Heremans, P.: Mitigating dark current for high-performance near-infrared organic photodiodes via charge blocking and defect passivation. ACS Appl. Mater. Interfaces 13(14), 16766–16774(2021)
CrossRef Google scholar
[147]
Han, M.G., Park, K.B., Bulliard, X., Lee, G.H., Yun, S., Leem, D.S., Heo, C.J., Yagi, T., Sakurai, R., Ro, T., Lim, S.J., Sul, S., Na, K., Ahn, J., Jin, Y.W., Lee, S.: Narrow-band organic photo-diodes for high-resolution imaging. ACS Appl. Mater. Interfaces 8(39), 26143–26151(2016)
CrossRef Google scholar
[148]
Sakai, T., Takagi, T., Imamura, K., Mineo, K., Yakushiji, H., Hashimoto, Y., Aotake, T., Sadamitsu, Y., Sato, H., Aihara, S.: Color-filter-free three-layer-stacked image sensor using blue/green-selective organic photoconductive films with thin-film transistor circuits on CMOS image sensors. ACS Appl. Electron. Mater. 3(7), 3085–3095(2021)
CrossRef Google scholar
[149]
Li, Y., Luo, H., Mao, L., Yu, L., Li, X., Jin, L., Zhang, J.: A solution-processed hole-transporting layer based on p-type CUCRO2 for organic photodetector and image sensor. Adv. Mater. Interfaces 8(20), 2100801(2021)
CrossRef Google scholar
[150]
Baierl, D., Pancheri, L., Schmidt, M., Stoppa, D., Dalla Betta, G.F., Scarpa, G., Lugli, P.: A hybrid CMOS-imager with a solution-processable polymer as photoactive layer. Nat. Commun. 3(1), 1175(2012)
CrossRef Google scholar
[151]
Shekhar, H., Fenigstein, A., Leitner, T., Lavi, B., Veinger, D., Tessler, N.: Hybrid image sensor of small molecule organic photodiode on CMOS-integration and characterization. Sci. Rep. 10(1), 7594(2020)
CrossRef Google scholar
[152]
Wu, P., Ye, L., Tong, L., Wang, P., Wang, Y., Wang, H., Ge, H., Wang, Z., Gu, Y., Zhang, K., Yu, Y., Peng, M., Wang, F., Huang, M., Zhou, P., Hu, W.: Van der Waals two-color infrared photodetector. Light Sci. Appl. 11(1), 6(2022)
CrossRef Google scholar
[153]
Dehzangi, A., Li, J., Razeghi, M.: Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light Sci. Appl. 10(1), 17(2021)
CrossRef Google scholar
[154]
Feng, Z., Tang, T., Wu, T., Yu, X., Zhang, Y., Wang, M., Zheng, J., Ying, Y., Chen, S., Zhou, J., Fan, X., Zhang, D., Li, S., Zhang, M., Qian, J.: Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 10(1), 197(2021)
CrossRef Google scholar
[155]
Li, C., Wang, H., Wang, F., Li, T., Xu, M., Wang, H., Wang, Z., Zhan, X., Hu, W., Shen, L.: Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci. Appl. 9(1), 31(2020)
CrossRef Google scholar
[156]
Seo, H., Aihara, S., Watabe, T., Ohtake, H., Kubota, M., Egami, N.: Color sensors with three vertically stacked organic photodetectors. Jpn. J. Appl. Phys. 46(49), L1240–L1242(2007)
CrossRef Google scholar
[157]
Lim, S.J., Leem, D.S., Park, K.B., Kim, K.S., Sul, S., Na, K., Lee, G.H., Heo, C.J., Lee, K.H., Bulliard, X., Satoh, R., Yagi, T., Ro, T., Im, D., Jung, J., Lee, M., Lee, T.Y., Han, M.G., Jin, Y.W., Lee, S.: Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors. Sci. Rep. 5(1), 7708(2015)
CrossRef Google scholar
[158]
Sato, S., Yamashita, T., Miyazaki, M.: UHD-2/8K camera recorder using organic cmos image sensor. SMPTE Motion Imaging J. 129(6), 52–60(2020)
CrossRef Google scholar
[159]
Lim, Y., Yun, S., Minami, D., Choi, T., Choi, H., Shin, J., Heo, C.J., Leem, D.S., Yagi, T., Park, K.B., Kim, S.: Green-light-selective organic photodiodes with high detectivity for CMOS color image sensors. ACS Appl. Mater. Interfaces 12(46), 51688–51698(2020)
CrossRef Google scholar
[160]
Banach, M., Markham, S., Agaiby, R., Too, P.: Low leakage organic backplanes for high pixel density optical sensors. SID Symp. Digest Tech. Papers 49(1), 90–91(2018)
CrossRef Google scholar
[161]
Tordera, D., Peeters, B., Akkerman, H.B., Breemen, A.J.J.M., Maas, J., Shanmugam, S., Kronemeijer, A.J., Gelinck, G.H.: A high-resolution thin-film fingerprint sensor using a printed organic photodetector. Adv. Mater. Technol. 4(11), 1900651(2019)
CrossRef Google scholar
[162]
Kamada, T., Hatsumi, R., Watanabe, K., Kawashima, S., Katayama, M., Adachi, H., Ishitani, T., Kusunoki, K., Kubota, D., Yamazaki, S.: OLED display incorporating organic photodiodes for fingerprint imaging. J. Soc. Inf. Disp. 27(6), 361–371(2019)
CrossRef Google scholar
[163]
Xu, Y., Ruan, C., Zhou, L., Zou, J., Xu, M., Wu, W., Wang, L., Peng, J.A.: 256 × 256 50-µm pixel pitch OPD image sensor based on an IZO TFT backplane. IEEE Sens. J. 21(18), 20824–20832(2021)
CrossRef Google scholar
[164]
Eckstein, R., Strobel, N., Rödlmeier, T., Glaser, K., Lemmer, U., Hernandez-Sosa, G.: Fully digitally printed image sensor based on organic photodiodes. Adv. Opt. Mater. 6(5), 1701108(2018)
CrossRef Google scholar
[165]
Posar, J.A., Davis, J., Alnaghy, S., Wilkinson, D., Cottam, S., Lee, D.M., Thompson, K.L., Holmes, N.P., Barr, M., Fahy, A., Nicolaidis, N.C., Louie, F., Fraboni, B., Sellin, P.J., Lerch, M.L.F., Rosenfeld, A.B., Petasecca, M., Griffith, M.J.: Polymer photodetectors for printable, flexible, and fully tissue equivalent X-ray detection with zero-bias operation and ultrafast temporal responses. Adv. Mater. Technol. 6(9), 2001298(2021)
CrossRef Google scholar
[166]
van Breemen, A.J.J.M., Simon, M., Tousignant, O., Shanmugam, S., van der Steen, J.-L., Akkerman, H.B., Kronemeijer, A., Ruetten, W., Raaijmakers, R., Alving, L., Jacobs, J., Malinowski, P.E., De Roose, F., Gelinck, G.H.: Curved digital X-ray detectors. NPJ Flex. Electron. 4(1), 1–8(2020)
CrossRef Google scholar
[167]
Li, A., Yao, C., Xia, J., Wang, H., Cheng, Q., Penty, R., Fainman, Y., Pan, S.: Advances in cost-effective integrated spectrometers. Light Sci. Appl. 11(1), 174(2022)
CrossRef Google scholar
[168]
Yang, Z., Albrow-Owen, T., Cai, W., Hasan, T.: Miniaturization of optical spectrometers. Science 371(6528), eabe0722(2021)
CrossRef Google scholar
[169]
Vega-Colado, C., Arredondo, B., Torres, J.C., López-Fraguas, E., Vergaz, R., Martín-Martín, D., Del Pozo, G., Romero, B., Apilo, P., Quintana, X., Geday, M.A., De Dios, C., Sánchez-Pena, J.M.: An all-organic flexible visible light communication system. Sensors (Basel) 18(9), 3045(2018)
CrossRef Google scholar
[170]
Haigh, P.A., Ghassemlooy, Z., Le Minh, H., Rajbhandari, S., Arca, F., Tedde, S.F., Hayden, O., Papakonstantinou, I.: Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications. J. Lightwave Technol. 30(19), 3081–3088(2012)
CrossRef Google scholar
[171]
Dong, Y., Shi, M., Yang, X., Zeng, P., Gong, J., Zheng, S., Zhang, M., Liang, R., Ou, Q., Chi, N., Zhang, S.: Nanopatterned luminescent concentrators for visible light communications. Opt. Express 25(18), 21926–21934(2017)
CrossRef Google scholar
[172]
Cao, J., Shan, T., Wang, J.K., Xu, Y.X., Ren, X., Zhong, H.: Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes Pigments 165, 354–360(2019)
CrossRef Google scholar
[173]
Chi, N., Hu, F., Zhou, Y.: The challenges and prospects of high-speed visible light communication technology. ZTE Technol. J. 25(5), 56–61(2019)
[174]
Li, L., Zhao, H., Liu, C., Li, L., Cui, T.J.: Intelligent metasurfaces: control, communication and computing. eLight 2(7), 1–24(2022)
CrossRef Google scholar
[175]
Tavakkolnia, I., Jagadamma, L.K., Bian, R., Manousiadis, P.P., Videv, S., Turnbull, G.A., Samuel, I.D.W., Haas, H.: Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications. Light Sci. Appl. 10(1), 41(2021)
CrossRef Google scholar
[176]
Ghassemlooy, Z., Haigh, P.A., Arca, F., Tedde, S.F., Hayden, O., Papakonstantinou, I., Rajbhandari, S.: Visible light communications: 375 Mbits/s data rate with a 160 kHz bandwidth organic photodetector and artificial neural network equalization. Photon. Res. 1(2), 65(2013)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(6048 KB)

Accesses

Citations

Detail

Sections
Recommended

/