Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications

Yaqin Li, Maosong Liu, Jinjun Wu, Junbo Li, Xianglin Yu, Qichun Zhang

PDF(12330 KB)
PDF(12330 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (3) : 38. DOI: 10.1007/s12200-022-00032-5
REVIEW ARTICLE
REVIEW ARTICLE

Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications

Author information +
History +

Abstract

Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.

Graphical abstract

Keywords

Covalent organic frameworks / β-ketoenamine / Sensors / Energy storage / Batteries / Photocatalysis

Cite this article

Download citation ▾
Yaqin Li, Maosong Liu, Jinjun Wu, Junbo Li, Xianglin Yu, Qichun Zhang. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications. Front. Optoelectron., 2022, 15(3): 38 https://doi.org/10.1007/s12200-022-00032-5

References

[1]
Liu, X., Huang, D., Lai, C., Zeng, G., Qin, L., Wang, H., Yi, H., Li, B., Liu, S., Zhang, M., Deng, R., Fu, Y., Li, L., Xue, W., Chen, S.: Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 48(20), 5266–5302 (2019)
CrossRef Google scholar
[2]
Yusran, Y., Fang, Q., Qiu, S.L.: Postsynthetic covalent modification in covalent organic frameworks. Isr. J. Chem. 58(9–10), 971–984 (2018)
CrossRef Google scholar
[3]
Gui, B., Lin, G., Ding, H., Gao, C., Mal, A., Wang, C.: Three-dimensional covalent organic frameworks: from topology design to applications. Acc. Chem. Res. 53(10), 2225–2234 (2020)
CrossRef Google scholar
[4]
Alahakoon, S.B., Diwakara, S.D., Thompson, C.M., Smaldone, R.A.: Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 49(5), 1344–1356 (2020)
CrossRef Google scholar
[5]
Wang, X., She, P., Zhang, Q.: Recent advances on electrochemical methods in fabricating two-dimensional organic-ligand-containing frameworks. SmartMat 2(3), 299–325 (2021)
CrossRef Google scholar
[6]
Xu, S., Zhang, Q.C.: Recent progress in covalent organic frameworks as light-emitting materials. Mater. Today. Energy 20, 100635 (2021)
CrossRef Google scholar
[7]
Li, Y., Chen, W., Xing, G., Jiang, D., Chen, L.: New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 49(10), 2852–2868 (2020)
CrossRef Google scholar
[8]
Wang, Z., Zhang, S., Chen, Y., Zhang, Z., Ma, S.: Covalent organic frameworks for separation applications. Chem. Soc. Rev. 49(3), 708–735 (2020)
CrossRef Google scholar
[9]
Dautzenberg, E., Lam, M., Li, G., de Smet, L.C.P.M.: Enhanced surface area and reduced pore collapse of methylated, iminelinked covalent organic frameworks. Nanoscale 13(46), 19446–19452 (2021)
CrossRef Google scholar
[10]
She, P., Qin, Y., Wang, X., Zhang, Q.: Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv. Mater. 34(22), 2101175 (2021)
CrossRef Google scholar
[11]
Yang, J., Kang, F., Wang, X., Zhang, Q.: Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Mater. Horiz. 9(1), 121–146 (2022)
CrossRef Google scholar
[12]
Zhan, X.J., Chen, Z., Zhang, Q.C.: Recent progress in two-dimensional COFs for energy-related applications. J. Mater. Chem. A Mater. Energy Sustain. 5(28), 14463–14479 (2017)
CrossRef Google scholar
[13]
Wu, C., Liu, Y., Liu, H., Duan, C., Pan, Q., Zhu, J., Hu, F., Ma, X., Jiu, T., Li, Z., Zhao, Y.: Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 140(31), 10016–10024 (2018)
CrossRef Google scholar
[14]
Sun, T., Xie, J., Guo, W., Li, D.S., Zhang, Q.C.: Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 10(19), 1904199 (2020)
CrossRef Google scholar
[15]
Yao, C.J., Wu, Z., Xie, J., Yu, F., Guo, W., Xu, Z.J., Li, D.S., Zhang, S., Zhang, Q.: Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13(9), 2457–2463 (2020)
CrossRef Google scholar
[16]
Bagheri, A.R., Aramesh, N., Haddad, P.R.: Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. J. Chromatogr. A 1661, 462612 (2022)
CrossRef Google scholar
[17]
Zhou, H.Y., Zhou, C.D., Tang, S.Y., Zhang, F.M., Lei, S., Li, Z.J., Liu, J.J., Chen, M.: High efficiency solution synthesis of aryl-aryl linked two-dimensional covalent organic frameworks with remarkable adsorption performance for polycyclic aromatic hydrocarbons (PAHs). Mater. Lett. 307, 131002 (2022)
CrossRef Google scholar
[18]
He, M., Liang, Q.H., Tang, L., Liu, Z.F., Shao, B.B., He, Q.Y., Wu, T., Luo, S.H., Pan, Y., Zhao, C.H., Niu, C.G., Hu, Y.M.: Advances of covalent organic frameworks based on magnetism: classification, synthesis, properties, applications. Coord. Chem. Rev. 449, 214219 (2021)
CrossRef Google scholar
[19]
Wang, H., Wang, M.K., Wang, Y.L., Wang, J., Men, X.H., Zhang, Z.Z., Singh, V.: Synergistic effects of COF and GO on high flux oil/water separation performance of superhydrophobic composites. Sep. Purif. Technol. 276, 119268 (2021)
CrossRef Google scholar
[20]
Yu, F., Liu, W., Ke, S.W., Kurmoo, M., Zuo, J.L., Zhang, Q.: Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 11(1), 5534 (2020)
CrossRef Google scholar
[21]
Yu, F., Liu, W., Li, B., Tian, D., Zuo, J.L., Zhang, Q.: Photo-stimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 58(45), 16101–16104 (2019)
CrossRef Google scholar
[22]
Xiang, Y., Yu, X.L., Li, Y.Q., Chen, J.Y., Wu, J.J., Wang, L.X., Chen, D.G., Li, J.B., Zhang, Q.C.: Covalent organic framework as an efficient fluorescence-enhanced probe to detect aluminum ion. Dyes Pigm. 195, 109710 (2021)
CrossRef Google scholar
[23]
Yao, S., Liu, Z., Li, L.: Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro Letters 13(1), 176 (2021)
CrossRef Google scholar
[24]
Ghahari, A., Raissi, H., Farzad, F.: Design of a new drug delivery platform based on surface functionalization 2D covalent organic frameworks. J. Taiwan Inst. Chem. Eng. 125, 15–22 (2021)
CrossRef Google scholar
[25]
Gao, P., Shen, X., Liu, X., Chen, Y., Pan, W., Li, N., Tang, B.: Nucleic acid-gated covalent organic frameworks for cancer-specific imaging and drug release. Anal. Chem. 93(34), 11751–11757 (2021)
CrossRef Google scholar
[26]
Zhi, Y., Wang, Z., Zhang, H.L., Zhang, Q.: Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 16(24), e2001070 (2020)
CrossRef Google scholar
[27]
Sun, Q.Z., Wu, C.Y., Pan, Q.Y., Zhang, B.J., Liu, Y.M., Lu, X.Y., Sun, J., Sun, L.S., Zhao, Y.J.: Three-dimensional covalent-organic frameworks loaded with highly dispersed ultrafine palladium nanoparticles as efficient heterogeneous catalyst. ChemNanoMat 7(1), 95–99 (2021)
CrossRef Google scholar
[28]
Chen, Y., Li, W., Wang, X., Gao, R., Tang, A., Kong, D.: Green synthesis of covalent organic frameworks based on reaction media. Mater. Chem. Front. 5(3), 1253–1267 (2021)
CrossRef Google scholar
[29]
Maia, R.A., Lopes Oliveira, F., Ritleng, V., Wang, Q., Louis, B., Mothé, E.P.: CO2 capture by hydroxylated azine-based covalent organic frameworks. Chemistry (Weinheim an der Bergstrasse, Germany) 27(30), 8048–8055 (2021)
CrossRef Google scholar
[30]
Haase, F., Lotsch, B.V.: Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 49(23), 8469–8500 (2020)
CrossRef Google scholar
[31]
Fan, C., Wu, H., Guan, J., You, X., Yang, C., Wang, X., Cao, L., Shi, B., Peng, Q., Kong, Y., Wu, Y., Khan, N.A., Jiang, Z.: Scalable fabrication of crystalline COF membrane from amorphous polymeric membrane. Angew. Chem. Int. Ed. 60(33), 18051–18058 (2021)
CrossRef Google scholar
[32]
Dawson, R., Cooper, A.I., Adams, D.J.: Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012)
CrossRef Google scholar
[33]
Zhu, Y.L., Zhao, H.Y., Fu, C.L., Li, Z.W., Sun, Z.Y., Lu, Z.: Mechanisms of defect correction by reversible chemistries in covalent organic frameworks.. J. Phys. Chem. Lett. 11(22), 9952–9956 (2020)
CrossRef Google scholar
[34]
Mao, C.F., Hu, Y.J., Yang, C.H., Qin, C.C., Dong, G.M., Zhou, Y.M., Zhang, Y.W.: Well-designed spherical covalent organic frameworks with an electron-deficient and conjugate system for efficient photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 4(12), 14111–14120 (2021)
CrossRef Google scholar
[35]
Hynek, J., Zelenka, J., Rathouský, J., Kubát, P., Ruml, T., Demel, J., Lang, K.: Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces. 10(10), 8527–8535 (2018)
CrossRef Google scholar
[36]
Meng, F., Bi, S., Sun, Z., Jiang, B., Wu, D., Chen, J.S., Zhang, F.: Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated knoevenagel condensation. Angew. Chem. Int. Ed. 60(24), 13614–13620 (2021)
CrossRef Google scholar
[37]
Segura, J.L., Mancheño, M.J., Zamora, F.: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45(20), 5635–5671 (2016)
CrossRef Google scholar
[38]
Cote, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J., Yaghi, O.M.: Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)
CrossRef Google scholar
[39]
Lanni, L.M., Tilford, R.W., Bharathy, M., Lavigne, J.J.: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 133(35), 13975–13983 (2011)
CrossRef Google scholar
[40]
Park, S., Liao, Z., Ibarlucea, B., Qi, H., Lin, H.H., Becker, D., Melidonie, J., Zhang, T., Sahabudeen, H., Baraban, L., Baek, C.K., Zheng, Z., Zschech, E., Fery, A., Heine, T., Kaiser, U., Cuniberti, G., Dong, R., Feng, X.: Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem. Int. Ed. 59(21), 8218–8224 (2020)
CrossRef Google scholar
[41]
Li, Y.J., Han, Y.N., Chen, M.H., Feng, Y.Q., Zhang, B.: Construction of a flexible covalent organic framework based on triazine units with interesting photoluminescent properties for sensitive and selective detection of picric acid. RSC Adv. 9(53), 30937–30942 (2019)
CrossRef Google scholar
[42]
Li, X.L., Cai, S.L., Sun, B., Yang, C.Q., Zhang, J., Liu, Y.: Chemically robust covalent organic frameworks: progress and perspective. Matter 3(5), 1507–1540 (2020)
CrossRef Google scholar
[43]
Lu, Y., Liang, Y., Zhao, Y., Xia, M., Liu, X., Shen, T., Feng, L., Yuan, N., Chen, Q.: Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions. ACS Appl. Mater. Interfaces. 13(1), 1644–1650 (2021)
CrossRef Google scholar
[44]
Shan, M., Seoane, B., Rozhko, E., Dikhtiarenko, A., Clet, G., Kapteijn, F., Gascon, J.: Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chemistry (Weinheim an der Bergstrasse, Germany) 22(41), 14467–14470 (2016)
CrossRef Google scholar
[45]
Luo, Z., Liu, L., Ning, J., Lei, K., Lu, Y., Li, F., Chen, J.: A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Ed. 57(30), 9443–9446 (2018)
CrossRef Google scholar
[46]
Xue, R., Gou, H., Zheng, Y.P., Zhang, L., Liu, Y.S., Rao, H.H., Zhao, G.H.: A new squaraine-linked triazinyl-based covalent organic frameworks: preparation, characterization and application for sensitive and selective determination of Fe3+ cations. ChemistrySelect 5(34), 10632–10636 (2020)
CrossRef Google scholar
[47]
Wei, S., Zhang, F., Zhang, W., Qiang, P., Yu, K., Fu, X., Wu, D., Bi, S., Zhang, F.: Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J. Am. Chem. Soc. 141(36), 14272–14279 (2019)
CrossRef Google scholar
[48]
Yuan, C., Fu, S., Yang, K., Hou, B., Liu, Y., Jiang, J., Cui, Y.: Crystalline C–C and C═C bond-linked chiral covalent organic frameworks. J. Am. Chem. Soc. 143(1), 369–381 (2021)
CrossRef Google scholar
[49]
Cusin, L., Peng, H., Ciesielski, A., Samorì, P.: Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks. Angew. Chem. Int. Ed. 60(26), 14236–14250 (2021)
CrossRef Google scholar
[50]
Han, X., Huang, J., Yuan, C., Liu, Y., Cui, Y.: Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J. Am. Chem. Soc. 140(3), 892–895 (2018)
CrossRef Google scholar
[51]
Liu, H.Y., Chu, J., Yin, Z.L., Cai, X., Zhuang, L., Deng, H.X.: Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 4(7), 1696–1709 (2018)
CrossRef Google scholar
[52]
Liang, Y., Xia, M., Zhao, Y., Wang, D., Li, Y., Sui, Z., Xiao, J., Chen, Q.: Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance. J. Colloid Interface Sci. 608(Pt 1), 652–661 (2022)
CrossRef Google scholar
[53]
Rabbani, M.G., El-Kaderi, H.M.: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater. 24(8), 1511–1517 (2012)
CrossRef Google scholar
[54]
Rabbani, M.G., Islamoglu, T., El-Kaderi, H.M.: Benzothiazole-and benzoxazole-linked porous polymers for carbon dioxide storage and separation. J. Mater. Chem. A Mater. Energy Sustain. 5(1), 258–265 (2017)
CrossRef Google scholar
[55]
Waller, P.J., AlFaraj, Y.S., Diercks, C.S., Jarenwattananon, N.N., Yaghi, O.M.: Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks. J. Am. Chem. Soc. 140(29), 9099–9103 (2018)
CrossRef Google scholar
[56]
Eder, G.M., Pyles, D.A., Wolfson, E.R., McGrier, P.L.: A ruthenium porphyrin-based porous organic polymer for the hydrosilylative reduction of CO2 to formate. Chem. Commun. 55(50), 7195–7198 (2019)
CrossRef Google scholar
[57]
Machado, T.F., Serra, M.E.S., Murtinho, D., Valente, A.J.M., Naushad, M.: Covalent organic frameworks: synthesis, properties and applications-an overview. Polymers 13(6), 970 (2021)
CrossRef Google scholar
[58]
Sharma, R.K., Yadav, P., Yadav, M., Gupta, R., Rana, P., Srivastava, A., Zboril, R., Varma, R.S., Antonietti, M., Gawande, M.B.: Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 7(2), 411–454 (2020)
CrossRef Google scholar
[59]
Tao, Y., Ji, W.Y., Ding, X.S., Han, B.H.: Exfoliated covalent organic framework nanosheets. J. Mater. Chem. A Mater. Energy Sustain. 9(12), 7336–7365 (2021)
CrossRef Google scholar
[60]
Bai, B., Wang, D., Wan, L.J.: Synthesis of covalent organic framework films at interfaces. Bull. Chem. Soc. Jpn. 94(3), 1090–1098 (2021)
CrossRef Google scholar
[61]
Mohammed, A.K., Shetty, D.: Macroscopic covalent organic framework architectures for water remediation. Environ. Sci.: Water Res. Technol. 7(11), 1895–1927 (2021)
CrossRef Google scholar
[62]
Li, X., Zhang, C., Cai, S., Lei, X., Altoe, V., Hong, F., Urban, J.J., Ciston, J., Chan, E.M., Liu, Y.: Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 9(1), 2998 (2018)
CrossRef Google scholar
[63]
Evans, A.M., Ryder, M.R., Ji, W., Strauss, M.J., Corcos, A.R., Vitaku, E., Flanders, N.C., Bisbey, R.P., Dichtel, W.R.: Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discuss. 225, 226–240 (2021)
CrossRef Google scholar
[64]
Rao, M.R., Fang, Y., De Feyter, S., Perepichka, D.F.: Conjugated covalent organic frameworks via michael addition-elimination. J. Am. Chem. Soc. 139(6), 2421–2427 (2017)
CrossRef Google scholar
[65]
Babu, H.V., Bai, M.G.M., Rajeswara, R.M.: Functional π-conjugated two-dimensional covalent organic frameworks. ACS Appl. Mater. Interfaces. 11(12), 11029–11060 (2019)
CrossRef Google scholar
[66]
Esrafili, A., Wagner, A., Inamdar, S., Acharya, A.P.: Covalent organic frameworks for biomedical applications. Adv. Healthcare Mater. 10(6), e2002090 (2021)
CrossRef Google scholar
[67]
Singh, V., Jang, S., Vishwakarma, N.K., Kim, D.: Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique. NPG Asia Mater. 10(1), e456 (2018)
CrossRef Google scholar
[68]
Wang, J.L., Zhuang, S.T.: Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400, 213046 (2019)
CrossRef Google scholar
[69]
Chong, J.H., Sauer, M., Patrick, B.O., MacLachlan, M.J.: Highly stable keto-enamine salicylideneanilines. Org. Lett. 5(21), 3823–3826 (2003)
CrossRef Google scholar
[70]
Kandambeth, S., Mallick, A., Lukose, B., Mane, M.V., Heine, T., Banerjee, R.: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134(48), 19524–19527 (2012)
CrossRef Google scholar
[71]
Li, X., Yang, C., Sun, B., Cai, S., Chen, Z., Lv, Y., Zhang, J., Liu, Y.: Expeditious synthesis of covalent organic frameworks: a review. J. Mater. Chem. A Mater. Energy Sustain. 8(32), 16045–16060 (2020)
CrossRef Google scholar
[72]
Ji, W., Hamachi, L.S., Natraj, A., Flanders, N.C., Li, R.L., Chen, L.X., Dichtel, W.R.: Solvothermal depolymerization and recrystallization of imine-linked two-dimensional covalent organic frameworks. Chem. Sci. (Cambridge) 12(48), 16014–16022 (2021)
CrossRef Google scholar
[73]
Zou, L.F., Yang, X.Y., Yuan, S., Zhou, H.C.: Flexible monomerbased covalent organic frameworks: design, structure and functions. CrystEngComm 19(33), 4868–4871 (2017)
CrossRef Google scholar
[74]
DeBlase, C.R., Silberstein, K.E., Truong, T.T., Abruña, H.D., Dichtel, W.R.: β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135(45), 16821–16824 (2013)
CrossRef Google scholar
[75]
Fang, Q., Gu, S., Zheng, J., Zhuang, Z., Qiu, S., Yan, Y.: 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. 53(11), 2878–2882 (2014)
CrossRef Google scholar
[76]
Wolfe, J.P., Åhman, J., Sadighi, J.P., Singer, R.A., Buchwald, S.L.: An ammonia equivalent for the palladium-catalyzed amination of aryl halides and triflates. Tetrahedron Lett. 38(36), 6367–6370 (1997)
CrossRef Google scholar
[77]
Vitaku, E., Dichtel, W.R.: Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 139(37), 12911–12914 (2017)
CrossRef Google scholar
[78]
Daugherty, M.C., Vitaku, E., Li, R.L., Evans, A.M., Chavez, A.D., Dichtel, W.R.: Improved synthesis of β-ketoenamine-linked covalent organic frameworks via monomer exchange reactions. Chem. Commun. 55(18), 2680–2683 (2019)
CrossRef Google scholar
[79]
Wang, R., Kong, W., Zhou, T., Wang, C., Guo, J.: Organobase modulated synthesis of high-quality β-ketoenamine-linked covalent organic frameworks. Chem. Commun. 57(3), 331–334 (2021)
CrossRef Google scholar
[80]
Zhao, C., Diercks, C.S., Zhu, C., Hanikel, N., Pei, X., Yaghi, O.M.: Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 140(48), 16438–16441 (2018)
CrossRef Google scholar
[81]
Biswal, B.P., Chandra, S., Kandambeth, S., Lukose, B., Heine, T., Banerjee, R.: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135(14), 5328–5331 (2013)
CrossRef Google scholar
[82]
Chandra, S., Kandambeth, S., Biswal, B.P., Lukose, B., Kunjir, S.M., Chaudhary, M., Babarao, R., Heine, T., Banerjee, R.: Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135(47), 17853–17861 (2013)
CrossRef Google scholar
[83]
Liu, W., Cao, Y., Wang, W., Gong, D., Cao, T., Qian, J., Iqbal, K., Qin, W., Guo, H.: Mechanochromic luminescent covalent organic frameworks for highly selective hydroxyl radical detection. Chem. Commun. 55(2), 167–170 (2019)
CrossRef Google scholar
[84]
Das, G., Balaji Shinde, D., Kandambeth, S., Biswal, B.P., Banerjee, R.: Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 50(84), 12615–12618 (2014)
CrossRef Google scholar
[85]
Liu, S.S., Liu, Q.Q., Huang, S.Z., Zhang, C., Dong, X.Y., Zang, S.Q.: Sulfonic and phosphonic porous solids as proton conductor. Coord. Chem. Rev. 451, 214241 (2022)
CrossRef Google scholar
[86]
Peng, Y., Xu, G., Hu, Z., Cheng, Y., Chi, C., Yuan, D., Cheng, H., Zhao, D.: Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces. 8(28), 18505–18512 (2016)
CrossRef Google scholar
[87]
Shinde, D.B., Aiyappa, H.B., Bhadra, M., Biswal, B.P., Wadge, P., Kandambeth, S., Garai, B., Kundu, T., Kurungot, S., Banerjee, R.: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2682–2690 (2016)
CrossRef Google scholar
[88]
Karak, S., Kandambeth, S., Biswal, B.P., Sasmal, H.S., Kumar, S., Pachfule, P., Banerjee, R.: Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J. Am. Chem. Soc. 139(5), 1856–1862 (2017)
CrossRef Google scholar
[89]
Wei, H., Chai, S., Hu, N., Yang, Z., Wei, L., Wang, L.: The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 51(61), 12178–12181 (2015)
CrossRef Google scholar
[90]
Xu, L., Xu, J., Shan, B.T., Wang, X.L., Gao, C.J.: TpPa-2-incorporated mixed matrix membranes for efficient water purification. J. Membr. Sci. 526, 355–366 (2017)
CrossRef Google scholar
[91]
Dong, B., Wang, W.J., Pan, W., Kang, G.J.: Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Mater. Chem. Phys. 226, 244–249 (2019)
CrossRef Google scholar
[92]
Qiu, J.K., Wang, H.Y., Zhao, Y.L., Guan, P.X., Li, Z.Y., Zhang, H.C., Gao, H.S., Zhang, S.J., Wang, J.J.: Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C-C coupling reactions. Green Chem. 22(8), 2605–2612 (2020)
CrossRef Google scholar
[93]
Zhao, L.M., Liu, H.M., Du, Y., Liang, X., Wang, W.J., Zhao, H., Li, W.Z.: An ionic liquid as a green solvent for high potency synthesis of 2D covalent organic frameworks. New J. Chem. 44(36), 15410–15414 (2020)
CrossRef Google scholar
[94]
Thote, J., BarikeAiyappa, H., Rahul Kumar, R., Kandambeth, S., Biswal, B.P., Balaji Shinde, D., Chaki Roy, N., Banerjee, R.: Constructing covalent organic frameworks in water via dynamic covalent bonding. Int. Union Crystallogr. 3(Pt 6), 402–407 (2016)
CrossRef Google scholar
[95]
Lu, J., Lin, F., Wen, Q., Qi, Q.Y., Xu, J.Q., Zhao, X.: Large-scale synthesis of azine-linked covalent organic frameworks in water and promoted by water. N. J. Chem. 43(16), 6116–6120 (2019)
CrossRef Google scholar
[96]
DeBlase, C.R., Hernández-Burgos, K., Silberstein, K.E., Rodríguez-Calero, G.G., Bisbey, R.P., Abruña, H.D., Dichtel, W.R.: Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 9(3), 3178–3183 (2015)
CrossRef Google scholar
[97]
Wang, R., Wei, M.J., Wang, Y.: Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. J. Membr. Sci. 604, 118090 (2020)
CrossRef Google scholar
[98]
Liu, G.H., Jiang, Z.Y., Yang, H., Li, C.D., Wang, H.J., Wang, M.D., Song, Y.M., Wu, H., Pan, F.S.: High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J. Membr. Sci. 572, 557–566 (2019)
CrossRef Google scholar
[99]
Kandambeth, S., Biswal, B.P., Chaudhari, H.D., Rout, K.C., Kunjattu, H.S., Mitra, S., Karak, S., Das, A., Mukherjee, R., Kharul, U.K., Banerjee, R.: Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29(2), 1603945 (2017)
CrossRef Google scholar
[100]
Dey, K., Bhunia, S., Sasmal, H.S., Reddy, C.M., Banerjee, R.: Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J. Am. Chem. Soc. 143(2), 955–963 (2021)
CrossRef Google scholar
[101]
Dey, K., Pal, M., Rout, K.C., Kunjattu, H.S., Das, A., Mukherjee, R., Kharul, U.K., Banerjee, R.: Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139(37), 13083–13091 (2017)
CrossRef Google scholar
[102]
Li, Y., Wu, Q., Guo, X., Zhang, M., Chen, B., Wei, G., Li, X., Li, X., Li, S., Ma, L.: Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat. Commun. 11(1), 599 (2020)
CrossRef Google scholar
[103]
Kang, Z.X., Peng, Y.W., Qian, Y.H., Yuan, D.Q., Addicoat, M.A., Heine, T., Hu, Z.G., Tee, Z., Guo, Z.G., Zhao, D.: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28(5), 1277–1285 (2016)
CrossRef Google scholar
[104]
Shen, R., Huang, L., Liu, R., Shuai, Q.: Determination of sulfonamides in meat by monolithic covalent organic frameworks based solid phase extraction coupled with high-performance liquid chromatography-mass spectrometric. J. Chromatogr. A 1655, 462518 (2021)
CrossRef Google scholar
[105]
Karak, S., Dey, K., Torris, A., Halder, A., Bera, S., Kanheerampockil, F., Banerjee, R.: Inducing disorder in order: hierar-chically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. J. Am. Chem. Soc. 141(18), 7572–7581 (2019)
CrossRef Google scholar
[106]
Liu, R., Yan, Q., Tang, Y., Liu, R., Huang, L., Shuai, Q.: NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. J. Hazard. Mater. 421, 126702 (2022)
CrossRef Google scholar
[107]
Zhang, S., Wu, X., Ma, C., Li, Y., You, J.: Cationic surfactant modified 3D COF and its application in the adsorption of UV filters and alkylphenols from food packaging material migrants. J. Agric. Food Chem. 68(11), 3663–3669 (2020)
CrossRef Google scholar
[108]
Cui, W.R., Zhang, C.R., Jiang, W., Liang, R.P., Qiu, J.D.: Covalent organic framework nanosheets for fluorescence sensing via metal coordination. ACS Appl. Nano Mater. 2(8), 5342–5349 (2019)
CrossRef Google scholar
[109]
Cui, W.R., Zhang, C.R., Jing, W., Liang, R.P., Wen, S.H., Peng, D., Qiu, J.D.: Covalent organic framework nanosheet-based ultrasensitive and selective colorimetric sensor for trace Hg2+ detection. ACS Sustain. Chem. Eng. 7(10), 9408–9415 (2019)
CrossRef Google scholar
[110]
Manna, A., Maharana, A.K., Rambabu, G., Nayak, S., Basu, S., Das, S.: Dithia-crown-ether integrated self-exfoliated polymeric covalent organic nanosheets for selective sensing and removal of mercury. ACS Appl. Polym. Mater. 3(11), 5527–5535 (2021)
CrossRef Google scholar
[111]
Kaleeswaran, D., Vishnoi, P., Murugavel, R.: [3+3] Imine and β-ketoenamine-tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7159–7171 (2015)
CrossRef Google scholar
[112]
Mal, A., Mishra, R.K., Praveen, V.K., Khayum, M.A., Banerjee, R., Ajayaghosh, A.: Supramolecular reassembly of self-exfoliated ionic covalent organic nanosheets for label-free detection of double-stranded DNA. Angew. Chem. Int. Ed. 57(28), 8443–8447 (2018)
CrossRef Google scholar
[113]
Wang, P., Zhou, F., Zhang, C., Yin, S.Y., Teng, L., Chen, L., Hu, X.X., Liu, H.W., Yin, X., Zhang, X.B.: Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem. Sci. (Cambridge) 9(44), 8402–8408 (2018)
CrossRef Google scholar
[114]
Wang, J.M., Lian, X., Yan, B.: Eu3+-functionalized covalent organic framework hybrid material as a sensitive turn-on fluorescent switch for levofloxacin monitoring in serum and urine. Inorg. Chem. 58(15), 9956–9963 (2019)
CrossRef Google scholar
[115]
Wang, J., Yan, B.: Improving covalent organic frameworks fluorescence by triethylamine pinpoint surgery as selective biomarker sensor for diabetes mellitus diagnosis. Anal. Chem. 91(20), 13183–13190 (2019)
CrossRef Google scholar
[116]
Zhang, Y., Shen, X., Feng, X., Xia, H., Mu, Y., Liu, X.: Covalent organic frameworks as pH responsive signaling scaffolds. Chem. Commun. (Cambridge) 52(74), 11088–11091 (2016)
CrossRef Google scholar
[117]
Yin, H.Q., Yin, F., Yin, X.B.: Strong dual emission in covalent organic frameworks induced by ESIPT. Chem. Sci. (Cambridge) 10(48), 11103–11109 (2019)
CrossRef Google scholar
[118]
Mulzer, C.R., Shen, L., Bisbey, R.P., McKone, J.R., Zhang, N., Abruña, H.D., Dichtel, W.R.: Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2(9), 667–673 (2016)
CrossRef Google scholar
[119]
Wu, Y., Yan, D., Zhang, Z., Matsushita, M.M., Awaga, K.: Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage. ACS Appl. Mater. Interfaces. 11(8), 7661–7665 (2019)
CrossRef Google scholar
[120]
Xu, Y., Lin, Z., Huang, X., Wang, Y., Huang, Y., Duan, X.: Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25(40), 5779–5784 (2013)
CrossRef Google scholar
[121]
Chandra, S., Chowdhury, D.R., Addicoat, M., Heine, T., Paul, A., Banerjee, R.: Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem. Mater. 29(5), 2074–2080 (2017)
CrossRef Google scholar
[122]
Halder, A., Ghosh, M., Khayum, M.A., Bera, S., Addicoat, M., Sasmal, H.S., Karak, S., Kurungot, S., Banerjee, R.: Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J. Am. Chem. Soc. 140(35), 10941–10945 (2018)
CrossRef Google scholar
[123]
He, Y., Chen, W., Li, X., Zhang, Z., Fu, J., Zhao, C., Xie, E.: Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1), 174–182 (2013)
CrossRef Google scholar
[124]
Niu, W., Liu, J., Mai, Y., Müllen, K., Feng, X.: Synthetic engineering of graphene nanoribbons with excellent liquid-phase processability. Trends Chem. 1(6), 549–558 (2019)
CrossRef Google scholar
[125]
Niu, W., Ma, J., Soltani, P., Zheng, W., Liu, F., Popov, A.A., Weigand, J.J., Komber, H., Poliani, E., Casiraghi, C., Droste, J., Hansen, M.R., Osella, S., Beljonne, D., Bonn, M., Wang, H.I., Feng, X., Liu, J., Mai, Y.: A curved graphene nanoribbon with multi-edge structure and high intrinsic charge carrier mobility. J. Am. Chem. Soc. 142(43), 18293–18298 (2020)
CrossRef Google scholar
[126]
Khayum, M.A., Vijayakumar, V., Karak, S., Kandambeth, S., Bhadra, M., Suresh, K., Acharambath, N., Kurungot, S., Banerjee, R.: Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces. 10(33), 28139–28146 (2018)
CrossRef Google scholar
[127]
Sharma, R.K., Yadav, P., Yadav, M., Gupta, R., Rana, P., Srivastava, A., Zbořil, R., Varma, R.S., Antonietti, M., Gawande, M.B.: Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 7(2), 411–454 (2020)
CrossRef Google scholar
[128]
Pachfule, P., Acharjya, A., Roeser, J., Langenhahn, T., Schwarze, M., Schomäcker, R., Thomas, A., Schmidt, J.: Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 140(4), 1423–1427 (2018)
CrossRef Google scholar
[129]
Sheng, J.L., Dong, H., Meng, X.B., Tang, H.L., Yao, Y.H., Liu, D.Q., Bai, L.L., Zhang, F.M., Wei, J.Z., Sun, X.J.: Effect of different functional groups on photocatalytic hydrogen evolution in covalent-organic frameworks. ChemCatChem 11(9), 2313–2319 (2019)
CrossRef Google scholar
[130]
Wang, X., Chen, L., Chong, S.Y., Little, M.A., Wu, Y., Zhu, W.H., Clowes, R., Yan, Y., Zwijnenburg, M.A., Sprick, R.S., Cooper, A.I.: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10(12), 1180–1189 (2018)
CrossRef Google scholar
[131]
Thote, J., Aiyappa, H.B., Deshpande, A., Díaz Díaz, D., Kurungot, S., Banerjee, R.: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chemistry (Weinheim an der Bergstrasse, Germany) 20(48), 15961–15965 (2014)
CrossRef Google scholar
[132]
Zhang, F.M., Sheng, J.L., Yang, Z.D., Sun, X.J., Tang, H.L., Lu, M., Dong, H., Shen, F.C., Liu, J., Lan, Y.Q.: Rational design MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Commun. 57(37), 12106–12110 (2018)
CrossRef Google scholar
[133]
Luo, M.L., Yang, Q., Liu, K.W., Cao, H.M., Yan, H.J.: Boosting photocatalytic H2 evolution on g-C3N4 via covalent organic frameworks (COFs) modifying. Chem. Commun. 55(41), 5829–5832 (2019)
CrossRef Google scholar
[134]
Ming, J., Liu, A., Zhao, J., Zhang, P., Huang, H., Lin, H., Xu, Z., Zhang, X., Wang, X., Hofkens, J., Roeffaers, M.B.J., Long, J.: Hot π-electron tunneling of metal insulator-COF nanostructures for efficient hydrogen production. Angew. Chem. Commun. 58(50), 18290–18294 (2019)
CrossRef Google scholar
[135]
Zhong, W., Sa, R., Li, L., He, Y., Li, L., Bi, J., Zhuang, Z., Yu, Y., Zou, Z.: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 141(18), 7615–7621 (2019)
CrossRef Google scholar
[136]
Liu, Z.L., Huang, Y.Q., Chang, S.Q., Zhu, X.L., Fu, Y.H., Ma, R., Lu, X.Q., Zhang, F.M., Zhu, W.D., Fan, M.H.: Highly dispersed Ru nanoparticles on a bipyridinelinked covalent organic framework for efficient photocatalytic CO2 reduction. Sustain. Energy Fuels 5(11), 2871–2876 (2021)
CrossRef Google scholar
[137]
Guo, K., Zhu, X.L., Peng, L.L., Fu, Y.H., Ma, R., Lu, X.Q., Zhang, F.M., Zhu, W.D., Fan, M.H.: Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chem. Eng. J. 405, 1270–1278 (2021)
CrossRef Google scholar
[138]
Lv, H., Zhao, X., Niu, H., He, S., Tang, Z., Wu, F., Giesy, J.P.: Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 369, 494–502 (2019)
CrossRef Google scholar
[139]
Cao, Y., Liu, W., Qian, J., Cao, T., Wang, J., Qin, W.: Porous organic polymers containing sulfur skeleton for visible light degradation of organic dyes. Chem. Asian J. 14(16), 2883–2888 (2019)
CrossRef Google scholar
[140]
Patra, B.C., Khilari, S., Manna, R.N., Mondal, S., Pradhan, D., Pradhan, A., Bhaumik, A.: A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 7(9), 6120–6127 (2017)
CrossRef Google scholar
[141]
Zhao, X., Pachfule, P., Thomas, A.: Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 50(12), 6871–6913 (2021)
CrossRef Google scholar
[142]
Aiyappa, H.B., Thote, J., Shinde, D.B., Banerjee, R., Kurungot, S.: Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 28(12), 4375–4379 (2016)
CrossRef Google scholar
[143]
Gao, Z., Yu, Z.W., Huang, Y.X., He, X.Q., Su, X.M., Xiao, L.H., Yu, Y., Huang, X.H., Luo, F.: Flexible and robust bimetallic covalent organic frameworks for the reversible switching of electrocatalytic oxygen evolution activity. J. Mater. Chem. A Mater. Energy Sustain. 8(12), 5907–5912 (2020)
CrossRef Google scholar
[144]
Zhao, X., Pachfule, P., Li, S., Langenhahn, T., Ye, M., Schlesiger, C., Praetz, S., Schmidt, J., Thomas, A.: Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 141(16), 6623–6630 (2019)
CrossRef Google scholar
[145]
Zhao, X., Pachfule, P., Li, S., Langenhahn, T., Ye, M., Tian, G., Schmidt, J., Thomas, A.: Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater. 31(9), 3274–3280 (2019)
CrossRef Google scholar
[146]
Gu, S., Wu, S., Cao, L., Li, M., Qin, N., Zhu, J., Wang, Z., Li, Y., Li, Z., Chen, J., Lu, Z.: Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J. Am. Chem. Soc. 141(24), 9623–9628 (2019)
CrossRef Google scholar
[147]
Chandra, S., Kundu, T., Kandambeth, S., Babarao, R., Marathe, Y., Kunjir, S.M., Banerjee, R.: Phosphoric acid loaded azo (–N═N–) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136(18), 6570–6573 (2014)
CrossRef Google scholar
[148]
Chandra, S., Kundu, T., Dey, K., Addicoat, M., Heine, T., Banerjee, R.: Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks. Chem. Mater. 28(5), 1489–1494 (2016)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(12330 KB)

Accesses

Citations

Detail

Sections
Recommended

/