Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications
Yaqin Li, Maosong Liu, Jinjun Wu, Junbo Li, Xianglin Yu, Qichun Zhang
Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications
Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.
Covalent organic frameworks / β-ketoenamine / Sensors / Energy storage / Batteries / Photocatalysis
[1] |
Liu, X., Huang, D., Lai, C., Zeng, G., Qin, L., Wang, H., Yi, H., Li, B., Liu, S., Zhang, M., Deng, R., Fu, Y., Li, L., Xue, W., Chen, S.: Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 48(20), 5266–5302 (2019)
CrossRef
Google scholar
|
[2] |
Yusran, Y., Fang, Q., Qiu, S.L.: Postsynthetic covalent modification in covalent organic frameworks. Isr. J. Chem. 58(9–10), 971–984 (2018)
CrossRef
Google scholar
|
[3] |
Gui, B., Lin, G., Ding, H., Gao, C., Mal, A., Wang, C.: Three-dimensional covalent organic frameworks: from topology design to applications. Acc. Chem. Res. 53(10), 2225–2234 (2020)
CrossRef
Google scholar
|
[4] |
Alahakoon, S.B., Diwakara, S.D., Thompson, C.M., Smaldone, R.A.: Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 49(5), 1344–1356 (2020)
CrossRef
Google scholar
|
[5] |
Wang, X., She, P., Zhang, Q.: Recent advances on electrochemical methods in fabricating two-dimensional organic-ligand-containing frameworks. SmartMat 2(3), 299–325 (2021)
CrossRef
Google scholar
|
[6] |
Xu, S., Zhang, Q.C.: Recent progress in covalent organic frameworks as light-emitting materials. Mater. Today. Energy 20, 100635 (2021)
CrossRef
Google scholar
|
[7] |
Li, Y., Chen, W., Xing, G., Jiang, D., Chen, L.: New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 49(10), 2852–2868 (2020)
CrossRef
Google scholar
|
[8] |
Wang, Z., Zhang, S., Chen, Y., Zhang, Z., Ma, S.: Covalent organic frameworks for separation applications. Chem. Soc. Rev. 49(3), 708–735 (2020)
CrossRef
Google scholar
|
[9] |
Dautzenberg, E., Lam, M., Li, G., de Smet, L.C.P.M.: Enhanced surface area and reduced pore collapse of methylated, iminelinked covalent organic frameworks. Nanoscale 13(46), 19446–19452 (2021)
CrossRef
Google scholar
|
[10] |
She, P., Qin, Y., Wang, X., Zhang, Q.: Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv. Mater. 34(22), 2101175 (2021)
CrossRef
Google scholar
|
[11] |
Yang, J., Kang, F., Wang, X., Zhang, Q.: Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Mater. Horiz. 9(1), 121–146 (2022)
CrossRef
Google scholar
|
[12] |
Zhan, X.J., Chen, Z., Zhang, Q.C.: Recent progress in two-dimensional COFs for energy-related applications. J. Mater. Chem. A Mater. Energy Sustain. 5(28), 14463–14479 (2017)
CrossRef
Google scholar
|
[13] |
Wu, C., Liu, Y., Liu, H., Duan, C., Pan, Q., Zhu, J., Hu, F., Ma, X., Jiu, T., Li, Z., Zhao, Y.: Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 140(31), 10016–10024 (2018)
CrossRef
Google scholar
|
[14] |
Sun, T., Xie, J., Guo, W., Li, D.S., Zhang, Q.C.: Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 10(19), 1904199 (2020)
CrossRef
Google scholar
|
[15] |
Yao, C.J., Wu, Z., Xie, J., Yu, F., Guo, W., Xu, Z.J., Li, D.S., Zhang, S., Zhang, Q.: Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13(9), 2457–2463 (2020)
CrossRef
Google scholar
|
[16] |
Bagheri, A.R., Aramesh, N., Haddad, P.R.: Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. J. Chromatogr. A 1661, 462612 (2022)
CrossRef
Google scholar
|
[17] |
Zhou, H.Y., Zhou, C.D., Tang, S.Y., Zhang, F.M., Lei, S., Li, Z.J., Liu, J.J., Chen, M.: High efficiency solution synthesis of aryl-aryl linked two-dimensional covalent organic frameworks with remarkable adsorption performance for polycyclic aromatic hydrocarbons (PAHs). Mater. Lett. 307, 131002 (2022)
CrossRef
Google scholar
|
[18] |
He, M., Liang, Q.H., Tang, L., Liu, Z.F., Shao, B.B., He, Q.Y., Wu, T., Luo, S.H., Pan, Y., Zhao, C.H., Niu, C.G., Hu, Y.M.: Advances of covalent organic frameworks based on magnetism: classification, synthesis, properties, applications. Coord. Chem. Rev. 449, 214219 (2021)
CrossRef
Google scholar
|
[19] |
Wang, H., Wang, M.K., Wang, Y.L., Wang, J., Men, X.H., Zhang, Z.Z., Singh, V.: Synergistic effects of COF and GO on high flux oil/water separation performance of superhydrophobic composites. Sep. Purif. Technol. 276, 119268 (2021)
CrossRef
Google scholar
|
[20] |
Yu, F., Liu, W., Ke, S.W., Kurmoo, M., Zuo, J.L., Zhang, Q.: Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 11(1), 5534 (2020)
CrossRef
Google scholar
|
[21] |
Yu, F., Liu, W., Li, B., Tian, D., Zuo, J.L., Zhang, Q.: Photo-stimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 58(45), 16101–16104 (2019)
CrossRef
Google scholar
|
[22] |
Xiang, Y., Yu, X.L., Li, Y.Q., Chen, J.Y., Wu, J.J., Wang, L.X., Chen, D.G., Li, J.B., Zhang, Q.C.: Covalent organic framework as an efficient fluorescence-enhanced probe to detect aluminum ion. Dyes Pigm. 195, 109710 (2021)
CrossRef
Google scholar
|
[23] |
Yao, S., Liu, Z., Li, L.: Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro Letters 13(1), 176 (2021)
CrossRef
Google scholar
|
[24] |
Ghahari, A., Raissi, H., Farzad, F.: Design of a new drug delivery platform based on surface functionalization 2D covalent organic frameworks. J. Taiwan Inst. Chem. Eng. 125, 15–22 (2021)
CrossRef
Google scholar
|
[25] |
Gao, P., Shen, X., Liu, X., Chen, Y., Pan, W., Li, N., Tang, B.: Nucleic acid-gated covalent organic frameworks for cancer-specific imaging and drug release. Anal. Chem. 93(34), 11751–11757 (2021)
CrossRef
Google scholar
|
[26] |
Zhi, Y., Wang, Z., Zhang, H.L., Zhang, Q.: Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 16(24), e2001070 (2020)
CrossRef
Google scholar
|
[27] |
Sun, Q.Z., Wu, C.Y., Pan, Q.Y., Zhang, B.J., Liu, Y.M., Lu, X.Y., Sun, J., Sun, L.S., Zhao, Y.J.: Three-dimensional covalent-organic frameworks loaded with highly dispersed ultrafine palladium nanoparticles as efficient heterogeneous catalyst. ChemNanoMat 7(1), 95–99 (2021)
CrossRef
Google scholar
|
[28] |
Chen, Y., Li, W., Wang, X., Gao, R., Tang, A., Kong, D.: Green synthesis of covalent organic frameworks based on reaction media. Mater. Chem. Front. 5(3), 1253–1267 (2021)
CrossRef
Google scholar
|
[29] |
Maia, R.A., Lopes Oliveira, F., Ritleng, V., Wang, Q., Louis, B., Mothé, E.P.: CO2 capture by hydroxylated azine-based covalent organic frameworks. Chemistry (Weinheim an der Bergstrasse, Germany) 27(30), 8048–8055 (2021)
CrossRef
Google scholar
|
[30] |
Haase, F., Lotsch, B.V.: Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 49(23), 8469–8500 (2020)
CrossRef
Google scholar
|
[31] |
Fan, C., Wu, H., Guan, J., You, X., Yang, C., Wang, X., Cao, L., Shi, B., Peng, Q., Kong, Y., Wu, Y., Khan, N.A., Jiang, Z.: Scalable fabrication of crystalline COF membrane from amorphous polymeric membrane. Angew. Chem. Int. Ed. 60(33), 18051–18058 (2021)
CrossRef
Google scholar
|
[32] |
Dawson, R., Cooper, A.I., Adams, D.J.: Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012)
CrossRef
Google scholar
|
[33] |
Zhu, Y.L., Zhao, H.Y., Fu, C.L., Li, Z.W., Sun, Z.Y., Lu, Z.: Mechanisms of defect correction by reversible chemistries in covalent organic frameworks.. J. Phys. Chem. Lett. 11(22), 9952–9956 (2020)
CrossRef
Google scholar
|
[34] |
Mao, C.F., Hu, Y.J., Yang, C.H., Qin, C.C., Dong, G.M., Zhou, Y.M., Zhang, Y.W.: Well-designed spherical covalent organic frameworks with an electron-deficient and conjugate system for efficient photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 4(12), 14111–14120 (2021)
CrossRef
Google scholar
|
[35] |
Hynek, J., Zelenka, J., Rathouský, J., Kubát, P., Ruml, T., Demel, J., Lang, K.: Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces. 10(10), 8527–8535 (2018)
CrossRef
Google scholar
|
[36] |
Meng, F., Bi, S., Sun, Z., Jiang, B., Wu, D., Chen, J.S., Zhang, F.: Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated knoevenagel condensation. Angew. Chem. Int. Ed. 60(24), 13614–13620 (2021)
CrossRef
Google scholar
|
[37] |
Segura, J.L., Mancheño, M.J., Zamora, F.: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45(20), 5635–5671 (2016)
CrossRef
Google scholar
|
[38] |
Cote, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J., Yaghi, O.M.: Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)
CrossRef
Google scholar
|
[39] |
Lanni, L.M., Tilford, R.W., Bharathy, M., Lavigne, J.J.: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 133(35), 13975–13983 (2011)
CrossRef
Google scholar
|
[40] |
Park, S., Liao, Z., Ibarlucea, B., Qi, H., Lin, H.H., Becker, D., Melidonie, J., Zhang, T., Sahabudeen, H., Baraban, L., Baek, C.K., Zheng, Z., Zschech, E., Fery, A., Heine, T., Kaiser, U., Cuniberti, G., Dong, R., Feng, X.: Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem. Int. Ed. 59(21), 8218–8224 (2020)
CrossRef
Google scholar
|
[41] |
Li, Y.J., Han, Y.N., Chen, M.H., Feng, Y.Q., Zhang, B.: Construction of a flexible covalent organic framework based on triazine units with interesting photoluminescent properties for sensitive and selective detection of picric acid. RSC Adv. 9(53), 30937–30942 (2019)
CrossRef
Google scholar
|
[42] |
Li, X.L., Cai, S.L., Sun, B., Yang, C.Q., Zhang, J., Liu, Y.: Chemically robust covalent organic frameworks: progress and perspective. Matter 3(5), 1507–1540 (2020)
CrossRef
Google scholar
|
[43] |
Lu, Y., Liang, Y., Zhao, Y., Xia, M., Liu, X., Shen, T., Feng, L., Yuan, N., Chen, Q.: Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions. ACS Appl. Mater. Interfaces. 13(1), 1644–1650 (2021)
CrossRef
Google scholar
|
[44] |
Shan, M., Seoane, B., Rozhko, E., Dikhtiarenko, A., Clet, G., Kapteijn, F., Gascon, J.: Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chemistry (Weinheim an der Bergstrasse, Germany) 22(41), 14467–14470 (2016)
CrossRef
Google scholar
|
[45] |
Luo, Z., Liu, L., Ning, J., Lei, K., Lu, Y., Li, F., Chen, J.: A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Ed. 57(30), 9443–9446 (2018)
CrossRef
Google scholar
|
[46] |
Xue, R., Gou, H., Zheng, Y.P., Zhang, L., Liu, Y.S., Rao, H.H., Zhao, G.H.: A new squaraine-linked triazinyl-based covalent organic frameworks: preparation, characterization and application for sensitive and selective determination of Fe3+ cations. ChemistrySelect 5(34), 10632–10636 (2020)
CrossRef
Google scholar
|
[47] |
Wei, S., Zhang, F., Zhang, W., Qiang, P., Yu, K., Fu, X., Wu, D., Bi, S., Zhang, F.: Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J. Am. Chem. Soc. 141(36), 14272–14279 (2019)
CrossRef
Google scholar
|
[48] |
Yuan, C., Fu, S., Yang, K., Hou, B., Liu, Y., Jiang, J., Cui, Y.: Crystalline C–C and C═C bond-linked chiral covalent organic frameworks. J. Am. Chem. Soc. 143(1), 369–381 (2021)
CrossRef
Google scholar
|
[49] |
Cusin, L., Peng, H., Ciesielski, A., Samorì, P.: Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks. Angew. Chem. Int. Ed. 60(26), 14236–14250 (2021)
CrossRef
Google scholar
|
[50] |
Han, X., Huang, J., Yuan, C., Liu, Y., Cui, Y.: Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J. Am. Chem. Soc. 140(3), 892–895 (2018)
CrossRef
Google scholar
|
[51] |
Liu, H.Y., Chu, J., Yin, Z.L., Cai, X., Zhuang, L., Deng, H.X.: Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 4(7), 1696–1709 (2018)
CrossRef
Google scholar
|
[52] |
Liang, Y., Xia, M., Zhao, Y., Wang, D., Li, Y., Sui, Z., Xiao, J., Chen, Q.: Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance. J. Colloid Interface Sci. 608(Pt 1), 652–661 (2022)
CrossRef
Google scholar
|
[53] |
Rabbani, M.G., El-Kaderi, H.M.: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater. 24(8), 1511–1517 (2012)
CrossRef
Google scholar
|
[54] |
Rabbani, M.G., Islamoglu, T., El-Kaderi, H.M.: Benzothiazole-and benzoxazole-linked porous polymers for carbon dioxide storage and separation. J. Mater. Chem. A Mater. Energy Sustain. 5(1), 258–265 (2017)
CrossRef
Google scholar
|
[55] |
Waller, P.J., AlFaraj, Y.S., Diercks, C.S., Jarenwattananon, N.N., Yaghi, O.M.: Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks. J. Am. Chem. Soc. 140(29), 9099–9103 (2018)
CrossRef
Google scholar
|
[56] |
Eder, G.M., Pyles, D.A., Wolfson, E.R., McGrier, P.L.: A ruthenium porphyrin-based porous organic polymer for the hydrosilylative reduction of CO2 to formate. Chem. Commun. 55(50), 7195–7198 (2019)
CrossRef
Google scholar
|
[57] |
Machado, T.F., Serra, M.E.S., Murtinho, D., Valente, A.J.M., Naushad, M.: Covalent organic frameworks: synthesis, properties and applications-an overview. Polymers 13(6), 970 (2021)
CrossRef
Google scholar
|
[58] |
Sharma, R.K., Yadav, P., Yadav, M., Gupta, R., Rana, P., Srivastava, A., Zboril, R., Varma, R.S., Antonietti, M., Gawande, M.B.: Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 7(2), 411–454 (2020)
CrossRef
Google scholar
|
[59] |
Tao, Y., Ji, W.Y., Ding, X.S., Han, B.H.: Exfoliated covalent organic framework nanosheets. J. Mater. Chem. A Mater. Energy Sustain. 9(12), 7336–7365 (2021)
CrossRef
Google scholar
|
[60] |
Bai, B., Wang, D., Wan, L.J.: Synthesis of covalent organic framework films at interfaces. Bull. Chem. Soc. Jpn. 94(3), 1090–1098 (2021)
CrossRef
Google scholar
|
[61] |
Mohammed, A.K., Shetty, D.: Macroscopic covalent organic framework architectures for water remediation. Environ. Sci.: Water Res. Technol. 7(11), 1895–1927 (2021)
CrossRef
Google scholar
|
[62] |
Li, X., Zhang, C., Cai, S., Lei, X., Altoe, V., Hong, F., Urban, J.J., Ciston, J., Chan, E.M., Liu, Y.: Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 9(1), 2998 (2018)
CrossRef
Google scholar
|
[63] |
Evans, A.M., Ryder, M.R., Ji, W., Strauss, M.J., Corcos, A.R., Vitaku, E., Flanders, N.C., Bisbey, R.P., Dichtel, W.R.: Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discuss. 225, 226–240 (2021)
CrossRef
Google scholar
|
[64] |
Rao, M.R., Fang, Y., De Feyter, S., Perepichka, D.F.: Conjugated covalent organic frameworks via michael addition-elimination. J. Am. Chem. Soc. 139(6), 2421–2427 (2017)
CrossRef
Google scholar
|
[65] |
Babu, H.V., Bai, M.G.M., Rajeswara, R.M.: Functional π-conjugated two-dimensional covalent organic frameworks. ACS Appl. Mater. Interfaces. 11(12), 11029–11060 (2019)
CrossRef
Google scholar
|
[66] |
Esrafili, A., Wagner, A., Inamdar, S., Acharya, A.P.: Covalent organic frameworks for biomedical applications. Adv. Healthcare Mater. 10(6), e2002090 (2021)
CrossRef
Google scholar
|
[67] |
Singh, V., Jang, S., Vishwakarma, N.K., Kim, D.: Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique. NPG Asia Mater. 10(1), e456 (2018)
CrossRef
Google scholar
|
[68] |
Wang, J.L., Zhuang, S.T.: Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400, 213046 (2019)
CrossRef
Google scholar
|
[69] |
Chong, J.H., Sauer, M., Patrick, B.O., MacLachlan, M.J.: Highly stable keto-enamine salicylideneanilines. Org. Lett. 5(21), 3823–3826 (2003)
CrossRef
Google scholar
|
[70] |
Kandambeth, S., Mallick, A., Lukose, B., Mane, M.V., Heine, T., Banerjee, R.: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134(48), 19524–19527 (2012)
CrossRef
Google scholar
|
[71] |
Li, X., Yang, C., Sun, B., Cai, S., Chen, Z., Lv, Y., Zhang, J., Liu, Y.: Expeditious synthesis of covalent organic frameworks: a review. J. Mater. Chem. A Mater. Energy Sustain. 8(32), 16045–16060 (2020)
CrossRef
Google scholar
|
[72] |
Ji, W., Hamachi, L.S., Natraj, A., Flanders, N.C., Li, R.L., Chen, L.X., Dichtel, W.R.: Solvothermal depolymerization and recrystallization of imine-linked two-dimensional covalent organic frameworks. Chem. Sci. (Cambridge) 12(48), 16014–16022 (2021)
CrossRef
Google scholar
|
[73] |
Zou, L.F., Yang, X.Y., Yuan, S., Zhou, H.C.: Flexible monomerbased covalent organic frameworks: design, structure and functions. CrystEngComm 19(33), 4868–4871 (2017)
CrossRef
Google scholar
|
[74] |
DeBlase, C.R., Silberstein, K.E., Truong, T.T., Abruña, H.D., Dichtel, W.R.: β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135(45), 16821–16824 (2013)
CrossRef
Google scholar
|
[75] |
Fang, Q., Gu, S., Zheng, J., Zhuang, Z., Qiu, S., Yan, Y.: 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. 53(11), 2878–2882 (2014)
CrossRef
Google scholar
|
[76] |
Wolfe, J.P., Åhman, J., Sadighi, J.P., Singer, R.A., Buchwald, S.L.: An ammonia equivalent for the palladium-catalyzed amination of aryl halides and triflates. Tetrahedron Lett. 38(36), 6367–6370 (1997)
CrossRef
Google scholar
|
[77] |
Vitaku, E., Dichtel, W.R.: Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 139(37), 12911–12914 (2017)
CrossRef
Google scholar
|
[78] |
Daugherty, M.C., Vitaku, E., Li, R.L., Evans, A.M., Chavez, A.D., Dichtel, W.R.: Improved synthesis of β-ketoenamine-linked covalent organic frameworks via monomer exchange reactions. Chem. Commun. 55(18), 2680–2683 (2019)
CrossRef
Google scholar
|
[79] |
Wang, R., Kong, W., Zhou, T., Wang, C., Guo, J.: Organobase modulated synthesis of high-quality β-ketoenamine-linked covalent organic frameworks. Chem. Commun. 57(3), 331–334 (2021)
CrossRef
Google scholar
|
[80] |
Zhao, C., Diercks, C.S., Zhu, C., Hanikel, N., Pei, X., Yaghi, O.M.: Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 140(48), 16438–16441 (2018)
CrossRef
Google scholar
|
[81] |
Biswal, B.P., Chandra, S., Kandambeth, S., Lukose, B., Heine, T., Banerjee, R.: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135(14), 5328–5331 (2013)
CrossRef
Google scholar
|
[82] |
Chandra, S., Kandambeth, S., Biswal, B.P., Lukose, B., Kunjir, S.M., Chaudhary, M., Babarao, R., Heine, T., Banerjee, R.: Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135(47), 17853–17861 (2013)
CrossRef
Google scholar
|
[83] |
Liu, W., Cao, Y., Wang, W., Gong, D., Cao, T., Qian, J., Iqbal, K., Qin, W., Guo, H.: Mechanochromic luminescent covalent organic frameworks for highly selective hydroxyl radical detection. Chem. Commun. 55(2), 167–170 (2019)
CrossRef
Google scholar
|
[84] |
Das, G., Balaji Shinde, D., Kandambeth, S., Biswal, B.P., Banerjee, R.: Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 50(84), 12615–12618 (2014)
CrossRef
Google scholar
|
[85] |
Liu, S.S., Liu, Q.Q., Huang, S.Z., Zhang, C., Dong, X.Y., Zang, S.Q.: Sulfonic and phosphonic porous solids as proton conductor. Coord. Chem. Rev. 451, 214241 (2022)
CrossRef
Google scholar
|
[86] |
Peng, Y., Xu, G., Hu, Z., Cheng, Y., Chi, C., Yuan, D., Cheng, H., Zhao, D.: Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces. 8(28), 18505–18512 (2016)
CrossRef
Google scholar
|
[87] |
Shinde, D.B., Aiyappa, H.B., Bhadra, M., Biswal, B.P., Wadge, P., Kandambeth, S., Garai, B., Kundu, T., Kurungot, S., Banerjee, R.: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2682–2690 (2016)
CrossRef
Google scholar
|
[88] |
Karak, S., Kandambeth, S., Biswal, B.P., Sasmal, H.S., Kumar, S., Pachfule, P., Banerjee, R.: Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J. Am. Chem. Soc. 139(5), 1856–1862 (2017)
CrossRef
Google scholar
|
[89] |
Wei, H., Chai, S., Hu, N., Yang, Z., Wei, L., Wang, L.: The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 51(61), 12178–12181 (2015)
CrossRef
Google scholar
|
[90] |
Xu, L., Xu, J., Shan, B.T., Wang, X.L., Gao, C.J.: TpPa-2-incorporated mixed matrix membranes for efficient water purification. J. Membr. Sci. 526, 355–366 (2017)
CrossRef
Google scholar
|
[91] |
Dong, B., Wang, W.J., Pan, W., Kang, G.J.: Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Mater. Chem. Phys. 226, 244–249 (2019)
CrossRef
Google scholar
|
[92] |
Qiu, J.K., Wang, H.Y., Zhao, Y.L., Guan, P.X., Li, Z.Y., Zhang, H.C., Gao, H.S., Zhang, S.J., Wang, J.J.: Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C-C coupling reactions. Green Chem. 22(8), 2605–2612 (2020)
CrossRef
Google scholar
|
[93] |
Zhao, L.M., Liu, H.M., Du, Y., Liang, X., Wang, W.J., Zhao, H., Li, W.Z.: An ionic liquid as a green solvent for high potency synthesis of 2D covalent organic frameworks. New J. Chem. 44(36), 15410–15414 (2020)
CrossRef
Google scholar
|
[94] |
Thote, J., BarikeAiyappa, H., Rahul Kumar, R., Kandambeth, S., Biswal, B.P., Balaji Shinde, D., Chaki Roy, N., Banerjee, R.: Constructing covalent organic frameworks in water via dynamic covalent bonding. Int. Union Crystallogr. 3(Pt 6), 402–407 (2016)
CrossRef
Google scholar
|
[95] |
Lu, J., Lin, F., Wen, Q., Qi, Q.Y., Xu, J.Q., Zhao, X.: Large-scale synthesis of azine-linked covalent organic frameworks in water and promoted by water. N. J. Chem. 43(16), 6116–6120 (2019)
CrossRef
Google scholar
|
[96] |
DeBlase, C.R., Hernández-Burgos, K., Silberstein, K.E., Rodríguez-Calero, G.G., Bisbey, R.P., Abruña, H.D., Dichtel, W.R.: Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 9(3), 3178–3183 (2015)
CrossRef
Google scholar
|
[97] |
Wang, R., Wei, M.J., Wang, Y.: Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. J. Membr. Sci. 604, 118090 (2020)
CrossRef
Google scholar
|
[98] |
Liu, G.H., Jiang, Z.Y., Yang, H., Li, C.D., Wang, H.J., Wang, M.D., Song, Y.M., Wu, H., Pan, F.S.: High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J. Membr. Sci. 572, 557–566 (2019)
CrossRef
Google scholar
|
[99] |
Kandambeth, S., Biswal, B.P., Chaudhari, H.D., Rout, K.C., Kunjattu, H.S., Mitra, S., Karak, S., Das, A., Mukherjee, R., Kharul, U.K., Banerjee, R.: Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29(2), 1603945 (2017)
CrossRef
Google scholar
|
[100] |
Dey, K., Bhunia, S., Sasmal, H.S., Reddy, C.M., Banerjee, R.: Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J. Am. Chem. Soc. 143(2), 955–963 (2021)
CrossRef
Google scholar
|
[101] |
Dey, K., Pal, M., Rout, K.C., Kunjattu, H.S., Das, A., Mukherjee, R., Kharul, U.K., Banerjee, R.: Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139(37), 13083–13091 (2017)
CrossRef
Google scholar
|
[102] |
Li, Y., Wu, Q., Guo, X., Zhang, M., Chen, B., Wei, G., Li, X., Li, X., Li, S., Ma, L.: Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat. Commun. 11(1), 599 (2020)
CrossRef
Google scholar
|
[103] |
Kang, Z.X., Peng, Y.W., Qian, Y.H., Yuan, D.Q., Addicoat, M.A., Heine, T., Hu, Z.G., Tee, Z., Guo, Z.G., Zhao, D.: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28(5), 1277–1285 (2016)
CrossRef
Google scholar
|
[104] |
Shen, R., Huang, L., Liu, R., Shuai, Q.: Determination of sulfonamides in meat by monolithic covalent organic frameworks based solid phase extraction coupled with high-performance liquid chromatography-mass spectrometric. J. Chromatogr. A 1655, 462518 (2021)
CrossRef
Google scholar
|
[105] |
Karak, S., Dey, K., Torris, A., Halder, A., Bera, S., Kanheerampockil, F., Banerjee, R.: Inducing disorder in order: hierar-chically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. J. Am. Chem. Soc. 141(18), 7572–7581 (2019)
CrossRef
Google scholar
|
[106] |
Liu, R., Yan, Q., Tang, Y., Liu, R., Huang, L., Shuai, Q.: NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. J. Hazard. Mater. 421, 126702 (2022)
CrossRef
Google scholar
|
[107] |
Zhang, S., Wu, X., Ma, C., Li, Y., You, J.: Cationic surfactant modified 3D COF and its application in the adsorption of UV filters and alkylphenols from food packaging material migrants. J. Agric. Food Chem. 68(11), 3663–3669 (2020)
CrossRef
Google scholar
|
[108] |
Cui, W.R., Zhang, C.R., Jiang, W., Liang, R.P., Qiu, J.D.: Covalent organic framework nanosheets for fluorescence sensing via metal coordination. ACS Appl. Nano Mater. 2(8), 5342–5349 (2019)
CrossRef
Google scholar
|
[109] |
Cui, W.R., Zhang, C.R., Jing, W., Liang, R.P., Wen, S.H., Peng, D., Qiu, J.D.: Covalent organic framework nanosheet-based ultrasensitive and selective colorimetric sensor for trace Hg2+ detection. ACS Sustain. Chem. Eng. 7(10), 9408–9415 (2019)
CrossRef
Google scholar
|
[110] |
Manna, A., Maharana, A.K., Rambabu, G., Nayak, S., Basu, S., Das, S.: Dithia-crown-ether integrated self-exfoliated polymeric covalent organic nanosheets for selective sensing and removal of mercury. ACS Appl. Polym. Mater. 3(11), 5527–5535 (2021)
CrossRef
Google scholar
|
[111] |
Kaleeswaran, D., Vishnoi, P., Murugavel, R.: [3+3] Imine and β-ketoenamine-tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7159–7171 (2015)
CrossRef
Google scholar
|
[112] |
Mal, A., Mishra, R.K., Praveen, V.K., Khayum, M.A., Banerjee, R., Ajayaghosh, A.: Supramolecular reassembly of self-exfoliated ionic covalent organic nanosheets for label-free detection of double-stranded DNA. Angew. Chem. Int. Ed. 57(28), 8443–8447 (2018)
CrossRef
Google scholar
|
[113] |
Wang, P., Zhou, F., Zhang, C., Yin, S.Y., Teng, L., Chen, L., Hu, X.X., Liu, H.W., Yin, X., Zhang, X.B.: Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem. Sci. (Cambridge) 9(44), 8402–8408 (2018)
CrossRef
Google scholar
|
[114] |
Wang, J.M., Lian, X., Yan, B.: Eu3+-functionalized covalent organic framework hybrid material as a sensitive turn-on fluorescent switch for levofloxacin monitoring in serum and urine. Inorg. Chem. 58(15), 9956–9963 (2019)
CrossRef
Google scholar
|
[115] |
Wang, J., Yan, B.: Improving covalent organic frameworks fluorescence by triethylamine pinpoint surgery as selective biomarker sensor for diabetes mellitus diagnosis. Anal. Chem. 91(20), 13183–13190 (2019)
CrossRef
Google scholar
|
[116] |
Zhang, Y., Shen, X., Feng, X., Xia, H., Mu, Y., Liu, X.: Covalent organic frameworks as pH responsive signaling scaffolds. Chem. Commun. (Cambridge) 52(74), 11088–11091 (2016)
CrossRef
Google scholar
|
[117] |
Yin, H.Q., Yin, F., Yin, X.B.: Strong dual emission in covalent organic frameworks induced by ESIPT. Chem. Sci. (Cambridge) 10(48), 11103–11109 (2019)
CrossRef
Google scholar
|
[118] |
Mulzer, C.R., Shen, L., Bisbey, R.P., McKone, J.R., Zhang, N., Abruña, H.D., Dichtel, W.R.: Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2(9), 667–673 (2016)
CrossRef
Google scholar
|
[119] |
Wu, Y., Yan, D., Zhang, Z., Matsushita, M.M., Awaga, K.: Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage. ACS Appl. Mater. Interfaces. 11(8), 7661–7665 (2019)
CrossRef
Google scholar
|
[120] |
Xu, Y., Lin, Z., Huang, X., Wang, Y., Huang, Y., Duan, X.: Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25(40), 5779–5784 (2013)
CrossRef
Google scholar
|
[121] |
Chandra, S., Chowdhury, D.R., Addicoat, M., Heine, T., Paul, A., Banerjee, R.: Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem. Mater. 29(5), 2074–2080 (2017)
CrossRef
Google scholar
|
[122] |
Halder, A., Ghosh, M., Khayum, M.A., Bera, S., Addicoat, M., Sasmal, H.S., Karak, S., Kurungot, S., Banerjee, R.: Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J. Am. Chem. Soc. 140(35), 10941–10945 (2018)
CrossRef
Google scholar
|
[123] |
He, Y., Chen, W., Li, X., Zhang, Z., Fu, J., Zhao, C., Xie, E.: Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1), 174–182 (2013)
CrossRef
Google scholar
|
[124] |
Niu, W., Liu, J., Mai, Y., Müllen, K., Feng, X.: Synthetic engineering of graphene nanoribbons with excellent liquid-phase processability. Trends Chem. 1(6), 549–558 (2019)
CrossRef
Google scholar
|
[125] |
Niu, W., Ma, J., Soltani, P., Zheng, W., Liu, F., Popov, A.A., Weigand, J.J., Komber, H., Poliani, E., Casiraghi, C., Droste, J., Hansen, M.R., Osella, S., Beljonne, D., Bonn, M., Wang, H.I., Feng, X., Liu, J., Mai, Y.: A curved graphene nanoribbon with multi-edge structure and high intrinsic charge carrier mobility. J. Am. Chem. Soc. 142(43), 18293–18298 (2020)
CrossRef
Google scholar
|
[126] |
Khayum, M.A., Vijayakumar, V., Karak, S., Kandambeth, S., Bhadra, M., Suresh, K., Acharambath, N., Kurungot, S., Banerjee, R.: Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces. 10(33), 28139–28146 (2018)
CrossRef
Google scholar
|
[127] |
Sharma, R.K., Yadav, P., Yadav, M., Gupta, R., Rana, P., Srivastava, A., Zbořil, R., Varma, R.S., Antonietti, M., Gawande, M.B.: Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 7(2), 411–454 (2020)
CrossRef
Google scholar
|
[128] |
Pachfule, P., Acharjya, A., Roeser, J., Langenhahn, T., Schwarze, M., Schomäcker, R., Thomas, A., Schmidt, J.: Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 140(4), 1423–1427 (2018)
CrossRef
Google scholar
|
[129] |
Sheng, J.L., Dong, H., Meng, X.B., Tang, H.L., Yao, Y.H., Liu, D.Q., Bai, L.L., Zhang, F.M., Wei, J.Z., Sun, X.J.: Effect of different functional groups on photocatalytic hydrogen evolution in covalent-organic frameworks. ChemCatChem 11(9), 2313–2319 (2019)
CrossRef
Google scholar
|
[130] |
Wang, X., Chen, L., Chong, S.Y., Little, M.A., Wu, Y., Zhu, W.H., Clowes, R., Yan, Y., Zwijnenburg, M.A., Sprick, R.S., Cooper, A.I.: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10(12), 1180–1189 (2018)
CrossRef
Google scholar
|
[131] |
Thote, J., Aiyappa, H.B., Deshpande, A., Díaz Díaz, D., Kurungot, S., Banerjee, R.: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chemistry (Weinheim an der Bergstrasse, Germany) 20(48), 15961–15965 (2014)
CrossRef
Google scholar
|
[132] |
Zhang, F.M., Sheng, J.L., Yang, Z.D., Sun, X.J., Tang, H.L., Lu, M., Dong, H., Shen, F.C., Liu, J., Lan, Y.Q.: Rational design MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Commun. 57(37), 12106–12110 (2018)
CrossRef
Google scholar
|
[133] |
Luo, M.L., Yang, Q., Liu, K.W., Cao, H.M., Yan, H.J.: Boosting photocatalytic H2 evolution on g-C3N4 via covalent organic frameworks (COFs) modifying. Chem. Commun. 55(41), 5829–5832 (2019)
CrossRef
Google scholar
|
[134] |
Ming, J., Liu, A., Zhao, J., Zhang, P., Huang, H., Lin, H., Xu, Z., Zhang, X., Wang, X., Hofkens, J., Roeffaers, M.B.J., Long, J.: Hot π-electron tunneling of metal insulator-COF nanostructures for efficient hydrogen production. Angew. Chem. Commun. 58(50), 18290–18294 (2019)
CrossRef
Google scholar
|
[135] |
Zhong, W., Sa, R., Li, L., He, Y., Li, L., Bi, J., Zhuang, Z., Yu, Y., Zou, Z.: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 141(18), 7615–7621 (2019)
CrossRef
Google scholar
|
[136] |
Liu, Z.L., Huang, Y.Q., Chang, S.Q., Zhu, X.L., Fu, Y.H., Ma, R., Lu, X.Q., Zhang, F.M., Zhu, W.D., Fan, M.H.: Highly dispersed Ru nanoparticles on a bipyridinelinked covalent organic framework for efficient photocatalytic CO2 reduction. Sustain. Energy Fuels 5(11), 2871–2876 (2021)
CrossRef
Google scholar
|
[137] |
Guo, K., Zhu, X.L., Peng, L.L., Fu, Y.H., Ma, R., Lu, X.Q., Zhang, F.M., Zhu, W.D., Fan, M.H.: Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chem. Eng. J. 405, 1270–1278 (2021)
CrossRef
Google scholar
|
[138] |
Lv, H., Zhao, X., Niu, H., He, S., Tang, Z., Wu, F., Giesy, J.P.: Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 369, 494–502 (2019)
CrossRef
Google scholar
|
[139] |
Cao, Y., Liu, W., Qian, J., Cao, T., Wang, J., Qin, W.: Porous organic polymers containing sulfur skeleton for visible light degradation of organic dyes. Chem. Asian J. 14(16), 2883–2888 (2019)
CrossRef
Google scholar
|
[140] |
Patra, B.C., Khilari, S., Manna, R.N., Mondal, S., Pradhan, D., Pradhan, A., Bhaumik, A.: A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 7(9), 6120–6127 (2017)
CrossRef
Google scholar
|
[141] |
Zhao, X., Pachfule, P., Thomas, A.: Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 50(12), 6871–6913 (2021)
CrossRef
Google scholar
|
[142] |
Aiyappa, H.B., Thote, J., Shinde, D.B., Banerjee, R., Kurungot, S.: Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 28(12), 4375–4379 (2016)
CrossRef
Google scholar
|
[143] |
Gao, Z., Yu, Z.W., Huang, Y.X., He, X.Q., Su, X.M., Xiao, L.H., Yu, Y., Huang, X.H., Luo, F.: Flexible and robust bimetallic covalent organic frameworks for the reversible switching of electrocatalytic oxygen evolution activity. J. Mater. Chem. A Mater. Energy Sustain. 8(12), 5907–5912 (2020)
CrossRef
Google scholar
|
[144] |
Zhao, X., Pachfule, P., Li, S., Langenhahn, T., Ye, M., Schlesiger, C., Praetz, S., Schmidt, J., Thomas, A.: Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 141(16), 6623–6630 (2019)
CrossRef
Google scholar
|
[145] |
Zhao, X., Pachfule, P., Li, S., Langenhahn, T., Ye, M., Tian, G., Schmidt, J., Thomas, A.: Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater. 31(9), 3274–3280 (2019)
CrossRef
Google scholar
|
[146] |
Gu, S., Wu, S., Cao, L., Li, M., Qin, N., Zhu, J., Wang, Z., Li, Y., Li, Z., Chen, J., Lu, Z.: Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J. Am. Chem. Soc. 141(24), 9623–9628 (2019)
CrossRef
Google scholar
|
[147] |
Chandra, S., Kundu, T., Kandambeth, S., Babarao, R., Marathe, Y., Kunjir, S.M., Banerjee, R.: Phosphoric acid loaded azo (–N═N–) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136(18), 6570–6573 (2014)
CrossRef
Google scholar
|
[148] |
Chandra, S., Kundu, T., Dey, K., Addicoat, M., Heine, T., Banerjee, R.: Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks. Chem. Mater. 28(5), 1489–1494 (2016)
CrossRef
Google scholar
|
/
〈 | 〉 |