Flexible thermochromic fabrics enabling dynamic colored display
Pan Li, Zhihui Sun, Rui Wang, Yuchen Gong, Yingting Zhou, Yuwei Wang, Xiaojuan Liu, Xianjun Zhou, Ju Ouyang, Mingzhi Chen, Chong Hou, Min Chen, Guangming Tao
Flexible thermochromic fabrics enabling dynamic colored display
Color-changeable fibers can provide diverse functions for intelligent wearable devices such as novel information displays and human–machine interfaces when woven into fabric. This work develops a low-cost, effective, and scalable strategy to produce thermochromic fibers by wet spinning. Through a combination of different thermochromic microcapsules, flexible fibers with abundant and reversible color changes are obtained. These color changes can be clearly observed by the naked eye. It is also found that the fibers exhibit excellent color-changing stability even after 8000 thermal cycles. Moreover, the thermochromic fibers can be fabricated on a large scale and easily woven or implanted into various fabrics with good mechanical performance. Driven by their good mechanical and physical characteristics, applications of thermochromic fibers in dynamic colored display are demonstrated. Dynamic quick response (QR) code display and recognition are successfully realized with thermochromic fabrics. This work well confirms the potential applications of thermochromic fibers in smart textiles, wearable devices, flexible displays, and human–machine interfaces.
Thermochromic fibers / Fabric code / Information interaction / Wet spinning
[1] |
Koo, J.H., Kim, D.C., Shim, H.J., Kim, T.H., Kim, D.H.: Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 28(35), 1801834 (2018)
CrossRef
Google scholar
|
[2] |
Chen, M., Jiang, Y., Guizani, N., Zhou, J., Tao, G., Yin, J., Hwang, K.: Living with I-Fabric: smart living powered by intelligent fabric and deep analytics. IEEE Netw. 34(5), 156–163 (2020)
CrossRef
Google scholar
|
[3] |
Shi, X., Zuo, Y., Zhai, P., Shen, J., Yang, Y., Gao, Z., Liao, M., Wu, J., Wang, J., Xu, X., Tong, Q., Zhang, B., Wang, B., Sun, X., Zhang, L., Pei, Q., Jin, D., Chen, P., Peng, H.: Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021)
CrossRef
Google scholar
|
[4] |
Chen, M., Zhou, J., Tao, G., Yang, J., Hu, L.: Wearable affective robot. IEEE Access 6, 64766–64776 (2018)
CrossRef
Google scholar
|
[5] |
Yang, J., Zhou, J., Tao, G., Alrashoud, M., Mutib, K.N., Al-Hammadi, M.: Wearable 3.0: from smart clothing to wearable affective robot. IEEE Netw. 33(6), 8–14 (2019)
CrossRef
Google scholar
|
[6] |
Li, S., Liu, D., Tian, N., Liang, Y., Gao, C., Wang, S., Zhang, Y.: High-performance temperature sensor based on silver nanowires. Mater. Today Commun. 20, 100546 (2019)
CrossRef
Google scholar
|
[7] |
Geng, X., Li, W., Wang, Y., Lu, J., Wang, J., Wang, N., Li, J., Zhang, X.: Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Appl. Energy 217, 281–294 (2018)
CrossRef
Google scholar
|
[8] |
Zhang, W., Ji, X., Zeng, C., Chen, K., Yin, Y., Wang, C.: A new approach for the preparation of durable and reversible color changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules. J. Mater. Chem. C 5(32), 32 (2017)
CrossRef
Google scholar
|
[9] |
Isapour, G., Lattuada, M.: Bioinspired stimuli-responsive colorchanging systems. Adv. Mater. 30(19), e1707069 (2018)
CrossRef
Google scholar
|
[10] |
Gong, X., Hou, C., Zhang, Q., Li, Y., Wang, H.: Thermochromic hydrogel-functionalized textiles for synchronous visual monitoring of on-demand in vitro drug release. ACS Appl. Mater. Interfaces 12(46), 51225–51235 (2020)
CrossRef
Google scholar
|
[11] |
Chen, Y., Xi, Y., Ke, Y., Li, W., Long, Y., Li, J., Wang, L.N., Zhang, X.: A skin-like stretchable colorimetric temperature sensor. Sci. China Mater. 61(7), 969–976 (2018)
CrossRef
Google scholar
|
[12] |
Wang, Y., Ren, J., Ye, C., Pei, Y., Ling, S.: Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro. Lett. 13(1), 72 (2021)
CrossRef
Google scholar
|
[13] |
Chen, H.J., Huang, L.H.: An investigation of the design potential of thermochromic home textiles used with electric heating techniques. Math. Probl. Eng. 2015, 151573 (2015)
CrossRef
Google scholar
|
[14] |
Yetisen, A.K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M.R., Hinestroza, J.P., Skorobogatiy, M., Khademhosseini, A., Yun, S.H.: Nanotechnology in textiles. ACS Nano 10(3), 3042–3068 (2016)
CrossRef
Google scholar
|
[15] |
Wu, J., Hu, R., Zeng, S., Xi, W., Huang, S., Deng, J., Tao, G.: Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces 12(16), 19015–19022 (2020)
CrossRef
Google scholar
|
[16] |
Ji, H., Liu, D., Cheng, H., Zhang, C., Yang, L., Ren, D.: Infrared thermochromic properties of monoclinic VO2 nanopowders using a malic acid-assisted hydrothermal method for adaptive camouflage. RSC Adv. 7(9), 5189–5194 (2017)
CrossRef
Google scholar
|
[17] |
Kim, H., Seo, M., Kim, J., Kwon, D., Choi, S., Kim, J.W., Myoung, J.: Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire–single-walled carbon nanotube composite. Adv. Funct. Mater. 29(24), 1901061 (2019)
CrossRef
Google scholar
|
[18] |
Liu, R., He, L., Cao, M., Sun, Z., Zhu, R., Li, Y.: Flexible temperature sensors. Front. Chem. 9, 539678 (2021)
CrossRef
Google scholar
|
[19] |
Lee, G., Bae, G.Y., Son, J.H., Lee, S., Kim, S.W., Kim, D., Lee, S.G., Cho, K.: User-interactive thermotherapeutic electronic skin based on stretchable thermochromic strain sensor. Adv. Sci. (Weinh) 7(17), 2001184 (2020)
CrossRef
Google scholar
|
[20] |
Eslahi, N., Fatemi, T., Varsei, M., Bazgir, S.: Electrospinning of smart thermochromic nanofibers as sensors. Sci. Iran. 27(6), 6 (2020)
|
[21] |
He, Y., Li, W., Han, N., Wang, J., Zhang, X.: Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl. Energy 247, 615–629 (2019)
CrossRef
Google scholar
|
[22] |
Zou, X., Ji, H., Zhao, Y., Lu, M., Tao, J., Tang, P., Liu, B., Yu, X., Mao, Y.: Research progress of photo-/electro-driven thermochromic smart windows. Nanomaterials (Basel) 11(12), 3335 (2021)
CrossRef
Google scholar
|
[23] |
Yan, W., Dong, C., Xiang, Y., Jiang, S., Leber, A., Loke, G., Xu, W., Hou, C., Zhou, S., Chen, M., Hu, R., Shum, P.P., Wei, L., Jia, X., Sorin, F., Tao, X., Tao, G.: Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020)
CrossRef
Google scholar
|
[24] |
Barkaoui, S., Mankai, M., Miloud, N.B., Kraïem, M., Madureira, J., Verde, S.C., Boudhrioua, N.: E-beam irradiation of strawberries: investigation of microbiological, physicochemical, sensory acceptance properties and bioactive content. Innov. Food Sci. Emerg. 73, 102769 (2021)
CrossRef
Google scholar
|
[25] |
Inami, T., Tanimoto, Y., Minami, N., Yamaguchi, M., Kasai, K.: Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires. Korean J. Orthod. 45(3), 130–135 (2015)
CrossRef
Google scholar
|
/
〈 | 〉 |