Collections

Recent Advances in Functional Fibers
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • REVIEW ARTICLE
    Shengtai Qian, Xingbei Wang, Wei Yan
    Frontiers of Optoelectronics, 2023, 16(1): 3. https://doi.org/10.1007/s12200-023-00058-3

    Flexible and wearable electronics represent paramount technologies offering revolutionized solutions for medical diagnosis and therapy, nerve and organ interfaces, fabric computation, robot-in-medicine and metaverse. Being ubiquitous in everyday life, piezoelectric materials and devices play a vital role in flexible and wearable electronics with their intriguing functionalities, including energy harvesting, sensing and actuation, personal health care and communications. As a new emerging flexible and wearable technology, fiber-shaped piezoelectric devices offer unique advantages over conventional thin-film counterparts. In this review, we survey the recent scientific and technological breakthroughs in thermally drawn piezoelectric fibers and fiber-enabled intelligent fabrics. We highlight the fiber materials, fiber architecture, fabrication, device integration as well as functions that deliver higher forms of unique applications across smart sensing, health care, space security, actuation and energy domains. We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this field.

  • EDITORIAL
    Lei Wei, Guangming Tao, Chong Hou, Wei Yan
    Frontiers of Optoelectronics, 2022, 15(4): 53. https://doi.org/10.1007/s12200-022-00054-z
  • REVIEW ARTICLE
    Xinyu Chen, Honghao Cao, Yue He, Qili Zhou, Zhangcheng Li, Wen Wang, Yu He, Guangming Tao, Chong Hou
    Frontiers of Optoelectronics, 2022, 15(4): 50. https://doi.org/10.1007/s12200-022-00051-2

    Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work.

  • RESEARCH ARTICLE
    Pan Li, Zhihui Sun, Rui Wang, Yuchen Gong, Yingting Zhou, Yuwei Wang, Xiaojuan Liu, Xianjun Zhou, Ju Ouyang, Mingzhi Chen, Chong Hou, Min Chen, Guangming Tao
    Frontiers of Optoelectronics, 2022, 15(3): 40. https://doi.org/10.1007/s12200-022-00042-3

    Color-changeable fibers can provide diverse functions for intelligent wearable devices such as novel information displays and human–machine interfaces when woven into fabric. This work develops a low-cost, effective, and scalable strategy to produce thermochromic fibers by wet spinning. Through a combination of different thermochromic microcapsules, flexible fibers with abundant and reversible color changes are obtained. These color changes can be clearly observed by the naked eye. It is also found that the fibers exhibit excellent color-changing stability even after 8000 thermal cycles. Moreover, the thermochromic fibers can be fabricated on a large scale and easily woven or implanted into various fabrics with good mechanical performance. Driven by their good mechanical and physical characteristics, applications of thermochromic fibers in dynamic colored display are demonstrated. Dynamic quick response (QR) code display and recognition are successfully realized with thermochromic fabrics. This work well confirms the potential applications of thermochromic fibers in smart textiles, wearable devices, flexible displays, and human–machine interfaces.

  • REVIEW ARTICLE
    Jing Zhang, Chen Wang, Yunkang Chen, Yudiao Xiang, Tianye Huang, Perry Ping Shum, Zhichao Wu
    Frontiers of Optoelectronics, 2022, 15(3): 34. https://doi.org/10.1007/s12200-022-00037-0

    Magnetic field sensing plays an important role in many fields of scientific research and engineering applications. Benefiting from the advantages of optical fibers, the optical fiber-based magnetic field sensors demonstrate characteristics of light weight, small size, remote controllability, reliable security, and wide dynamic ranges. This paper provides an overview of the basic principles, development, and applications of optical fiber magnetic field sensors. The sensing mechanisms of fiber grating, interferometric and evanescent field fiber are discussed in detail. Magnetic fluid materials, magneto-strictive materials, and magneto-optical materials used in optical fiber sensing systems are also introduced. The applications of optical fiber magnetic field sensors as current sensors, geomagnetic monitoring, and quasi-distributed magnetic sensors are presented. In addition, challenges and future development directions are analyzed.

  • RESEARCH ARTICLE
    Clément Strutynski, Vincent Couderc, Tigran Mansuryan, Giorgio Santarelli, Philippe Thomas, Sylvain Danto, Thierry Cardinal
    Frontiers of Optoelectronics, 2022, 15(1): 4. https://doi.org/10.1007/s12200-022-00007-6

    Here we present the ability of Nd3+-doped zinc-phosphate glasses to be shaped into rectangular core fibers. At first, the physico-chemical properties of the developed P2O5-based materials are investigated for different concentrations of neodymium oxide and core and cladding glass compositions are selected for further fiber development. A modified stack-and-draw technique is used to produce multimode large rectangular-core optical fibers. Self-guided nonlinear effects acting as spatial beam reshaping processes occurring in these newly-developed photonic structures lead to the generation of spectral broadenings in the visible and near-infrared spectral domains.

  • REVIEW ARTICLE
    Haozhe Zhang, Zhe Wang, Zhixun Wang, Bing He, Mengxiao Chen, Miao Qi, Yanting Liu, Jiwu Xin, Lei Wei
    Frontiers of Optoelectronics, 2022, 15(1): 2. https://doi.org/10.1007/s12200-022-00002-x

    Wearable electronics on fibers or fabrics assembled with electronic functions provide a platform for sensors, displays, circuitry, and computation. These new conceptual devices are human-friendly and programmable, which makes them indispensable for modern electronics. Their unique properties such as being adaptable in daily life, as well as being lightweight and flexible, have enabled many promising applications in robotics, healthcare, and the Internet of Things (IoT). Transistors, one of the fundamental blocks in electronic systems, allow for signal processing and computing. Therefore, study leading to integration of transistors with fabrics has become intensive. Here, several aspects of fiber-based transistors are addressed, including materials, system structures, and their functional devices such as sensory, logical circuitry, memory devices as well as neuromorphic computation. Recently reported advances in development and challenges to realizing fully integrated electronic textile (e-textile) systems are also discussed.

  • RESEARCH ARTICLE
    Jinmin Ding, Fanchao Meng, Xiaoting Zhao, Xin Wang, Shuqin Lou, Xinzhi Sheng, Luyun Yang, Guangming Tao, Sheng Liang
    Frontiers of Optoelectronics, 2022, 15(1): 3. https://doi.org/10.1007/s12200-022-00003-w

    In this paper, a novel all-solid anti-resonant single crystal fiber (AR-SCF) with high refractive index tubes cladding is proposed. By producing the cladding tubes with high refractive index material, the AR guiding mechanism can be realized for the SCF, which can reduce the mode number to achieve single-mode or few-mode transmission. The influences of different materials and structures on the confinement loss and effective guided mode number for wavelengths of 2–3 μm are investigated. Then, the optimal AR-SCF structures for different wavelengths are determined. Furthermore, the influences of different fabrication errors are analyzed. This work would provide insight to new opportunities in the novel design of SCFs by AR, which would greatly impact the fields of laser application, supercontinum generation, and SCF sensors.

  • REVIEW ARTICLE
    Hei Chit Leo TSUI, Noel HEALY
    Frontiers of Optoelectronics, 2021, 14(4): 383-398. https://doi.org/10.1007/s12200-021-1226-0

    Semiconductor optoelectronic fiber technology has seen rapid development in recent years thanks to advancements in fabrication and post-processing techniques. Integrating the optical and electronic functionality of semiconductor materials into a fiber geometry has opened up many possibilities, such as in-fiber frequency generation, signal modulation, photodetection, and solar energy harvesting. This review provides an overview of the state-of-the-art in semiconductor optoelectronic fibers, including fabrication and post-processing methods, materials and their optical properties. The applications in nonlinear optics, optical-electrical conversion, lasers and multimaterial functional fibers will also be highlighted.