Flexible thermochromic fabrics enabling dynamic colored display

Pan Li, Zhihui Sun, Rui Wang, Yuchen Gong, Yingting Zhou, Yuwei Wang, Xiaojuan Liu, Xianjun Zhou, Ju Ouyang, Mingzhi Chen, Chong Hou, Min Chen, Guangming Tao

PDF(1217 KB)
PDF(1217 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (3) : 40. DOI: 10.1007/s12200-022-00042-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Flexible thermochromic fabrics enabling dynamic colored display

Author information +
History +

Abstract

Color-changeable fibers can provide diverse functions for intelligent wearable devices such as novel information displays and human–machine interfaces when woven into fabric. This work develops a low-cost, effective, and scalable strategy to produce thermochromic fibers by wet spinning. Through a combination of different thermochromic microcapsules, flexible fibers with abundant and reversible color changes are obtained. These color changes can be clearly observed by the naked eye. It is also found that the fibers exhibit excellent color-changing stability even after 8000 thermal cycles. Moreover, the thermochromic fibers can be fabricated on a large scale and easily woven or implanted into various fabrics with good mechanical performance. Driven by their good mechanical and physical characteristics, applications of thermochromic fibers in dynamic colored display are demonstrated. Dynamic quick response (QR) code display and recognition are successfully realized with thermochromic fabrics. This work well confirms the potential applications of thermochromic fibers in smart textiles, wearable devices, flexible displays, and human–machine interfaces.

Graphical abstract

Keywords

Thermochromic fibers / Fabric code / Information interaction / Wet spinning

Cite this article

Download citation ▾
Pan Li, Zhihui Sun, Rui Wang, Yuchen Gong, Yingting Zhou, Yuwei Wang, Xiaojuan Liu, Xianjun Zhou, Ju Ouyang, Mingzhi Chen, Chong Hou, Min Chen, Guangming Tao. Flexible thermochromic fabrics enabling dynamic colored display. Front. Optoelectron., 2022, 15(3): 40 https://doi.org/10.1007/s12200-022-00042-3

References

[1]
Koo, J.H., Kim, D.C., Shim, H.J., Kim, T.H., Kim, D.H.: Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 28(35), 1801834 (2018)
CrossRef Google scholar
[2]
Chen, M., Jiang, Y., Guizani, N., Zhou, J., Tao, G., Yin, J., Hwang, K.: Living with I-Fabric: smart living powered by intelligent fabric and deep analytics. IEEE Netw. 34(5), 156–163 (2020)
CrossRef Google scholar
[3]
Shi, X., Zuo, Y., Zhai, P., Shen, J., Yang, Y., Gao, Z., Liao, M., Wu, J., Wang, J., Xu, X., Tong, Q., Zhang, B., Wang, B., Sun, X., Zhang, L., Pei, Q., Jin, D., Chen, P., Peng, H.: Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021)
CrossRef Google scholar
[4]
Chen, M., Zhou, J., Tao, G., Yang, J., Hu, L.: Wearable affective robot. IEEE Access 6, 64766–64776 (2018)
CrossRef Google scholar
[5]
Yang, J., Zhou, J., Tao, G., Alrashoud, M., Mutib, K.N., Al-Hammadi, M.: Wearable 3.0: from smart clothing to wearable affective robot. IEEE Netw. 33(6), 8–14 (2019)
CrossRef Google scholar
[6]
Li, S., Liu, D., Tian, N., Liang, Y., Gao, C., Wang, S., Zhang, Y.: High-performance temperature sensor based on silver nanowires. Mater. Today Commun. 20, 100546 (2019)
CrossRef Google scholar
[7]
Geng, X., Li, W., Wang, Y., Lu, J., Wang, J., Wang, N., Li, J., Zhang, X.: Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Appl. Energy 217, 281–294 (2018)
CrossRef Google scholar
[8]
Zhang, W., Ji, X., Zeng, C., Chen, K., Yin, Y., Wang, C.: A new approach for the preparation of durable and reversible color changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules. J. Mater. Chem. C 5(32), 32 (2017)
CrossRef Google scholar
[9]
Isapour, G., Lattuada, M.: Bioinspired stimuli-responsive colorchanging systems. Adv. Mater. 30(19), e1707069 (2018)
CrossRef Google scholar
[10]
Gong, X., Hou, C., Zhang, Q., Li, Y., Wang, H.: Thermochromic hydrogel-functionalized textiles for synchronous visual monitoring of on-demand in vitro drug release. ACS Appl. Mater. Interfaces 12(46), 51225–51235 (2020)
CrossRef Google scholar
[11]
Chen, Y., Xi, Y., Ke, Y., Li, W., Long, Y., Li, J., Wang, L.N., Zhang, X.: A skin-like stretchable colorimetric temperature sensor. Sci. China Mater. 61(7), 969–976 (2018)
CrossRef Google scholar
[12]
Wang, Y., Ren, J., Ye, C., Pei, Y., Ling, S.: Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro. Lett. 13(1), 72 (2021)
CrossRef Google scholar
[13]
Chen, H.J., Huang, L.H.: An investigation of the design potential of thermochromic home textiles used with electric heating techniques. Math. Probl. Eng. 2015, 151573 (2015)
CrossRef Google scholar
[14]
Yetisen, A.K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M.R., Hinestroza, J.P., Skorobogatiy, M., Khademhosseini, A., Yun, S.H.: Nanotechnology in textiles. ACS Nano 10(3), 3042–3068 (2016)
CrossRef Google scholar
[15]
Wu, J., Hu, R., Zeng, S., Xi, W., Huang, S., Deng, J., Tao, G.: Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces 12(16), 19015–19022 (2020)
CrossRef Google scholar
[16]
Ji, H., Liu, D., Cheng, H., Zhang, C., Yang, L., Ren, D.: Infrared thermochromic properties of monoclinic VO2 nanopowders using a malic acid-assisted hydrothermal method for adaptive camouflage. RSC Adv. 7(9), 5189–5194 (2017)
CrossRef Google scholar
[17]
Kim, H., Seo, M., Kim, J., Kwon, D., Choi, S., Kim, J.W., Myoung, J.: Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire–single-walled carbon nanotube composite. Adv. Funct. Mater. 29(24), 1901061 (2019)
CrossRef Google scholar
[18]
Liu, R., He, L., Cao, M., Sun, Z., Zhu, R., Li, Y.: Flexible temperature sensors. Front. Chem. 9, 539678 (2021)
CrossRef Google scholar
[19]
Lee, G., Bae, G.Y., Son, J.H., Lee, S., Kim, S.W., Kim, D., Lee, S.G., Cho, K.: User-interactive thermotherapeutic electronic skin based on stretchable thermochromic strain sensor. Adv. Sci. (Weinh) 7(17), 2001184 (2020)
CrossRef Google scholar
[20]
Eslahi, N., Fatemi, T., Varsei, M., Bazgir, S.: Electrospinning of smart thermochromic nanofibers as sensors. Sci. Iran. 27(6), 6 (2020)
[21]
He, Y., Li, W., Han, N., Wang, J., Zhang, X.: Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl. Energy 247, 615–629 (2019)
CrossRef Google scholar
[22]
Zou, X., Ji, H., Zhao, Y., Lu, M., Tao, J., Tang, P., Liu, B., Yu, X., Mao, Y.: Research progress of photo-/electro-driven thermochromic smart windows. Nanomaterials (Basel) 11(12), 3335 (2021)
CrossRef Google scholar
[23]
Yan, W., Dong, C., Xiang, Y., Jiang, S., Leber, A., Loke, G., Xu, W., Hou, C., Zhou, S., Chen, M., Hu, R., Shum, P.P., Wei, L., Jia, X., Sorin, F., Tao, X., Tao, G.: Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020)
CrossRef Google scholar
[24]
Barkaoui, S., Mankai, M., Miloud, N.B., Kraïem, M., Madureira, J., Verde, S.C., Boudhrioua, N.: E-beam irradiation of strawberries: investigation of microbiological, physicochemical, sensory acceptance properties and bioactive content. Innov. Food Sci. Emerg. 73, 102769 (2021)
CrossRef Google scholar
[25]
Inami, T., Tanimoto, Y., Minami, N., Yamaguchi, M., Kasai, K.: Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires. Korean J. Orthod. 45(3), 130–135 (2015)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(1217 KB)

Accesses

Citations

Detail

Sections
Recommended

/