Organic photodiodes: device engineering and applications
Tong Shan, Xiao Hou, Xiaokuan Yin, Xiaojun Guo
Organic photodiodes: device engineering and applications
Organic photodiodes (OPDs) have shown great promise for potential applications in optical imaging, sensing, and communication due to their wide-range tunable photoelectrical properties, low-temperature facile processes, and excellent mechanical flexibility. Extensive research work has been carried out on exploring materials, device structures, physical mechanisms, and processing approaches to improve the performance of OPDs to the level of their inorganic counterparts. In addition, various system prototypes have been built based on the exhibited and attractive features of OPDs. It is vital to link the device optimal design and engineering to the system requirements and examine the existing deficiencies of OPDs towards practical applications, so this review starts from discussions on the required key performance metrics for different envisioned applications. Then the fundamentals of the OPD device structures and operation mechanisms are briefly introduced, and the latest development of OPDs for improving the key performance merits is reviewed. Finally, the trials of OPDs for various applications including wearable medical diagnostics, optical imagers, spectrometers, and light communications are reviewed, and both the promises and challenges are revealed.
Organic photodiodes / Wearable electronics / Photoplethysmography / Optical imagers / Spectrometers / Optical communications
[1] |
García de Arquer, F.P., Armin, A., Meredith, P., Sargent, E.H.: Solution-processed semiconductors for next-generation photo-detectors. Nat. Rev. Mater. 2(3), 1–17(2017)
CrossRef
Google scholar
|
[2] |
Tan, C.L., Mohseni, H.: Emerging technologies for high performance infrared detectors. Nanophotonics 7(1), 169–197(2018)
CrossRef
Google scholar
|
[3] |
Rogalski, A., Kopytko, M., Martyniuk, P.: 2D material infrared and terahertz detectors: status and outlook. Opto-Electron. Rev. 28(3), 107–154(2020)
|
[4] |
Saran, R., Curry, R.J.: Lead sulphide nanocrystal photodetector technologies. Nat. Photon. 10(2), 81–92(2016)
CrossRef
Google scholar
|
[5] |
Bruns, O.T., Bischof, T.S., Harris, D.K., Franke, D., Shi, Y., Riedemann, L., Bartelt, A., Jaworski, F.B., Carr, J.A., Rowlands, C.J., Wilson, M.W.B., Chen, O., Wei, H., Hwang, G.W., Montana, D.M., Coropceanu, I., Achorn, O.B., Kloepper, J., Heeren, J., So, P.T.C., Fukumura, D., Jensen, K.F., Jain, R.K., Bawendi, M.G.: Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1(4), 1–11(2017)
CrossRef
Google scholar
|
[6] |
Xu, Y., Lin, Q.: Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Appl. Phys. Rev. 7(1), 011315(2020)
CrossRef
Google scholar
|
[7] |
Lau, Y.S., Lan, Z., Cai, L., Zhu, F.: High-performance solution-processed large-area transparent self-powered organic near-infrared photodetectors. Mater. Today Energy. 21, 100708(2021)
CrossRef
Google scholar
|
[8] |
Ng, T.N., Wong, W.S., Chabinyc, M.L., Sambandan, S., Street, R.A.: Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 92(21), 213303(2008)
CrossRef
Google scholar
|
[9] |
Pierre, A., Deckman, I., Lechêne, P.B., Arias, A.C.: High detectivity all-printed organic photodiodes. Adv. Mater. 27(41), 6411–6417(2015)
CrossRef
Google scholar
|
[10] |
Verstraeten, F., Gielen, S., Verstappen, P., Raymakers, J., Penxten, H., Lutsen, L., Vandewal, K., Maes, W.: Efficient and readily tuneable near-infrared photodetection up to 1500 nm enabled by thiadiazoloquinoxaline-based push–pull type conjugated polymers. J. Mater. Chem. C Mater. Opt. Electron. Devices. 8(29), 10098–10103(2020)
CrossRef
Google scholar
|
[11] |
Guo, D., Yang, L., Zhao, J., Li, J., He, G., Yang, D., Wang, L., Vadim, A., Ma, D.: Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1000000. Mater. Horiz. 8(8), 2293–2302(2021)
CrossRef
Google scholar
|
[12] |
Ding, N., Wu, Y., Xu, W., Lyu, J., Wang, Y., Zi, L., Shao, L., Sun, R., Wang, N., Liu, S., Zhou, D., Bai, X., Zhou, J., Song, H.: A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. Light Sci. Appl. 11(1), 91(2022)
CrossRef
Google scholar
|
[13] |
Jacoutot, P., Scaccabarozzi, A.D., Zhang, T., Qiao, Z., Aniés, F., Neophytou, M., Bristow, H., Kumar, R., Moser, M., Nega, A.D., Schiza, A., Dimitrakopoulou-Strauss, A., Gregoriou, V.G., Anthopoulos, T.D., Heeney, M., McCulloch, I., Bakulin, A.A., Chochos, C.L., Gasparini, N.: Infrared organic photodetectors employing ultralow bandgap polymer and non-fullerene acceptors for biometric monitoring. Small 18(15), e2200580(2022)
CrossRef
Google scholar
|
[14] |
Fuentes-Hernandez, C., Chou, W.F., Khan, T.M., Diniz, L., Lukens, J., Larrain, F.A., Rodriguez-Toro, V.A., Kippelen, B.: Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370(6517), 698–701(2020)
CrossRef
Google scholar
|
[15] |
Park, S., Fukuda, K., Wang, M., Lee, C., Yokota, T., Jin, H., Jinno, H., Kimura, H., Zalar, P., Matsuhisa, N., Umezu, S., Bazan, G.C., Someya, T.: Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater. 30(34), e1802359(2018)
CrossRef
Google scholar
|
[16] |
Chow, P.C.Y., Someya, T.: Organic photodetectors for nextgeneration wearable electronics. Adv. Mater. 32(15), e1902045(2020)
CrossRef
Google scholar
|
[17] |
Wang, C., Zhang, X., Hu, W.: Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chem. Soc. Rev. 49(3), 653–670(2020)
CrossRef
Google scholar
|
[18] |
Simone, G., Dyson, M.J., Meskers, S.C.J., Janssen, R.A.J., Gelinck, G.H.: Organic photodetectors and their application in large area and flexible image sensors: the role of dark current. Adv. Funct. Mater. 30(20), 1904205(2020)
CrossRef
Google scholar
|
[19] |
Ren, H., Chen, J.D., Li, Y.Q., Tang, J.X.: Recent progress in organic photodetectors and their applications. Adv. Sci. (Weinh.) 8(1), 2002418(2021)
CrossRef
Google scholar
|
[20] |
Yokota, T., Fukuda, K., Someya, T.: Recent progress of flexible image sensors for biomedical applications. Adv. Mater. 33(19), e2004416(2021)
CrossRef
Google scholar
|
[21] |
Matheus, L.E.M., Vieira, A.B., Vieira, L.F., Vieira, M.A., Gnawali, O.: Visible light communication: concepts, applications and challenges. IEEE Comm. Surv. Tutor. 21(4), 3204–3237(2019)
CrossRef
Google scholar
|
[22] |
Lau, Y., Zhu, F.: Visualization of near-infrared light and applications. Chin. J. Liq. Crys. Disp. 36(1), 78–104(2021)
CrossRef
Google scholar
|
[23] |
Naseer, N., Hong, K.S.: fNIRS-based brain-computer interfaces: a review. Front. Hum. Neurosci. 9, 3(2015)
CrossRef
Google scholar
|
[24] |
Li, N., Eedugurala, N., Azoulay, J.D., Ng, T.N.: A filterless organic photodetector electrically switchable between visible and infrared detection. Cell Rep. Phys. Sci. 3(1), 100711(2022)
CrossRef
Google scholar
|
[25] |
Zhang, D., Fuentes-Hernandez, C., Vijayan, R., Zhang, Y., Li, Y., Park, J.W., Wang, Y., Zhao, Y., Arora, N., Mirzazadeh, A., Do, Y., Cheng, T., Swaminathan, S., Starner, T., Andrew, T.L., Abowd, G.D.: Flexible computational photodetectors for self-powered activity sensing. NPJ Flex. Electron. 6(1), 1–8(2022)
CrossRef
Google scholar
|
[26] |
Li, N., Eedugurala, N., Leem, D.S., Azoulay, J.D., Ng, T.N.: Organic upconversion imager with dual electronic and optical readouts for shortwave infrared light detection. Adv. Funct. Mater. 31(16), 2100565(2021)
CrossRef
Google scholar
|
[27] |
Li, N., Lan, Z., Lau, Y.S., Xie, J., Zhao, D., Zhu, F.: Swir photo-detection and visualization realized by incorporating an organic SWIR sensitive bulk heterojunction. Adv. Sci. (Weinh.) 7(14), 2000444(2020)
CrossRef
Google scholar
|
[28] |
Du, X., Han, J., He, Z., Han, C., Wang, X., Wang, J., Jiang, Y., Tao, S.: Efficient organic upconversion devices for low energy consumption and high-quality noninvasive imaging. Adv. Mater. 33(42), e2102812(2021)
CrossRef
Google scholar
|
[29] |
Yang, D., Zhou, X., Ma, D., Vadim, A., Ahamad, T., Alshehri, S.M.: Near infrared to visible light organic up-conversion devices with photon-to-photon conversion efficiency approaching 30%. Mater. Horiz. 5(5), 874–882(2018)
CrossRef
Google scholar
|
[30] |
Tedde, S., Zaus, E., Furst, J., Henseler, D., Lugli, P.: Active pixel concept combined with organic photodiode for imaging devices. IEEE Electron Device Lett. 28(10), 893–895(2007)
CrossRef
Google scholar
|
[31] |
Yokota, T., Nakamura, T., Kato, H., Mochizuki, M., Tada, M., Uchida, M., Lee, S., Koizumi, M., Yukita, W., Takimoto, A., Someya, T.: A conformable imager for biometric authentication and vital sign measurement. Nat. Electron. 3(2), 113–121(2020)
CrossRef
Google scholar
|
[32] |
Zhao, C., Kanicki, J.: Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor X-ray imager for digital breast tomosynthesis. Med. Phys. 41(9), 091902(2014)
CrossRef
Google scholar
|
[33] |
Hou, X., Chen, S., Tang, W., Liang, J., Ouyang, B., Li, M., Song, Y., Shan, T., Chen, C.C., Too, P., Wei, X., Jin, L., Qi, G., Guo, X.: Low-temperature solution-processed all organic integration for large-area and flexible high-resolution imaging. IEEE J. Electron Devices Soc. 10, 821–826(2022)
CrossRef
Google scholar
|
[34] |
Gelinck, G.H., Kumar, A., Moet, D., van der Steen, J.L., Shafique, U., Malinowski, P.E., Myny, K., Rand, B.P., Simon, M., Rütten, W., Douglas, A., Jorritsma, J., Heremans, P., Andriessen, R.: X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate. Org. Electron. 14(10), 2602–2609(2013)
CrossRef
Google scholar
|
[35] |
Xing, S., Nikolis, V.C., Kublitski, J., Guo, E., Jia, X., Wang, Y., Spoltore, D., Vandewal, K., Kleemann, H., Benduhn, J., Leo, K.: Miniaturized Vis-NIR spectrometers based on narrowband and tunable transmission cavity organic photodetectors with ultra-high specific detectivity above 1014 Jones. Adv. Mater. 33(44), e2102967(2021)
CrossRef
Google scholar
|
[36] |
Tang, Z., Ma, Z., Sánchez-Díaz, A., Ullbrich, S., Liu, Y., Siegmund, B., Mischok, A., Leo, K., Campoy-Quiles, M., Li, W., Vandewal, K.: Polymer: fullerene bimolecular crystals for near-infrared spectroscopic photodetectors. Adv. Mater. 29(33), 1702184(2017)
CrossRef
Google scholar
|
[37] |
Chow, C.W., Wang, H.Y., Chen, C.H., Zan, H.W., Yeh, C.H., Meng, H.F.: Pre-distortion scheme to enhance the transmission performance of organic photo-detector (OPD) based visible light communication (VLC). IEEE Access 6, 7625–7630(2018)
CrossRef
Google scholar
|
[38] |
Li, W., Li, S., Duan, L., Chen, H., Wang, L., Dong, G., Xu, Z.: Squarylium and rubrene based filterless narrowband photodetectors for an all-organic two-channel visible light communication system. Org. Electron. 37, 346–351(2016)
CrossRef
Google scholar
|
[39] |
Lan, Z., Lau, Y.S., Cai, L., Han, J., Suen, C.W., Zhu, F.: Dualband organic photodetectors for dual-channel optical communications. Laser Photon. Rev. 16(7), 2100602(2022)
CrossRef
Google scholar
|
[40] |
Strobel, N., Droseros, N., Köntges, W., Seiberlich, M., Pietsch, M., Schlisske, S., Lindheimer, F., Schröder, R.R., Lemmer, U., Pfannmöller, M., Banerji, N., Hernandez-Sosa, G.: Color-selective printed organic photodiodes for filterless multichannel visible light communication. Adv. Mater. 32(12), e1908258(2020)
CrossRef
Google scholar
|
[41] |
Babics, M., Bristow, H., Zhang, W., Wadsworth, A., Neophytou, M., Gasparini, N., McCulloch, I.: Non-fullerene-based organic photodetectors for infrared communication. J. Mater. Chem. C Mater. Opt. Electron. Devices 9(7), 2375–2380(2021)
CrossRef
Google scholar
|
[42] |
Lee, S.H., Yusoff, A., Lee, C., Yoon, S.C., Noh, Y.Y.: Toward color-selective printed organic photodetectors for high-resolution image sensors: from fundamentals to potential commercialization. Mater. Sci. Eng. Rep. 147, 100660(2022)
CrossRef
Google scholar
|
[43] |
Song, J.K., Kim, M.S., Yoo, S., Koo, J.H., Kim, D.H.: Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res. 14(9), 2919–2937(2021)
CrossRef
Google scholar
|
[44] |
Lan, Z., Lee, M.H., Zhu, F.: Recent advances in solution-processable organic photodetectors and applications in flexible electronics. Adv. Intell. Syst. 4(3), 2100167(2022)
CrossRef
Google scholar
|
[45] |
Li, N., Mahalingavelar, P., Vella, J.H., Leem, D.S., Azoulay, J.D., Ng, T.N.: Solution-processable infrared photodetectors: materials, device physics, and applications. Mater. Sci. Eng. Rep. 146, 100643(2021)
CrossRef
Google scholar
|
[46] |
Simone, G., Dyson, M.J., Weijtens, C.H.L., Meskers, S.C.J., Coehoorn, R., Janssen, R.A.J., Gelinck, G.H.: On the origin of dark current in organic photodiodes. Adv. Opt. Mater. 8(1), 1901568(2020)
CrossRef
Google scholar
|
[47] |
Fang, Y., Armin, A., Meredith, P., Huang, J.: Accurate characterization of next-generation thin-film photodetectors. Nat. Photon. 13(1), 1–4(2019)
CrossRef
Google scholar
|
[48] |
Lee, H., Park, C., Sin, D.H., Park, J.H., Cho, K.: Recent advances in morphology optimization for organic photovoltaics. Adv. Mater. 30(34), e1800453(2018)
CrossRef
Google scholar
|
[49] |
Gaspar, H., Figueira, F., Pereira, L., Mendes, A., Viana, J.C., Bernardo, G.: Recent developments in the optimization of the bulk heterojunction morphology of polymer: fullerene solar cells. Materials (Basel) 11(12), E2560(2018)
CrossRef
Google scholar
|
[50] |
Brabec, C.J., Durrant, J.R.: Solution-processed organic solar cells. MRS Bull. 33(7), 670–675(2008)
CrossRef
Google scholar
|
[51] |
Ma, L., Zhang, S., Wang, J., Xu, Y., Hou, J.: Recent advances in non-fullerene organic solar cells: from lab to fab. Chem. Commun. (Camb.) 56(92), 14337–14352(2020)
CrossRef
Google scholar
|
[52] |
Dou, L., Liu, Y., Hong, Z., Li, G., Yang, Y.: Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115(23), 12633–12665(2015)
CrossRef
Google scholar
|
[53] |
Pivrikas, A., Sariciftci, N.S., Juška, G., Österbacka, R.: A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog. Photovolt. Res. Appl. 15(8), 677–696(2007)
CrossRef
Google scholar
|
[54] |
Ameri, T., Heumüller, T., Min, J., Li, N., Matt, G., Scherf, U., Brabec, C.J.: IR sensitization of an indene-C60 bisadduct (ICBA) in ternary organic solar cells. Energy Environ. Sci. 6(6), 1796–1801 (2013)
CrossRef
Google scholar
|
[55] |
Zhang, J., Tan, H.S., Guo, X., Facchetti, A., Yan, H.: Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3(9), 720–731(2018)
CrossRef
Google scholar
|
[56] |
Liu, W., Zhang, R., Wei, Q., Zhu, C., Yuan, J., Gao, F., Zou, Y.: Manipulating molecular aggregation and crystalline behavior of A-DA’D-A type acceptors by side chain engineering in organic solar cells. Aggregate 3(3), e183(2022)
CrossRef
Google scholar
|
[57] |
Zhang, X., Li, G., Mukherjee, S., Huang, W., Zheng, D., Feng, L.W., Chen, Y., Wu, J., Sangwan, V.K., Hersam, M.C., DeLongchamp, D.M., Yu, J., Facchetti, A., Marks, T.J.: Systematically controlling acceptor fluorination optimizes hierarchical morphology, vertical phase separation, and efficiency in non-fullerene organic solar cells. Adv. Energy Mater. 12(1), 2102172(2022)
CrossRef
Google scholar
|
[58] |
Wang, Z., Zhu, L., Shuai, Z., Wei, Z.: A–π–D–π–A electron-donating small molecules for solution-processed organic solar cells: a review. Macromol. Rapid Commun. 38(22), 1700470(2017)
CrossRef
Google scholar
|
[59] |
Shan, T., Ding, K., Yu, L., Wang, X., Zhang, Y., Zheng, X., Chen, C.C., Peng, Q., Zhong, H.: Spatially orthogonal 2d sidechains optimize morphology in all-small-molecule organic solar cells. Adv. Funct. Mater. 31(24), 2100750(2021)
CrossRef
Google scholar
|
[60] |
Li, Y., Chen, H., Zhang, J.: Carrier blocking layer materials and application in organic photodetectors. Nanomaterials (Basel) 11(6), 1404(2021)
CrossRef
Google scholar
|
[61] |
Lim, S.B., Ji, C.H., Oh, I.S., Oh, S.Y.: Reduced leakage current and improved performance of an organic photodetector using an ytterbium cathode interlayer. J. Mater. Chem. C Mater. Opt. Electron. Devices 4(22), 4920–4926(2016)
CrossRef
Google scholar
|
[62] |
Bouthinon, B., Clerc, R., Verilhac, J., Racine, B., De Girolamo, J., Jacob, S., Lienhard, P., Joimel, J., Dhez, O., Revaux, A.: On the front and back side quantum efficiency differences in semitransparent organic solar cells and photodiodes. J. Appl. Phys. 123(12), 125501(2018)
CrossRef
Google scholar
|
[63] |
Sato, Y., Kajii, H., Ohmori, Y.: Improved performance of polymer photodetectors using indium–tin-oxide modified by phosphonic acid-based self-assembled monolayer treatment. Org. Electron. 15(8), 1753–1758(2014)
CrossRef
Google scholar
|
[64] |
Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A.J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T.M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J.L., Marder, S.R., Kahn, A., Kippelen, B.: A universal method to produce low-work function electrodes for organic electronics. Science 336(6079), 327–332(2012)
CrossRef
Google scholar
|
[65] |
He, Z., Zhang, C., Xu, X., Zhang, L., Huang, L., Chen, J., Wu, H., Cao, Y.: Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor. Adv. Mater. 23(27), 3086–3089(2011)
CrossRef
Google scholar
|
[66] |
Wang, T., Wang, Y., Zhu, L., Lv, L., Hu, Y., Deng, Z., Cui, Q., Lou, Z., Hou, Y., Teng, F.: High sensitivity and fast response sol-gel ZnO electrode buffer layer based organic photodetectors with large linear dynamic range at low operating voltage. Org. Electron. 56, 51–58(2018)
CrossRef
Google scholar
|
[67] |
Zhu, H.L., Choy, W.C., Sha, W.E., Ren, X.: Photovoltaic mode ultraviolet organic photodetectors with high on/off ratio and fast response. Adv. Opt. Mater. 2(11), 1082–1089(2014)
CrossRef
Google scholar
|
[68] |
Deng, R., Yan, C., Deng, Y., Hu, Y., Deng, Z., Cui, Q., Lou, Z., Hou, Y., Teng, F.: High-performance polymer photodetector using the non-thermal-and-non-ultraviolet–ozone-treated SnO2 interfacial layer. Physica Status Solidi (RRL) - Rapid Res. Lett. 14(3), 1900531(2020)
CrossRef
Google scholar
|
[69] |
Zheng, Z., Wang, J., Bi, P., Ren, J., Wang, Y., Yang, Y., Liu, X., Zhang, S., Hou, J.: Tandem organic solar cell with 20.2% efficiency. Joule 6(1), 171–184(2022)
CrossRef
Google scholar
|
[70] |
Lu, H., Lin, J., Wu, N., Nie, S., Luo, Q., Ma, C.Q., Cui, Z.: Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Appl. Phys. Lett. 106(9), 093302(2015)
CrossRef
Google scholar
|
[71] |
Baeg, K.J., Binda, M., Natali, D., Caironi, M., Noh, Y.Y.: Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25(31), 4267–4295(2013)
CrossRef
Google scholar
|
[72] |
Tam, K.C., Kubis, P., Maisch, P., Brabec, C.J., Egelhaaf, H.J.: Fully printed organic solar modules with bottom and top silver nanowire electrodes. Prog. Photovolt. Res. Appl. 30(5), 528–542(2022)
CrossRef
Google scholar
|
[73] |
Cao, W., Li, J., Chen, H., Xue, J.: Transparent electrodes for organic optoelectronic devices: a review. J. Photon. Energy 4(1), 040990(2014)
CrossRef
Google scholar
|
[74] |
Kim, D.H., Kim, K.S., Shim, H.S., Moon, C.K., Jin, Y.W., Kim, J.J.: A high performance semitransparent organic photodetector with green color selectivity. Appl. Phys. Lett. 105(21), 213301(2014)
CrossRef
Google scholar
|
[75] |
Kim, H., Lee, K.T., Zhao, C., Guo, L.J., Kanicki, J.: Top illuminated organic photodetectors with dielectric/metal/dielectric transparent anode. Org. Electron. 20, 103–111(2015)
CrossRef
Google scholar
|
[76] |
Zhang, H., Jenatsch, S., De Jonghe, J., Nüesch, F., Steim, R., Véron, A.C., Hany, R.: Transparent organic photodetector using a near-infrared absorbing cyanine dye. Sci. Rep. 5(1), 9439(2015)
CrossRef
Google scholar
|
[77] |
Qi, Z., Cao, J., Ding, L., Wang, J.: Transparent and transferrable organic optoelectronic devices based on WO3/Ag/WO3 electrodes. Appl. Phys. Lett. 106(5), 053304(2015)
CrossRef
Google scholar
|
[78] |
Lee, D., So, S., Hu, G., Kim, M., Badloe, T., Cho, H., Kim, J., Kim, H., Qiu, C.-W., Rho, J.: Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight 2(1), 1–23(2022)
CrossRef
Google scholar
|
[79] |
Shan, T., Zhang, Y., Wang, Y., Xie, Z., Wei, Q., Xu, J., Zhang, M., Wang, C., Bao, Q., Wang, X., Chen, C.C., Huang, J., Chen, Q., Liu, F., Chen, L., Zhong, H.: Universal and versatile morphology engineering via hot fluorous solvent soaking for organic bulk heterojunction. Nat. Commun. 11(1), 5585(2020)
CrossRef
Google scholar
|
[80] |
Luo, D., Zhang, Y., Li, L., Shan, C., Liu, Q., Wang, Z., Choy, W.C., Kyaw, A.K.K.: Near-infrared non-fused ring acceptors with light absorption up to 1000 nm for efficient and low-energy loss organic solar cells. Mater. Today Energy 24, 100938(2022)
CrossRef
Google scholar
|
[81] |
Li, Y., Huang, W., Zhao, D., Wang, L., Jiao, Z., Huang, Q., Wang, P., Sun, M., Yuan, G.: Recent progress in organic solar cells: a review on materials from acceptor to donor. Molecules 27(6), 1800(2022)
CrossRef
Google scholar
|
[82] |
Wang, Z., Peng, Z., Xiao, Z., Seyitliyev, D., Gundogdu, K., Ding, L., Ade, H.: Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv. Mater. 32(49), e2005386(2020)
CrossRef
Google scholar
|
[83] |
Wei, Q., Yuan, J., Yi, Y., Zhang, C., Zou, Y.: Y6 and its derivatives: molecular design and physical mechanism. Natl. Sci. Rev. 8(8), nwa121(2021)
CrossRef
Google scholar
|
[84] |
Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.L., Lau, T.K., Lu, X., Zhu, C., Peng, H., Johnson, P.A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y., Zou, Y.: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electrondeficient core. Joule 3(4), 1140–1151(2019)
CrossRef
Google scholar
|
[85] |
Park, B., Jung, J., Lim, D.H., Lee, H., Park, S., Kyeong, M., Ko, S.J., Eom, S.H., Lee, S.H., Lee, C., Yoon, S.C.: Significant dark current suppression in organic photodetectors using side chain fluorination of conjugated polymer. Adv. Funct. Mater. 32(4), 2108026(2022)
CrossRef
Google scholar
|
[86] |
Zhang, D., Zhao, D., Wang, Z., Yu, J.: Processes controlling the distribution of vertical organic composition in organic photodetectors by ultrasonic-assisted solvent vapor annealing. ACS Appl. Electron. Mater. 2(7), 2188–2195(2020)
CrossRef
Google scholar
|
[87] |
Biele, M., Montenegro Benavides, C., Hürdler, J., Tedde, S.F., Brabec, C.J., Schmidt, O.: Spray-coated organic photodetectors and image sensors with silicon-like performance. Adv. Mater. Technol. 4(1), 1800158(2019)
CrossRef
Google scholar
|
[88] |
Huang, J., Lee, J., Vollbrecht, J., Brus, V.V., Dixon, A.L., Cao, D.X., Zhu, Z., Du, Z., Wang, H., Cho, K., Bazan, G.C., Nguyen, T.Q.: A high-performance solution-processed organic photodetector for near-infrared sensing. Adv. Mater. 32(1), e1906027(2020)
CrossRef
Google scholar
|
[89] |
Xu, Y., Yuan, J., Liang, S., Chen, J.D., Xia, Y., Larson, B.W., Wang, Y., Su, G.M., Zhang, Y., Cui, C., Wang, M., Zhao, H., Ma, W.: Simultaneously improved efficiency and stability in all-polymer solar cells by a p–i–n architecture. ACS Energy Lett. 4(9), 2277–2286(2019)
CrossRef
Google scholar
|
[90] |
Shan, T., Hong, Y., Zhu, L., Wang, X., Zhang, Y., Ding, K., Liu, F., Chen, C.C., Zhong, H.: Achieving optimal bulk hetero-junction in all-polymer solar cells by sequential processing with nonorthogonal solvents. ACS Appl. Mater. Interfaces 11(45), 42438–42446(2019)
CrossRef
Google scholar
|
[91] |
Kim, M.S., Jang, W., Nguyen, T.Q., Wang, D.H.: Morphology inversion of a non-fullerene acceptor via adhesion controlled decal-coating for efficient conversion and detection in organic electronics. Adv. Funct. Mater. 31(38), 2103705(2021)
CrossRef
Google scholar
|
[92] |
Zhong, Z., Bu, L., Zhu, P., Xiao, T., Fan, B., Ying, L., Lu, G., Yu, G., Huang, F., Cao, Y.: Dark current reduction strategy via a layer-by-layer solution process for a high-performance all-polymer photodetector. ACS Appl. Mater. Interfaces 11(8), 8350–8356(2019)
CrossRef
Google scholar
|
[93] |
Sun, R., Guo, J., Sun, C., Wang, T., Luo, Z., Zhang, Z., Jiao, X., Tang, W., Yang, C., Li, Y., Min, J.: A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 12(1), 384–395(2019)
CrossRef
Google scholar
|
[94] |
Wei, Y., Chen, H., Liu, T., Wang, S., Jiang, Y., Song, Y., Zhang, J., Zhang, X., Lu, G., Huang, F., Wei, Z., Huang, H.: Self-powered organic photodetectors with high detectivity for near infrared light detection enabled by dark current reduction. Adv. Funct. Mater. 31(52), 2106326(2021)
CrossRef
Google scholar
|
[95] |
Xiong, S., Li, J., Peng, J., Dong, X., Qin, F., Wang, W., Sun, L., Xu, Y., Lin, Q., Zhou, Y.: Water transfer printing of multi-layered near-infrared organic photodetectors. Adv. Opt. Mater. 10(1), 2101837(2022)
CrossRef
Google scholar
|
[96] |
Huang, Z., Zhong, Z., Peng, F., Ying, L., Yu, G., Huang, F., Cao, Y.: Copper thiocyanate as an anode interfacial layer for efficient near-infrared organic photodetector. ACS Appl. Mater. Interfaces 13(1), 1027–1034(2021)
CrossRef
Google scholar
|
[97] |
Xu, X., Zhou, X., Zhou, K., Xia, Y., Ma, W., Inganäs, O.: Largearea, semitransparent, and flexible all-polymer photodetectors. Adv. Funct. Mater. 28(48), 1805570(2018)
CrossRef
Google scholar
|
[98] |
Saracco, E., Bouthinon, B., Verilhac, J.M., Celle, C., Chevalier, N., Mariolle, D., Dhez, O., Simonato, J.P.: Work function tuning for high-performance solution-processed organic photodetectors with inverted structure. Adv. Mater. 25(45), 6534–6538(2013)
CrossRef
Google scholar
|
[99] |
Binda, M., Iacchetti, A., Natali, D., Beverina, L., Sassi, M., Sampietro, M.: High detectivity squaraine-based near infrared photodetector with NA/cm2 dark current. Appl. Phys. Lett. 98(7), 073303(2011)
CrossRef
Google scholar
|
[100] |
Zhou, X., Yang, D., Ma, D.: Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Opt. Mater. 3(11), 1570–1576(2015)
CrossRef
Google scholar
|
[101] |
Benavides, C.M., Murto, P., Chochos, C.L., Gregoriou, V.G., Avgeropoulos, A., Xu, X., Bini, K., Sharma, A., Andersson, M.R., Schmidt, O., Brabec, C.J., Wang, E., Tedde, S.F.: High-performance organic photodetectors from a high-bandgap indacenodithiophene-based π-conjugated donor-acceptor polymer. ACS Appl. Mater. Interfaces 10(15), 12937–12946(2018)
CrossRef
Google scholar
|
[102] |
Sim, K.M., Yoon, S., Kim, S.K., Ko, H., Hassan, S.Z., Chung, D.S.: Surfactant-induced solubility control to realize water-processed high-precision patterning of polymeric semiconductors for full color organic image sensor. ACS Nano 14(1), 415–421(2020)
CrossRef
Google scholar
|
[103] |
Lan, Z., Zhu, F.: Electrically switchable color-selective organic photodetectors for full-color imaging. ACS Nano 15(8), 13674–13682(2021)
CrossRef
Google scholar
|
[104] |
Yang, J., Huang, J., Li, R., Li, H., Sun, B., Lin, Q., Wang, M., Ma, Z., Vandewal, K., Tang, Z.: Cavity-enhanced near-infrared organic photodetectors based on a conjugated polymer containing [1,2,5]selenadiazolo[3,4-c]pyridine. Chem. Mater. 33(13), 5147–5155(2021)
CrossRef
Google scholar
|
[105] |
Lan, Z., Lau, Y.S., Wang, Y., Xiao, Z., Ding, L., Luo, D., Zhu, F.: Filter-free band-selective organic photodetectors. Adv. Opt. Mater. 8(24), 2001388(2020)
CrossRef
Google scholar
|
[106] |
Vanderspikken, J., Maes, W., Vandewal, K.: Wavelength-selective organic photodetectors. Adv. Funct. Mater. 31(36), 2104060(2021)
CrossRef
Google scholar
|
[107] |
Schembri, T., Kim, J.H., Liess, A., Stepanenko, V., Stolte, M., Würthner, F.: Semitransparent layers of social self-sorting merocyanine dyes for ultranarrow bandwidth organic photodiodes. Adv. Opt. Mater. 9(15), 2100213(2021)
CrossRef
Google scholar
|
[108] |
Wang, Y., Kublitski, J., Xing, S., Dollinger, F., Spoltore, D., Benduhn, J., Leo, K.: Narrowband organic photodetectors-towards miniaturized, spectroscopic sensing. Mater. Horiz. 9(1), 220–251(2022)
CrossRef
Google scholar
|
[109] |
Armin, A., Jansen-van Vuuren, R.D., Kopidakis, N., Burn, P.L., Meredith, P.: Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6(1), 6343(2015)
CrossRef
Google scholar
|
[110] |
Wang, W., Zhang, F., Du, M., Li, L., Zhang, M., Wang, K., Wang, Y., Hu, B., Fang, Y., Huang, J.: Highly narrowband photomultiplication type organic photodetectors. Nano Lett. 17(3), 1995–2002(2017)
CrossRef
Google scholar
|
[111] |
Xie, B., Xie, R., Zhang, K., Yin, Q., Hu, Z., Yu, G., Huang, F., Cao, Y.: Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 11(1), 2871(2020)
CrossRef
Google scholar
|
[112] |
Xing, S., Wang, X., Guo, E., Kleemann, H., Leo, K.: Organic thin-film red-light photodiodes with tunable spectral response via selective exciton activation. ACS Appl. Mater. Interfaces 12(11), 13061–13067(2020)
CrossRef
Google scholar
|
[113] |
Wang, C., Zhang, C., Chen, Q., Chen, L.: Improving the photomultiplication in organic photodetectors with narrowband response by interfacial engineering. Acta Chim. Sin. 79(8), 1030–1036(2021)
CrossRef
Google scholar
|
[114] |
Ünlü, M.S., Strite, S.: Resonant cavity enhanced photonic devices. J. Appl. Phys. 78(2), 607–639(1995)
CrossRef
Google scholar
|
[115] |
Xiong, J., Wu, S.-T.: Planar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applications. eLight 1(3), 1–20(2021)
CrossRef
Google scholar
|
[116] |
Du, Y., Zou, C.L., Zhang, C., Wang, K., Qiao, C., Yao, J., Zhao, Y.S.: Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light Sci. Appl. 9(1), 151(2020)
CrossRef
Google scholar
|
[117] |
Zang, C., Liu, S., Xu, M., Wang, R., Cao, C., Zhu, Z., Zhang, J., Wang, H., Zhang, L., Xie, W., Lee, C.S.: Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light Sci. Appl. 10(1), 116(2021)
CrossRef
Google scholar
|
[118] |
Zhao, Z., Xu, C., Ma, Y., Yang, K., Liu, M., Zhu, X., Zhou, Z., Shen, L., Yuan, G., Zhang, F.: Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry–Pérot resonator architecture. Adv. Funct. Mater. 32(29), 2203606(2022)
CrossRef
Google scholar
|
[119] |
Wang, J., Ullbrich, S., Hou, J.L., Spoltore, D., Wang, Q., Ma, Z., Tang, Z., Vandewal, K.: Organic cavity photodetectors based on nanometer-thick active layers for tunable monochromatic spectral response. ACS Photon. 6(6), 1393–1399(2019)
CrossRef
Google scholar
|
[120] |
Siegmund, B., Mischok, A., Benduhn, J., Zeika, O., Ullbrich, S., Nehm, F., Böhm, M., Spoltore, D., Fröb, H., Körner, C., Leo, K., Vandewal, K.: Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8(1), 15421(2017)
CrossRef
Google scholar
|
[121] |
Kublitski, J., Fischer, A., Xing, S., Baisinger, L., Bittrich, E., Spoltore, D., Benduhn, J., Vandewal, K., Leo, K.: Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nat. Commun. 12(1), 4259(2021)
CrossRef
Google scholar
|
[122] |
Wang, Y., Siegmund, B., Tang, Z., Ma, Z., Kublitski, J., Xing, S., Nikolis, V.C., Ullbrich, S., Li, Y., Benduhn, J., Spoltore, D., Vandewal, K., Leo, K.: Stacked dual-wavelength near-infrared organic photodetectors. Adv. Opt. Mater. 9(6), 2001784(2021)
CrossRef
Google scholar
|
[123] |
Suganuma, N., Heo, C.J., Minami, D., Yun, S., Park, S., Lim, Y., Fang, F., Choi, B., Park, K.B.: High speed response organic photodetectors with cascade buffer layers. Adv. Electron. Mater. 8(2), 2100539(2022)
CrossRef
Google scholar
|
[124] |
Saggar, S., Sanderson, S., Gedefaw, D., Pan, X., Philippa, B., Andersson, M.R., Lo, S.C., Namdas, E.B.: Toward faster organic photodiodes: tuning of blend composition ratio. Adv. Funct. Mater. 31(19), 2010661(2021)
CrossRef
Google scholar
|
[125] |
Salamandra, L., La Notte, L., Fazolo, C., Di Natali, M., Penna, S., Mattiello, L., Cinà, L., Del Duca, R., Reale, A.: A comparative study of organic photodetectors based on P3HT and PTB7 polymers for visible light communication. Org. Electron. 81, 105666(2020)
CrossRef
Google scholar
|
[126] |
Liu, J., Jiang, J., Wang, S., Li, T., Jing, X., Liu, Y., Wang, Y., Wen, H., Yao, M., Zhan, X., Shen, L.: Fast response organic tandem photodetector for visible and near-infrared digital optical communications. Small 17(43), e2101316(2021)
CrossRef
Google scholar
|
[127] |
Shen, L., Fang, Y., Wang, D., Bai, Y., Deng, Y., Wang, M., Lu, Y., Huang, J.: A self-powered, sub-nanosecond-response solution- processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 28(48), 10794–10800(2016)
CrossRef
Google scholar
|
[128] |
Wang, X., Wang, J., Zhao, H., Jin, H., Yu, J.: Detectivity enhancement of double-layer organic photodetectors consisting of solution-processed interconnecting layers. Mater. Lett. 243, 81–83(2019)
CrossRef
Google scholar
|
[129] |
Xing, S., Kublitski, J., Hänisch, C., Winkler, L.C., Li, T.Y., Kleemann, H., Benduhn, J., Leo, K.: Photomultiplication-type organic photodetectors for near-infrared sensing with high and bias-independent specific detectivity. Adv. Sci. (Weinh.) 9(7), e2105113(2022)
CrossRef
Google scholar
|
[130] |
Shi, L., Liang, Q., Wang, W., Zhang, Y., Li, G., Ji, T., Hao, Y., Cui, Y.: Research progress in organic photomultiplication photodetectors. Nanomaterials (Basel) 8(9), 713(2018)
CrossRef
Google scholar
|
[131] |
Yan, Y., Wu, X., Chen, Q., Liu, Y., Chen, H., Guo, T.: High-performance low-voltage flexible photodetector arrays based on all-solid-state organic electrochemical transistors for photosensing and imaging. ACS Appl. Mater. Interfaces 11(22), 20214–20224(2019)
CrossRef
Google scholar
|
[132] |
Lv, L., Dang, W., Wu, X., Chen, H., Wang, T., Qin, L., Wei, Z., Zhang, K., Shen, G., Huang, H.: Flexible short-wave infrared image sensors enabled by high-performance polymeric photo-detectors. Macromolecules 53(23), 10636–10643(2020)
CrossRef
Google scholar
|
[133] |
Webster, J.G.: Design of pulse oximeters. CRC Press, Boca Raton (1997)
CrossRef
Google scholar
|
[134] |
Lochner, C.M., Khan, Y., Pierre, A., Arias, A.C.: All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5(1), 5745(2014)
CrossRef
Google scholar
|
[135] |
Khan, Y., Han, D., Pierre, A., Ting, J., Wang, X., Lochner, C.M., Bovo, G., Yaacobi-Gross, N., Newsome, C., Wilson, R., Arias, A.C.: A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. U.S.A. 115(47), E11015–E11024(2018)
CrossRef
Google scholar
|
[136] |
Eun, H.J., Lee, H., Shim, Y., Seo, G.U., Lee, A.Y., Park, J.J., Heo, J., Park, S., Kim, J.H.: Strain-durable dark current in near-infrared organic photodetectors for skin-conformal photoplethysmographic sensors. iScience 25(5), 104194(2022)
CrossRef
Google scholar
|
[137] |
Pan, T., Liu, S., Zhang, L., Xie, W., Yu, C.: A flexible, multi-functional, optoelectronic anticounterfeiting device from high-performance organic light-emitting paper. Light Sci. Appl. 11(1), 59(2022)
CrossRef
Google scholar
|
[138] |
Yokota, T., Zalar, P., Kaltenbrunner, M., Jinno, H., Matsuhisa, N., Kitanosako, H., Tachibana, Y., Yukita, W., Koizumi, M., Someya, T.: Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856(2016)
CrossRef
Google scholar
|
[139] |
Khan, Y., Han, D., Ting, J., Ahmed, M., Nagisetty, R., Arias, A.C.: Organic multi-channel optoelectronic sensors for wearable health monitoring. IEEE Access 7, 128114–128124(2019)
CrossRef
Google scholar
|
[140] |
Lee, H., Kim, E., Lee, Y., Kim, H., Lee, J., Kim, M., Yoo, H.J., Yoo, S.: Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 4(11), eaas9530(2018)
CrossRef
Google scholar
|
[141] |
Park, Y., Fuentes-Hernandez, C., Kim, K., Chou, W.F., Larrain, F.A., Graham, S., Pierron, O.N., Kippelen, B.: Skin-like low-noise elastomeric organic photodiodes. Sci. Adv. 7(51), eabj6565(2021)
CrossRef
Google scholar
|
[142] |
Pierre, A., Arias, A.C.: Solution-processed image sensors on flexible substrates. Flex. Print. Electron. 1(4), 043001(2016)
CrossRef
Google scholar
|
[143] |
Hou, X., Tang, W., Chen, S., Liang, J., Xu, H., Ouyang, B., Li, M., Song, Y., Chen, C.C., Too, P., Wei, X., Jin, L., Qi, G., Guo, X.: Large area and flexible organic active matrix image sensor array fabricated by solution coating processes at low temperature. In: Proceedings of 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 1–3(2021).
CrossRef
Google scholar
|
[144] |
Wu, Y.L., Fukuda, K., Yokota, T., Someya, T.: A highly responsive organic image sensor based on a two-terminal organic photodetector with photomultiplication. Adv. Mater. 31(43), e1903687(2019)
CrossRef
Google scholar
|
[145] |
Tordera, D., van Breemen, A., Kronemeijer, A., van der Steen, J.L., Peeters, B., Shanmugan, S., Akkerman, H., Gelinck, G.: Flexible and large-area imagers using organic photodetectors. In: Organic Flexible Electronics, pp 575–597. Elsevier, Amsterdam (2021).
CrossRef
Google scholar
|
[146] |
Yang, W., Qiu, W., Georgitzikis, E., Simoen, E., Serron, J., Lee, J., Lieberman, I., Cheyns, D., Malinowski, P., Genoe, J., Chen, H., Heremans, P.: Mitigating dark current for high-performance near-infrared organic photodiodes via charge blocking and defect passivation. ACS Appl. Mater. Interfaces 13(14), 16766–16774(2021)
CrossRef
Google scholar
|
[147] |
Han, M.G., Park, K.B., Bulliard, X., Lee, G.H., Yun, S., Leem, D.S., Heo, C.J., Yagi, T., Sakurai, R., Ro, T., Lim, S.J., Sul, S., Na, K., Ahn, J., Jin, Y.W., Lee, S.: Narrow-band organic photo-diodes for high-resolution imaging. ACS Appl. Mater. Interfaces 8(39), 26143–26151(2016)
CrossRef
Google scholar
|
[148] |
Sakai, T., Takagi, T., Imamura, K., Mineo, K., Yakushiji, H., Hashimoto, Y., Aotake, T., Sadamitsu, Y., Sato, H., Aihara, S.: Color-filter-free three-layer-stacked image sensor using blue/green-selective organic photoconductive films with thin-film transistor circuits on CMOS image sensors. ACS Appl. Electron. Mater. 3(7), 3085–3095(2021)
CrossRef
Google scholar
|
[149] |
Li, Y., Luo, H., Mao, L., Yu, L., Li, X., Jin, L., Zhang, J.: A solution-processed hole-transporting layer based on p-type CUCRO2 for organic photodetector and image sensor. Adv. Mater. Interfaces 8(20), 2100801(2021)
CrossRef
Google scholar
|
[150] |
Baierl, D., Pancheri, L., Schmidt, M., Stoppa, D., Dalla Betta, G.F., Scarpa, G., Lugli, P.: A hybrid CMOS-imager with a solution-processable polymer as photoactive layer. Nat. Commun. 3(1), 1175(2012)
CrossRef
Google scholar
|
[151] |
Shekhar, H., Fenigstein, A., Leitner, T., Lavi, B., Veinger, D., Tessler, N.: Hybrid image sensor of small molecule organic photodiode on CMOS-integration and characterization. Sci. Rep. 10(1), 7594(2020)
CrossRef
Google scholar
|
[152] |
Wu, P., Ye, L., Tong, L., Wang, P., Wang, Y., Wang, H., Ge, H., Wang, Z., Gu, Y., Zhang, K., Yu, Y., Peng, M., Wang, F., Huang, M., Zhou, P., Hu, W.: Van der Waals two-color infrared photodetector. Light Sci. Appl. 11(1), 6(2022)
CrossRef
Google scholar
|
[153] |
Dehzangi, A., Li, J., Razeghi, M.: Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light Sci. Appl. 10(1), 17(2021)
CrossRef
Google scholar
|
[154] |
Feng, Z., Tang, T., Wu, T., Yu, X., Zhang, Y., Wang, M., Zheng, J., Ying, Y., Chen, S., Zhou, J., Fan, X., Zhang, D., Li, S., Zhang, M., Qian, J.: Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 10(1), 197(2021)
CrossRef
Google scholar
|
[155] |
Li, C., Wang, H., Wang, F., Li, T., Xu, M., Wang, H., Wang, Z., Zhan, X., Hu, W., Shen, L.: Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci. Appl. 9(1), 31(2020)
CrossRef
Google scholar
|
[156] |
Seo, H., Aihara, S., Watabe, T., Ohtake, H., Kubota, M., Egami, N.: Color sensors with three vertically stacked organic photodetectors. Jpn. J. Appl. Phys. 46(49), L1240–L1242(2007)
CrossRef
Google scholar
|
[157] |
Lim, S.J., Leem, D.S., Park, K.B., Kim, K.S., Sul, S., Na, K., Lee, G.H., Heo, C.J., Lee, K.H., Bulliard, X., Satoh, R., Yagi, T., Ro, T., Im, D., Jung, J., Lee, M., Lee, T.Y., Han, M.G., Jin, Y.W., Lee, S.: Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors. Sci. Rep. 5(1), 7708(2015)
CrossRef
Google scholar
|
[158] |
Sato, S., Yamashita, T., Miyazaki, M.: UHD-2/8K camera recorder using organic cmos image sensor. SMPTE Motion Imaging J. 129(6), 52–60(2020)
CrossRef
Google scholar
|
[159] |
Lim, Y., Yun, S., Minami, D., Choi, T., Choi, H., Shin, J., Heo, C.J., Leem, D.S., Yagi, T., Park, K.B., Kim, S.: Green-light-selective organic photodiodes with high detectivity for CMOS color image sensors. ACS Appl. Mater. Interfaces 12(46), 51688–51698(2020)
CrossRef
Google scholar
|
[160] |
Banach, M., Markham, S., Agaiby, R., Too, P.: Low leakage organic backplanes for high pixel density optical sensors. SID Symp. Digest Tech. Papers 49(1), 90–91(2018)
CrossRef
Google scholar
|
[161] |
Tordera, D., Peeters, B., Akkerman, H.B., Breemen, A.J.J.M., Maas, J., Shanmugam, S., Kronemeijer, A.J., Gelinck, G.H.: A high-resolution thin-film fingerprint sensor using a printed organic photodetector. Adv. Mater. Technol. 4(11), 1900651(2019)
CrossRef
Google scholar
|
[162] |
Kamada, T., Hatsumi, R., Watanabe, K., Kawashima, S., Katayama, M., Adachi, H., Ishitani, T., Kusunoki, K., Kubota, D., Yamazaki, S.: OLED display incorporating organic photodiodes for fingerprint imaging. J. Soc. Inf. Disp. 27(6), 361–371(2019)
CrossRef
Google scholar
|
[163] |
Xu, Y., Ruan, C., Zhou, L., Zou, J., Xu, M., Wu, W., Wang, L., Peng, J.A.: 256 × 256 50-µm pixel pitch OPD image sensor based on an IZO TFT backplane. IEEE Sens. J. 21(18), 20824–20832(2021)
CrossRef
Google scholar
|
[164] |
Eckstein, R., Strobel, N., Rödlmeier, T., Glaser, K., Lemmer, U., Hernandez-Sosa, G.: Fully digitally printed image sensor based on organic photodiodes. Adv. Opt. Mater. 6(5), 1701108(2018)
CrossRef
Google scholar
|
[165] |
Posar, J.A., Davis, J., Alnaghy, S., Wilkinson, D., Cottam, S., Lee, D.M., Thompson, K.L., Holmes, N.P., Barr, M., Fahy, A., Nicolaidis, N.C., Louie, F., Fraboni, B., Sellin, P.J., Lerch, M.L.F., Rosenfeld, A.B., Petasecca, M., Griffith, M.J.: Polymer photodetectors for printable, flexible, and fully tissue equivalent X-ray detection with zero-bias operation and ultrafast temporal responses. Adv. Mater. Technol. 6(9), 2001298(2021)
CrossRef
Google scholar
|
[166] |
van Breemen, A.J.J.M., Simon, M., Tousignant, O., Shanmugam, S., van der Steen, J.-L., Akkerman, H.B., Kronemeijer, A., Ruetten, W., Raaijmakers, R., Alving, L., Jacobs, J., Malinowski, P.E., De Roose, F., Gelinck, G.H.: Curved digital X-ray detectors. NPJ Flex. Electron. 4(1), 1–8(2020)
CrossRef
Google scholar
|
[167] |
Li, A., Yao, C., Xia, J., Wang, H., Cheng, Q., Penty, R., Fainman, Y., Pan, S.: Advances in cost-effective integrated spectrometers. Light Sci. Appl. 11(1), 174(2022)
CrossRef
Google scholar
|
[168] |
Yang, Z., Albrow-Owen, T., Cai, W., Hasan, T.: Miniaturization of optical spectrometers. Science 371(6528), eabe0722(2021)
CrossRef
Google scholar
|
[169] |
Vega-Colado, C., Arredondo, B., Torres, J.C., López-Fraguas, E., Vergaz, R., Martín-Martín, D., Del Pozo, G., Romero, B., Apilo, P., Quintana, X., Geday, M.A., De Dios, C., Sánchez-Pena, J.M.: An all-organic flexible visible light communication system. Sensors (Basel) 18(9), 3045(2018)
CrossRef
Google scholar
|
[170] |
Haigh, P.A., Ghassemlooy, Z., Le Minh, H., Rajbhandari, S., Arca, F., Tedde, S.F., Hayden, O., Papakonstantinou, I.: Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications. J. Lightwave Technol. 30(19), 3081–3088(2012)
CrossRef
Google scholar
|
[171] |
Dong, Y., Shi, M., Yang, X., Zeng, P., Gong, J., Zheng, S., Zhang, M., Liang, R., Ou, Q., Chi, N., Zhang, S.: Nanopatterned luminescent concentrators for visible light communications. Opt. Express 25(18), 21926–21934(2017)
CrossRef
Google scholar
|
[172] |
Cao, J., Shan, T., Wang, J.K., Xu, Y.X., Ren, X., Zhong, H.: Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes Pigments 165, 354–360(2019)
CrossRef
Google scholar
|
[173] |
Chi, N., Hu, F., Zhou, Y.: The challenges and prospects of high-speed visible light communication technology. ZTE Technol. J. 25(5), 56–61(2019)
|
[174] |
Li, L., Zhao, H., Liu, C., Li, L., Cui, T.J.: Intelligent metasurfaces: control, communication and computing. eLight 2(7), 1–24(2022)
CrossRef
Google scholar
|
[175] |
Tavakkolnia, I., Jagadamma, L.K., Bian, R., Manousiadis, P.P., Videv, S., Turnbull, G.A., Samuel, I.D.W., Haas, H.: Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications. Light Sci. Appl. 10(1), 41(2021)
CrossRef
Google scholar
|
[176] |
Ghassemlooy, Z., Haigh, P.A., Arca, F., Tedde, S.F., Hayden, O., Papakonstantinou, I., Rajbhandari, S.: Visible light communications: 375 Mbits/s data rate with a 160 kHz bandwidth organic photodetector and artificial neural network equalization. Photon. Res. 1(2), 65(2013)
CrossRef
Google scholar
|
/
〈 | 〉 |