Recent progress of semiconductor optoelectronic fibers

Hei Chit Leo TSUI, Noel HEALY

PDF(1995 KB)
PDF(1995 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (4) : 383-398. DOI: 10.1007/s12200-021-1226-0
REVIEW ARTICLE
REVIEW ARTICLE

Recent progress of semiconductor optoelectronic fibers

Author information +
History +

Abstract

Semiconductor optoelectronic fiber technology has seen rapid development in recent years thanks to advancements in fabrication and post-processing techniques. Integrating the optical and electronic functionality of semiconductor materials into a fiber geometry has opened up many possibilities, such as in-fiber frequency generation, signal modulation, photodetection, and solar energy harvesting. This review provides an overview of the state-of-the-art in semiconductor optoelectronic fibers, including fabrication and post-processing methods, materials and their optical properties. The applications in nonlinear optics, optical-electrical conversion, lasers and multimaterial functional fibers will also be highlighted.

Graphical abstract

Keywords

optical fibers / semiconductor photonics / nonlinear optics

Cite this article

Download citation ▾
Hei Chit Leo TSUI, Noel HEALY. Recent progress of semiconductor optoelectronic fibers. Front. Optoelectron., 2021, 14(4): 383‒398 https://doi.org/10.1007/s12200-021-1226-0

References

[1]
Desurvire E, Simpson J R, Becker P C. High-gain erbium-doped traveling-wave fiber amplifier. Optics Letters, 1987, 12(11): 888–890
CrossRef Pubmed Google scholar
[2]
Mears R, Reekie L, Jauncey I, Payne D. Low-noise erbium-doped fibre amplifier operating at 1.54 µm. Electronics Letters, 1987, 23(2): 1026–1028
[3]
Urquhart P. Review of rare earth doped fibre lasers and amplifiers. IEE Proceedings J (Optoelectronics), 1988, 135(6): 385–407
[4]
Miniscalco W J. Erbium-doped glasses for fiber amplifiers at 1500 nm. Journal of Lightwave Technology, 1991, 9(2): 234–250
CrossRef Google scholar
[5]
Giles C R, Desurvire E. Modeling erbium-doped fiber amplifiers. Journal of Lightwave Technology, 1991, 9(2): 271–283
CrossRef Google scholar
[6]
Agrawal G P. Optical pulse propagation in doped fiber amplifiers. Physical Review A, 1991, 44(11): 7493–7501
CrossRef Pubmed Google scholar
[7]
Barnard C, Myslinski P, Chrostowski J, Kavehrad M. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE Journal of Quantum Electronics, 1994, 30(8): 1817–1830
CrossRef Google scholar
[8]
Seddon A B, Tang Z, Furniss D, Sujecki S, Benson T M. Progress in rare-earth-doped mid-infrared fiber lasers. Optics Express, 2010, 18(25): 26704–26719
CrossRef Pubmed Google scholar
[9]
Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives. Journal of the Optical Society of America B, Optical Physics, 2010, 27(11): B63–B92
CrossRef Google scholar
[10]
Peacock A C, Healy N. Semiconductor optical fibres for infrared applications: a review. Semiconductor Science and Technology, 2016, 31(10): 103004
CrossRef Google scholar
[11]
Dragic P D, Cavillon M, Ballato J. Materials for optical fiber lasers: a review. Applied Physics Reviews, 2018, 5(4): 041301
CrossRef Google scholar
[12]
Wetenkamp L, West G F, Többen H. Optical properties of rare earth-doped ZBLAN glasses. Journal of Non-Crystalline Solids, 1992, 140: 35–40
CrossRef Google scholar
[13]
Miyajima Y, Komukai T, Sugawa T, Yamamoto T. Rare earth-doped fluoride fiber amplifiers and fiber lasers. Optical Fiber Technology, 1994, 1(1): 35–47
CrossRef Google scholar
[14]
Wang J, Vogel E, Snitzer E. Tellurite glass: a new candidate for fiber devices. Optical Materials, 1994, 3(3): 187–203
CrossRef Google scholar
[15]
Sidebottom D, Hruschka M, Potter B, Brow R. Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses. Journal of Non-Crystalline Solids, 1997, 222(1–2): 282–289
CrossRef Google scholar
[16]
Clara Gonçalves M, Santos L F, Almeida R M. Rare-earth-doped transparent glass ceramics. Comptes Rendus Chimie, 2002, 5(12): 845–854
CrossRef Google scholar
[17]
Sanghera J S, Brandon Shaw L, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 114–119
CrossRef Google scholar
[18]
Boetti N G, Pugliese D, Ceci-Ginistrelli E, Lousteau J, Janner D, Milanese D. Highly doped phosphate glass fibers for compact lasers and amplifiers: a review. Applied Sciences (Basel, Switzerland), 2017, 7(12): 1295
CrossRef Google scholar
[19]
Richardson K, Krol D, Hirao K. Glasses for photonic applications. International Journal of Applied Glass Science, 2010, 1(1): 74–86
CrossRef Google scholar
[20]
Dajani I, Zhu X, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect. Advances in OptoElectronics, 2010, 2010: 501956
[21]
Calvez L. Chalcogenide glasses and glass-ceramics: transparent materials in the infrared for dual applications. Comptes Rendus Physique, 2017, 18(5–6): 314–322
CrossRef Google scholar
[22]
Harbold J M, Ilday F O, Wise F W, Sanghera J S, Nguyen V Q, Shaw L B, Aggarwal I D. Highly nonlinear As-S-Se glasses for all-optical switching. Optics Letters, 2002, 27(2): 119–121
CrossRef Pubmed Google scholar
[23]
Sanghera J S, Shaw L B, Pureza P, Nguyen V Q, Gibson D, Busse L, Aggarwal I D, Florea C M, Kung F H. Nonlinear properties of chalcogenide glass fibers. International Journal of Applied Glass Science, 2010, 1(3): 296–308
CrossRef Google scholar
[24]
Gan F. Optical properties of fluoride glasses: a review. Journal of Non-Crystalline Solids, 1995, 184: 9–20
CrossRef Google scholar
[25]
Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics. Nature Photonics, 2011, 5(3): 141–148
CrossRef Google scholar
[26]
Ballato J, Hawkins T, Foy P, Yazgan-Kokuoz B, McMillen C, Burka L, Morris S, Stolen R, Rice R. Advancements in semiconductor core optical fiber. Optical Fiber Technology, 2010, 16(6): 399–408
CrossRef Google scholar
[27]
Peacock A C, Sparks J R, Healy N. Semiconductor optical fibres: progress and opportunities. Laser & Photonics Reviews, 2014, 8(1): 53–72
CrossRef Google scholar
[28]
Peacock A C, Gibson U J, Ballato J. Silicon optical fibres—past, present, and future. Advances in Physics: X, 2016, 1(1): 114–127
CrossRef Google scholar
[29]
Ordu M, Basu S N. Recent progress in germanium-core optical fibers for mid-infrared optics. Infrared Physics & Technology, 2020, 111: 103507
CrossRef Google scholar
[30]
Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Advanced Materials, 2019, 31(1): e1802348
CrossRef Pubmed Google scholar
[31]
Wang Z, Chen M, Zheng Y, Zhang J, Wang Z, Yang J, Zhang Q, He B, Qi M, Zhang H, Li K, Wei L. Advanced thermally drawn multimaterial fibers: structure-enabled functionalities. Advanced Devices & Instrumentation, 2021, 2021: 9676470
CrossRef Google scholar
[32]
Bayindir M, Sorin F, Abouraddy A F, Viens J, Hart S D, Joannopoulos J D, Fink Y. Metal-insulator-semiconductor optoelectronic fibres. Nature, 2004, 431(7010): 826–829
CrossRef Pubmed Google scholar
[33]
Abouraddy A F, Shapira O, Bayindir M, Arnold J, Sorin F, Hinczewski D S, Joannopoulos J D, Fink Y. Large-scale optical-field measurements with geometric fibre constructs. Nature Materials, 2006, 5(7): 532–536
CrossRef Pubmed Google scholar
[34]
Zhang T, Li K, Zhang J, Chen M, Wang Z, Ma S, Zhang N, Wei L. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 2017, 41: 35–42
CrossRef Google scholar
[35]
Zhang T, Wang Z, Srinivasan B, Wang Z, Zhang J, Li K, Boussard-Pledel C, Troles J, Bureau B, Wei L. Ultraflexible glassy semiconductor fibers for thermal sensing and positioning. ACS Applied Materials & Interfaces, 2019, 11(2): 2441–2447
CrossRef Pubmed Google scholar
[36]
Zhang J, Zhang T, Zhang H, Wang Z, Li C, Wang Z, Li K, Huang X, Chen M, Chen Z, Tian Z, Chen H, Zhao L D, Wei L. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Advanced Materials, 2020, 32(36): e2002702
CrossRef Pubmed Google scholar
[37]
Sazio P J A, Amezcua-Correa A, Finlayson C E, Hayes J R, Scheidemantel T J, Baril N F, Jackson B R, Won D J, Zhang F, Margine E R, Gopalan V, Crespi V H, Badding J V. Microstructured optical fibers as high-pressure microfluidic reactors. Science, 2006, 311(5767): 1583–1586
CrossRef Pubmed Google scholar
[38]
Healy N, Lagonigro L, Sparks J R, Boden S, Sazio P J A, Badding J V, Peacock A C. Polycrystalline silicon optical fibers with atomically smooth surfaces. Optics Letters, 2011, 36(13): 2480–2482
CrossRef Pubmed Google scholar
[39]
Sparks J R, Sazio P J, Gopalan V, Badding J V. Templated chemically deposited semiconductor optical fiber materials. Annual Review of Materials Research, 2013, 43(1): 527–557
CrossRef Google scholar
[40]
Healy N, Gibson U, Peacock A C. A review of materials engineering in silicon-based optical fibres. Semiconductor Science and Technology, 2018, 33(2): 023001
CrossRef Google scholar
[41]
Tyagi H K, Schmidt M A, Prill Sempere L, Russell P S. Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Optics Express, 2008, 16(22): 17227–17236
CrossRef Pubmed Google scholar
[42]
Lee H W, Schmidt M A, Russell R F, Joly N Y, Tyagi H K, Uebel P, Russell P S J. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Optics Express, 2011, 19(13): 12180–12189
CrossRef Pubmed Google scholar
[43]
Chen H, Fan S, Li G, Schmidt M A, Healy N. Single crystal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization. IEEE Photonics Technology Letters, 2020, 32(2): 81–84
CrossRef Google scholar
[44]
Ballato J, Snitzer E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Applied Optics, 1995, 34(30): 6848–6854
CrossRef Pubmed Google scholar
[45]
Ballato J, Hawkins T, Foy P, Stolen R, Kokuoz B, Ellison M, McMillen C, Reppert J, Rao A M, Daw M, Sharma S R, Shori R, Stafsudd O, Rice R R, Powers D R. Silicon optical fiber. Optics Express, 2008, 16(23): 18675–18683
CrossRef Pubmed Google scholar
[46]
Scott B L, Pickrell G R. Silicon optical fiber diameter dependent grain size. Journal of Crystal Growth, 2013, 371: 134–141
CrossRef Google scholar
[47]
Ballato J, Hawkins T, Foy P, Yazgan-Kokuoz B, Stolen R, McMillen C, Hon N K, Jalali B, Rice R. Glass-clad single-crystal germanium optical fiber. Optics Express, 2009, 17(10): 8029–8035
CrossRef Pubmed Google scholar
[48]
Nordstrand E F, Dibbs A N, Eraker A J, Gibson U J. Alkaline oxide interface modifiers for silicon fiber production. Optical Materials Express, 2013, 3(5): 651–657
CrossRef Google scholar
[49]
Hou C, Jia X, Wei L, Tan S C, Zhao X, Joannopoulos J D, Fink Y. Crystalline silicon core fibres from aluminium core preforms. Nature Communications, 2015, 6(1): 6248
CrossRef Pubmed Google scholar
[50]
Hou C, Jia X, Wei L, Stolyarov A M, Shapira O, Joannopoulos J D, Fink Y. Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing. Nano Letters, 2013, 13(3): 975–979
CrossRef Pubmed Google scholar
[51]
Spinella C, Lombardo S, Priolo F. Crystal grain nucleation in amorphous silicon. Journal of Applied Physics, 1998, 84(10): 5383–5414
CrossRef Google scholar
[52]
Bo X Z, Yao N, Shieh S R, Duffy T S, Sturm J C. Large-grain polycrystalline silicon films with low intra- granular defect density by low-temperature solid-phase crystallization without underlying oxide. Journal of Applied Physics, 2002, 91(5): 2910–2915
CrossRef Google scholar
[53]
Chaudhuri S, Sparks J R, Ji X, Krishnamurthi M, Shen L, Healy N, Peacock A C, Gopalan V, Badding J V. Crystalline silicon optical fibers with low optical loss. ACS Photonics, 2016, 3(3): 378–384
CrossRef Google scholar
[54]
Gupta N, McMillen C, Singh R, Podila R, Rao A M, Hawkins T, Foy P, Morris S, Rice R, Poole K F, Zhu L, Ballato J. Annealing of silicon optical fibers. Journal of Applied Physics, 2011, 110(9): 093107
CrossRef Google scholar
[55]
Xue S, van Eijkelenborg M A, Barton G W, Hambley P. Theoretical, numerical, and experimental analysis of optical fiber tapering. Journal of Lightwave Technology, 2007, 25(5): 1169–1176
CrossRef Google scholar
[56]
Suhailin F H, Shen L, Healy N, Xiao L, Jones M, Hawkins T, Ballato J, Gibson U J, Peacock A C. Tapered polysilicon core fibers for nonlinear photonics. Optics Letters, 2016, 41(7): 1360–1363
CrossRef Pubmed Google scholar
[57]
Franz Y, Runge A F J, Ren H, Healy N, Ignatyev K, Jones M, Hawkins T, Ballato J, Gibson U J, Peacock A C. Material properties of tapered crystalline silicon core fibers. Optical Materials Express, 2017, 7(6): 2055–2061
CrossRef Google scholar
[58]
Healy N, Fokine M, Franz Y, Hawkins T, Jones M, Ballato J, Peacock A C, Gibson U J. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss. Advanced Optical Materials, 2016, 4(7): 1004–1008
CrossRef Google scholar
[59]
Ji X, Lei S, Yu S Y, Cheng H Y, Liu W, Poilvert N, Xiong Y, Dabo I, Mohney S E, Badding J V, Gopalan V. Single-crystal silicon optical fiber by direct laser crystallization. ACS Photonics, 2017, 4(1): 85–92
CrossRef Google scholar
[60]
Zhao Z, Mao Y, Ren L, Zhang J, Chen N, Wang T. CO2 laser annealing of Ge core optical fibers with different laser power. Optical Materials Express, 2019, 9(3): 1333–1347
CrossRef Google scholar
[61]
Coucheron D A, Fokine M, Patil N, Breiby D W, Buset O T, Healy N, Peacock A C, Hawkins T, Jones M, Ballato J, Gibson U J. Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres. Nature Communications, 2016, 7(1): 13265
CrossRef Pubmed Google scholar
[62]
Wu W, Balci M, Song S, Liu C, Fokine M, Laurell F, Hawkins T, Ballato J, Gibson U J. CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients. Optical Materials Express, 2020, 10(4): 926–936
CrossRef Google scholar
[63]
Fokine M, Theodosiou A, Song S, Hawkins T, Ballato J, Kalli K, Gibson U J. Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers. Optical Materials Express, 2017, 7(5): 1589
CrossRef Google scholar
[64]
Healy N, Sparks J R, Petrovich M N, Sazio P J A, Badding J V, Peacock A C. Large mode area silicon microstructured fiber with robust dual mode guidance. Optics Express, 2009, 17(20): 18076–18082
CrossRef Pubmed Google scholar
[65]
Healy N, Sparks J R, He R R, Sazio P J A, Badding J V, Peacock A C. High index contrast semiconductor ARROW and hybrid ARROW fibers. Optics Express, 2011, 19(11): 10979–10985
CrossRef Pubmed Google scholar
[66]
Wu D, Shen L, Ren H, Huang M, Lacava C, Campling J, Sun S, Hawkins T W, Gibson U J, Petropoulos P, Ballato J, Peacock A C. Four-wave mixing-based wavelength conversion and parametric amplification in submicron silicon core fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(2): 1–11
CrossRef Google scholar
[67]
Kudinova M, Bouwmans G, Habert R, Plus S, Baudelle K, Bernard R, Chazallon B, Cassez A, Hamzaoui H E, Vanvincq O, Troles J, Bigot L. Hundreds of meter-long low-loss silicon-core optical fiber. In: Proceedings of SPIE 11276, Optical Components and Materials XVII. San Francisco: SPIE, 2020, 161–166
[68]
Zhao Z, Ren L, Zhang J, Wang S, Xue F, Mao Y. High temperature annealing of Si core fiber with different annealing time. Optical Fiber Technology, 2020, 58: 102288
CrossRef Google scholar
[69]
Finlayson C E, Amezcua-Correa A, Sazio P J A, Baril N F, Badding J V. Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers. Applied Physics Letters, 2007, 90(13): 132110
CrossRef Google scholar
[70]
Mehta P, Krishnamurthi M, Healy N, Baril N F, Sparks J R, Sazio P J A, Gopalan V, Badding J V, Peacock A C. Mid-infrared transmission properties of amorphous germanium optical fibers. Applied Physics Letters, 2010, 97(7): 071117
CrossRef Google scholar
[71]
Ji X, Page R L, Chaudhuri S, Liu W, Yu S Y, Mohney S E, Badding J V, Gopalan V. Single-crystal germanium core optoelectronic fibers. Advanced Optical Materials, 2017, 5(1): 1600592
CrossRef Google scholar
[72]
Ballato J, Hawkins T, Foy P, Morris S, Hon N K, Jalali B, Rice R. Silica-clad crystalline germanium core optical fibers. Optics Letters, 2011, 36(5): 687–688
CrossRef Pubmed Google scholar
[73]
Ordu M, Guo J, Tai B, Hong M K, Erramilli S, Ramachandran S, Basu S N. Mid-infrared transmission through germanium-core borosilicate glass-clad semiconductor fibers. Optical Materials Express, 2017, 7(9): 3107–3115
CrossRef Google scholar
[74]
Shi J, Han F, Cui C, Yu Y, Feng X. Mid-infrared dielectric-metal-semiconductor composite fiber. Optics Communications, 2020, 459: 125093
CrossRef Google scholar
[75]
Caldwell R S, Fan H Y. Optical properties of tellurium and selenium. Physical Review, 1959, 114(3): 664–675
CrossRef Google scholar
[76]
Tang G W, Qian Q, Peng K L, Wen X, Zhou G X, Sun M, Chen X D, Yang Z M. Selenium semiconductor core optical fibers. AIP Advances, 2015, 5(2): 027113
CrossRef Google scholar
[77]
Peng S, Tang G, Huang K, Qian Q, Chen D, Zhang Q, Yang Z. Crystalline selenium core optical fibers with low optical loss. Optical Materials Express, 2017, 7(6): 1804–1812
CrossRef Google scholar
[78]
Sparks J R, He R, Healy N, Krishnamurthi M, Peacock A C, Sazio P J A, Gopalan V, Badding J V. Zinc selenide optical fibers. Advanced Materials, 2011, 23(14): 1647–1651
CrossRef Pubmed Google scholar
[79]
Sparks J R, Aro S C, He R, Goetz M L, Krug J P, McDaniel S A, Berry P A, Cook G, Schepler K L, Sazio P J, Gopalan V, Badding J V. Chromium doped zinc selenide optical fiber lasers. Optical Materials Express, 2020, 10(8): 1843–1852
CrossRef Google scholar
[80]
Huang K, Tang G, Luo Q, Qian G, Yang L, Yuan F, Shi Z, Qian Q, Yang Z. SeTe alloy semiconductor core optical fibers. Materials Research Bulletin, 2018, 100: 382–385
CrossRef Google scholar
[81]
Sinobad M, Monat C, Luther-davies B, Ma P, Madden S, Moss D J, Mitchell A, Allioux D, Orobtchouk R, Boutami S, Hartmann J M, Fedeli J M, Grillet C. Mid-infrared octave spanning supercontinuum generation to 8.5 µm in silicon-germanium waveguides. Optica, 2018, 5(4): 360–366
CrossRef Google scholar
[82]
Chaudhuri S, Ji X, Huang H T, Day T, Gopalan V, Badding J. Small core SiGe alloy optical fibers by templated deposition. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2017, JW2A.69
[83]
Wu W, Balci M H, Mühlberger K, Fokine M, Laurell F, Hawkins T, Ballato J, Gibson U J. Ge-capped SiGe core optical fibers. Optical Materials Express, 2019, 9(11): 4301–4306
CrossRef Google scholar
[84]
Ordu M, Guo J, Akosman A E, Erramilli S, Ramachandran S, Basu S N. Effect of thermal annealing on mid-infrared transmission in semiconductor alloy-core glass-cladded fibers. Advanced Fiber Materials, 2020, 2(3): 178–184
CrossRef Google scholar
[85]
Gavrushchuk E M. Polycrystalline zinc selenide for IR optical applications. Inorganic Materials, 2003, 39(9): 883–899
CrossRef Google scholar
[86]
Sorokina I T. Cr2+-doped II–VI materials for lasers and nonlinear optics. Optical Materials, 2004, 26(4): 395–412
[87]
Mirov S, Fedorov V, Moskalev I, Martyshkin D, Kim C. Progress in Cr2+ and Fe2+ doped mid-IR laser materials. Laser & Photonics Reviews, 2010, 4(1): 21–41
CrossRef Google scholar
[88]
Coco M G, Aro S C, McDaniel S A, Hendrickson A, Krug J P, Sazio P J, Cook G, Gopalan V, Badding J V. Continuous wave Fe2+:ZnSe mid-IR optical fiber lasers. Optics Express, 2020, 28(20): 30263–30274
CrossRef Pubmed Google scholar
[89]
Ballato J, Hawkins T, Foy P, McMillen C, Burka L, Reppert J, Podila R, Rao A M, Rice R R. Binary III-V semiconductor core optical fiber. Optics Express, 2010, 18(5): 4972–4979
CrossRef Pubmed Google scholar
[90]
Song S, Healy N, Svendsen S K, Österberg U L, Covian A V C, Liu J, Peacock A C, Ballato J, Laurell F, Fokine M, Gibson U J. Crystalline GaSb-core optical fibers with room-temperature photoluminescence. Optical Materials Express, 2018, 8(6): 1435–1440
CrossRef Google scholar
[91]
Song S, Lønsethagen K, Laurell F, Hawkins T W, Ballato J, Fokine M, Gibson U J. Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres. Nature Communications, 2019, 10(1): 1790
CrossRef Pubmed Google scholar
[92]
Tang G, Qian Q, Wen X, Chen X, Liu W, Sun M, Yang Z. Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers. Optics Express, 2015, 23(18): 23624–23633
CrossRef Pubmed Google scholar
[93]
Dudley J M, Genty G, Coen S. Fibre Supercontinuum Generation Overview. Cambridge: Cambridge University Press, 2010, 52–61
[94]
Shen L, Healy N, Xu L, Cheng H Y, Day T D, Price J H V, Badding J V, Peacock A C. Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. Optics Letters, 2014, 39(19): 5721–5724
CrossRef Pubmed Google scholar
[95]
Won D J, Ramirez M O, Kang H, Gopalan V, Baril N F, Calkins J, Badding J V, Sazio P J A. All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers. Applied Physics Letters, 2007, 91(16): 161112
CrossRef Google scholar
[96]
Mehta P, Healy N, Day T D, Sparks J R, Sazio P J A, Badding J V, Peacock A C. All-optical modulation using two-photon absorption in silicon core optical fibers. Optics Express, 2011, 19(20): 19078–19083
CrossRef Pubmed Google scholar
[97]
Mehta P, Healy N, Day T D, Badding J V, Peacock A C. Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers. Optics Express, 2012, 20(24): 26110–26116
CrossRef Pubmed Google scholar
[98]
Peacock A C. Soliton propagation in tapered silicon core fibers. Optics Letters, 2010, 35(21): 3697–3699
CrossRef Pubmed Google scholar
[99]
Peacock A, Healy N. Parabolic pulse generation in tapered silicon fibers. Optics Letters, 2010, 35(11): 1780–1782
CrossRef Pubmed Google scholar
[100]
He R, Sazio P J A, Peacock A C, Healy N, Sparks J R, Krishnamurthi M, Gopalan V, Badding J V. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nature Photonics, 2012, 6(3): 174–179
CrossRef Google scholar
[101]
He R, Day T D, Krishnamurthi M, Sparks J R, Sazio P J A, Gopalan V, Badding J V. Silicon p-i-n junction fibers. Advanced Materials, 2013, 25(10): 1461–1467
CrossRef Pubmed Google scholar
[102]
Davis R, Rice R, Ballato A, Hawkins T, Foy P, Ballato J. Toward a photoconducting semiconductor RF optical fiber antenna array. Applied Optics, 2010, 49(27): 5163–5168
CrossRef Pubmed Google scholar
[103]
Sui K, Feng X, Hou Y, Zhang Q, Qi S, Wang Y, Wang P. Glass-clad semiconductor germanium fiber for high-speed photodetecting applications. Optical Materials Express, 2017, 7(4): 1211–1219
CrossRef Google scholar
[104]
Lühder T, Plentz J, Kobelke J, Wondraczek K, Schmidt M A. All-fiber integrated in-line semiconductor photoconductor. Journal of Lightwave Technology, 2019, 37(13): 3244–3251
CrossRef Google scholar
[105]
Healy N, Mailis S, Bulgakova N M, Sazio P J A, Day T D, Sparks J R, Cheng H Y, Badding J V, Peacock A C. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres. Nature Materials, 2014, 13(12): 1122–1127
CrossRef Pubmed Google scholar
[106]
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
CrossRef Google scholar
[107]
Grischkowsky D, Keiding S, van Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics, 1990, 7(10): 2006–2015
CrossRef Google scholar
[108]
Bas D A, Cushing S K, Ballato J, Bristow A D. Terahertz waveguiding in silicon-core fibers. 2013, arXiv:1305.0520
[109]
Sørgård T, Song S, Vullum P E, Kores C, Mølster K M, Laurell F, Hawkins T, Ballato J, Österberg U L, Gibson U J. Broadband infrared and THz transmitting silicon core optical fiber. Optical Materials Express, 2020, 10(10): 2491–2499
CrossRef Google scholar
[110]
Sørgård T, Hawkins T, Ballato J, Österberg U L, Gibson U J. All-optical high-speed modulation of THz transmission through silicon core optical fibers. Optics Express, 2021, 29(3): 3543–3552
CrossRef Pubmed Google scholar
[111]
Zhou P, Wang X, Ma Y, Lu H, Liu Z. Review on recent progress on mid-infrared fiber lasers. Laser Physics, 2012, 22(11): 1744–1751
CrossRef Google scholar
[112]
Danto S, Sorin F, Orf N D, Wang Z, Speakman S A, Joannopoulos J D, Fink Y. Fiber field-effect device via in situ channel crystallization. Advanced Materials, 2010, 22(37): 4162–4166
CrossRef Pubmed Google scholar
[113]
Yan W, Nguyen-Dang T, Cayron C, Gupta T D, Page A G, Qu Y, Sorin F. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Optical Materials Express, 2017, 7(4): 1388–1397
CrossRef Google scholar
[114]
Wei L, Hou C, Levy E, Lestoquoy G, Gumennik A, Abouraddy A F, Joannopoulos J D, Fink Y. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Advanced Materials, 2017, 29(1): 1603033
CrossRef Pubmed Google scholar
[115]
Gumennik A, Wei L, Lestoquoy G, Stolyarov A M, Jia X, Rekemeyer P H, Smith M J, Liang X, Grena B J B, Johnson S G, Gradečak S, Abouraddy A F, Joannopoulos J D, Fink Y. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Communications, 2013, 4(1): 2216
CrossRef Pubmed Google scholar
[116]
Rein M, Favrod V D, Hou C, Khudiyev T, Stolyarov A, Cox J, Chung C C, Chhav C, Ellis M, Joannopoulos J, Fink Y. Diode fibres for fabric-based optical communications. Nature, 2018, 560(7717): 214–218
CrossRef Pubmed Google scholar
[117]
Yan W, Qu Y, Gupta T D, Darga A, Nguyên D T, Page A G, Rossi M, Ceriotti M, Sorin F. Semiconducting nanowire-based optoelectronic fibers. Advanced Materials, 2017, 29(27): 1700681
CrossRef Pubmed Google scholar

Acknowledgements

The authors acknowledge UKRI and EPSRC for financial support under the grant EP/R021503/1.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(1995 KB)

Accesses

Citations

Detail

Sections
Recommended

/