Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector

Tae Wook Kim , Sung Hyun Kim , Jae Won Shim , Do Kyung Hwang

Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (2) : 18

PDF (1391KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (2) : 18 DOI: 10.1007/s12200-022-00024-5

Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector

Author information +
History +
PDF (1391KB)

Abstract

Energy harvesting and light detection are key technologies in various emerging optoelectronic applications. The high absorption capability and bandgap tunability of organic semiconductors make them promising candidates for such applications. Herein, a poly(3-hexylthiophene-2,5-diyl) (P3HT):indene-C60 bisadduct (ICBA) bulk heterojunction-based organic photodiode (OPD) was reported, demonstrating dual functionality as an indoor photovoltaic (PV) and as a high-speed photodetector. This OPD demonstrated decent indoor PV performance with a power conversion efficiency (PCE) of (11.6 ± 0.5)% under a light emitting diode (LED) lamp with a luminance of 1000 lx. As a photodetector, this device exhibited a decent photoresponsivity of 0.15 A/W (green light) with an excellent linear dynamic range (LDR) of over 127 dB within the optical power range of 3.74 × 10-7 to 9.6 × 10-2 W/cm2. Furthermore, fast photoswitching behaviors could be observed with the rising/falling times of 14.5/10.4 µs and a cutoff (3 dB) frequency of 37 kHz. These results might pave the way for further development of organic optoelectronic applications.

Graphical abstract

Keywords

Organic semiconductor / Photodiode / Indoor photovoltaics / Photodetector

Cite this article

Download citation ▾
Tae Wook Kim, Sung Hyun Kim, Jae Won Shim, Do Kyung Hwang. Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector. Front. Optoelectron., 2022, 15(2): 18 DOI:10.1007/s12200-022-00024-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Saeed, M.A., Kim, S.H., Kim, H., Liang, J., Woo, H.Y., Kim, T.G., Yan, H., Shim, J.W.: Indoor organic photovoltaics: optimal cell design principles with synergistic parasitic resistance and optical modulation effect. Adv. Energy Mater. 11(27), 2003103 (2021)

[2]

Ma, L.K., Chen, Y.Z., Chow, P.C.Y., Zhang, G.Y., Huang, J.C., Ma, C., Zhang, J.Q., Yin, H., Cheung, A.M.H., Wong, K.S., So, S.K., Yan, H.: High-efficiency indoor organic photovoltaics with a band-aligned interlayer. Joule 4(7), 1607–1611 (2020)

[3]

Cui, Y., Yao, H., Zhang, T., Hong, L., Gao, B., Xian, K., Qin, J., Hou, J.: 1 cm2 organic photovoltaic cells for indoor application with over 20% efficiency. Adv. Mater. 31(42), e1904512 (2019)

[4]

Ding, Z.C., Zhao, R.Y., Yu, Y.J., Liu, J.: All-polymer indoor photovoltaics with high open-circuit voltage. J. Mater. Chem. A 7(46), 26533–26539 (2019)

[5]

Gong, X., Tong, M., Xia, Y., Cai, W., Moon, J.S., Cao, Y., Yu, G., Shieh, C.L., Nilsson, B., Heeger, A.J.: High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948), 1665–1667 (2009)

[6]

Fuentes-Hernandez, C., Chou, W.F., Khan, T.M., Diniz, L., Lukens, J., Larrain, F.A., Rodriguez-Toro, V.A., Kippelen, B.: Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370(6517), 698–701 (2020)

[7]

Ren, H., Chen, J.D., Li, Y.Q., Tang, J.X.: Recent progress in organic photodetectors and their applications. Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) 8(1), 2002418 (2021)

[8]

Jang, M.S., Yoon, S., Sim, K.M., Cho, J., Chung, D.S.: Spatial confinement of the optical sensitizer to realize a thin film organic photodetector with high detectivity and thermal stability. J. Phys. Chem. Lett. 9(1), 8–12 (2018)

[9]

Yang, S.S., Hsieh, Z.C., Keshtov, M.L., Sharma, G.D., Chen, F.C.: Toward high-performance polymer photovoltaic devices for low-power indoor applications. Solar RRL 1(12), 1700174 (2017)

[10]

Lee, B.R., Goo, J.S., Kim, Y.W., You, Y.J., Kim, H., Lee, S.K., Shim, J.W., Kim, T.G.: Highly efficient flexible organic photovoltaics using quasi-amorphous ZnO/Ag/ZnO transparent electrodes for indoor applications. J. Power Sources 417, 61–69 (2019)

[11]

Kim, S.M., Saeed, M.A., Kim, S.H., Shim, J.W.: Enhanced hole selecting behavior of WO3 interlayers for efficient indoor organic photovoltaics with high fill-factor. Appl. Surf. Sci. 527, 146840 (2020)

[12]

Hwang, D.K., Lee, Y.T., Lee, H.S., Lee, Y.J., Shokouh, S.H., Kyhm, J.H., Lee, J., Kim, H.H., Yoo, T.H., Nam, S.H., Son, D.I., Ju, B.K., Park, M.C., Song, J.D., Choi, W.K., Im, S.: Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Materials 8(1), e233 (2016)

[13]

Ahn, J., Kang, J.H., Kyhm, J., Choi, H.T., Kim, M., Ahn, D.H., Kim, D.Y., Ahn, I.H., Park, J.B., Park, S., Yi, Y., Song, J.D., Park, M.C., Im, S., Hwang, D.K.: Self-powered visible-invisible multiband detection and imaging achieved using high-performance 2D MoTe2/MoS2 semivertical heterojunction photodiodes. ACS Appl. Mater. Interfaces. 12(9), 10858–10866 (2020)

[14]

Dou, L., Yang, Y.M., You, J., Hong, Z., Chang, W.H., Li, G., Yang, Y.: Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5(1), 5404 (2014)

RIGHTS & PERMISSIONS

The Author(s) 2022

AI Summary AI Mindmap
PDF (1391KB)

937

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/