
Recent progress of semiconductor optoelectronic fibers
Hei Chit Leo TSUI, Noel HEALY
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (4) : 383-398.
Recent progress of semiconductor optoelectronic fibers
Semiconductor optoelectronic fiber technology has seen rapid development in recent years thanks to advancements in fabrication and post-processing techniques. Integrating the optical and electronic functionality of semiconductor materials into a fiber geometry has opened up many possibilities, such as in-fiber frequency generation, signal modulation, photodetection, and solar energy harvesting. This review provides an overview of the state-of-the-art in semiconductor optoelectronic fibers, including fabrication and post-processing methods, materials and their optical properties. The applications in nonlinear optics, optical-electrical conversion, lasers and multimaterial functional fibers will also be highlighted.
optical fibers / semiconductor photonics / nonlinear optics
[1] |
Desurvire E, Simpson J R, Becker P C. High-gain erbium-doped traveling-wave fiber amplifier. Optics Letters, 1987, 12(11): 888–890
CrossRef
Pubmed
Google scholar
|
[2] |
Mears R, Reekie L, Jauncey I, Payne D. Low-noise erbium-doped fibre amplifier operating at 1.54 µm. Electronics Letters, 1987, 23(2): 1026–1028
|
[3] |
Urquhart P. Review of rare earth doped fibre lasers and amplifiers. IEE Proceedings J (Optoelectronics), 1988, 135(6): 385–407
|
[4] |
Miniscalco W J. Erbium-doped glasses for fiber amplifiers at 1500 nm. Journal of Lightwave Technology, 1991, 9(2): 234–250
CrossRef
Google scholar
|
[5] |
Giles C R, Desurvire E. Modeling erbium-doped fiber amplifiers. Journal of Lightwave Technology, 1991, 9(2): 271–283
CrossRef
Google scholar
|
[6] |
Agrawal G P. Optical pulse propagation in doped fiber amplifiers. Physical Review A, 1991, 44(11): 7493–7501
CrossRef
Pubmed
Google scholar
|
[7] |
Barnard C, Myslinski P, Chrostowski J, Kavehrad M. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE Journal of Quantum Electronics, 1994, 30(8): 1817–1830
CrossRef
Google scholar
|
[8] |
Seddon A B, Tang Z, Furniss D, Sujecki S, Benson T M. Progress in rare-earth-doped mid-infrared fiber lasers. Optics Express, 2010, 18(25): 26704–26719
CrossRef
Pubmed
Google scholar
|
[9] |
Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives. Journal of the Optical Society of America B, Optical Physics, 2010, 27(11): B63–B92
CrossRef
Google scholar
|
[10] |
Peacock A C, Healy N. Semiconductor optical fibres for infrared applications: a review. Semiconductor Science and Technology, 2016, 31(10): 103004
CrossRef
Google scholar
|
[11] |
Dragic P D, Cavillon M, Ballato J. Materials for optical fiber lasers: a review. Applied Physics Reviews, 2018, 5(4): 041301
CrossRef
Google scholar
|
[12] |
Wetenkamp L, West G F, Többen H. Optical properties of rare earth-doped ZBLAN glasses. Journal of Non-Crystalline Solids, 1992, 140: 35–40
CrossRef
Google scholar
|
[13] |
Miyajima Y, Komukai T, Sugawa T, Yamamoto T. Rare earth-doped fluoride fiber amplifiers and fiber lasers. Optical Fiber Technology, 1994, 1(1): 35–47
CrossRef
Google scholar
|
[14] |
Wang J, Vogel E, Snitzer E. Tellurite glass: a new candidate for fiber devices. Optical Materials, 1994, 3(3): 187–203
CrossRef
Google scholar
|
[15] |
Sidebottom D, Hruschka M, Potter B, Brow R. Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses. Journal of Non-Crystalline Solids, 1997, 222(1–2): 282–289
CrossRef
Google scholar
|
[16] |
Clara Gonçalves M, Santos L F, Almeida R M. Rare-earth-doped transparent glass ceramics. Comptes Rendus Chimie, 2002, 5(12): 845–854
CrossRef
Google scholar
|
[17] |
Sanghera J S, Brandon Shaw L, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 114–119
CrossRef
Google scholar
|
[18] |
Boetti N G, Pugliese D, Ceci-Ginistrelli E, Lousteau J, Janner D, Milanese D. Highly doped phosphate glass fibers for compact lasers and amplifiers: a review. Applied Sciences (Basel, Switzerland), 2017, 7(12): 1295
CrossRef
Google scholar
|
[19] |
Richardson K, Krol D, Hirao K. Glasses for photonic applications. International Journal of Applied Glass Science, 2010, 1(1): 74–86
CrossRef
Google scholar
|
[20] |
Dajani I, Zhu X, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect. Advances in OptoElectronics, 2010, 2010: 501956
|
[21] |
Calvez L. Chalcogenide glasses and glass-ceramics: transparent materials in the infrared for dual applications. Comptes Rendus Physique, 2017, 18(5–6): 314–322
CrossRef
Google scholar
|
[22] |
Harbold J M, Ilday F O, Wise F W, Sanghera J S, Nguyen V Q, Shaw L B, Aggarwal I D. Highly nonlinear As-S-Se glasses for all-optical switching. Optics Letters, 2002, 27(2): 119–121
CrossRef
Pubmed
Google scholar
|
[23] |
Sanghera J S, Shaw L B, Pureza P, Nguyen V Q, Gibson D, Busse L, Aggarwal I D, Florea C M, Kung F H. Nonlinear properties of chalcogenide glass fibers. International Journal of Applied Glass Science, 2010, 1(3): 296–308
CrossRef
Google scholar
|
[24] |
Gan F. Optical properties of fluoride glasses: a review. Journal of Non-Crystalline Solids, 1995, 184: 9–20
CrossRef
Google scholar
|
[25] |
Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics. Nature Photonics, 2011, 5(3): 141–148
CrossRef
Google scholar
|
[26] |
Ballato J, Hawkins T, Foy P, Yazgan-Kokuoz B, McMillen C, Burka L, Morris S, Stolen R, Rice R. Advancements in semiconductor core optical fiber. Optical Fiber Technology, 2010, 16(6): 399–408
CrossRef
Google scholar
|
[27] |
Peacock A C, Sparks J R, Healy N. Semiconductor optical fibres: progress and opportunities. Laser & Photonics Reviews, 2014, 8(1): 53–72
CrossRef
Google scholar
|
[28] |
Peacock A C, Gibson U J, Ballato J. Silicon optical fibres—past, present, and future. Advances in Physics: X, 2016, 1(1): 114–127
CrossRef
Google scholar
|
[29] |
Ordu M, Basu S N. Recent progress in germanium-core optical fibers for mid-infrared optics. Infrared Physics & Technology, 2020, 111: 103507
CrossRef
Google scholar
|
[30] |
Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Advanced Materials, 2019, 31(1): e1802348
CrossRef
Pubmed
Google scholar
|
[31] |
Wang Z, Chen M, Zheng Y, Zhang J, Wang Z, Yang J, Zhang Q, He B, Qi M, Zhang H, Li K, Wei L. Advanced thermally drawn multimaterial fibers: structure-enabled functionalities. Advanced Devices & Instrumentation, 2021, 2021: 9676470
CrossRef
Google scholar
|
[32] |
Bayindir M, Sorin F, Abouraddy A F, Viens J, Hart S D, Joannopoulos J D, Fink Y. Metal-insulator-semiconductor optoelectronic fibres. Nature, 2004, 431(7010): 826–829
CrossRef
Pubmed
Google scholar
|
[33] |
Abouraddy A F, Shapira O, Bayindir M, Arnold J, Sorin F, Hinczewski D S, Joannopoulos J D, Fink Y. Large-scale optical-field measurements with geometric fibre constructs. Nature Materials, 2006, 5(7): 532–536
CrossRef
Pubmed
Google scholar
|
[34] |
Zhang T, Li K, Zhang J, Chen M, Wang Z, Ma S, Zhang N, Wei L. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 2017, 41: 35–42
CrossRef
Google scholar
|
[35] |
Zhang T, Wang Z, Srinivasan B, Wang Z, Zhang J, Li K, Boussard-Pledel C, Troles J, Bureau B, Wei L. Ultraflexible glassy semiconductor fibers for thermal sensing and positioning. ACS Applied Materials & Interfaces, 2019, 11(2): 2441–2447
CrossRef
Pubmed
Google scholar
|
[36] |
Zhang J, Zhang T, Zhang H, Wang Z, Li C, Wang Z, Li K, Huang X, Chen M, Chen Z, Tian Z, Chen H, Zhao L D, Wei L. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Advanced Materials, 2020, 32(36): e2002702
CrossRef
Pubmed
Google scholar
|
[37] |
Sazio P J A, Amezcua-Correa A, Finlayson C E, Hayes J R, Scheidemantel T J, Baril N F, Jackson B R, Won D J, Zhang F, Margine E R, Gopalan V, Crespi V H, Badding J V. Microstructured optical fibers as high-pressure microfluidic reactors. Science, 2006, 311(5767): 1583–1586
CrossRef
Pubmed
Google scholar
|
[38] |
Healy N, Lagonigro L, Sparks J R, Boden S, Sazio P J A, Badding J V, Peacock A C. Polycrystalline silicon optical fibers with atomically smooth surfaces. Optics Letters, 2011, 36(13): 2480–2482
CrossRef
Pubmed
Google scholar
|
[39] |
Sparks J R, Sazio P J, Gopalan V, Badding J V. Templated chemically deposited semiconductor optical fiber materials. Annual Review of Materials Research, 2013, 43(1): 527–557
CrossRef
Google scholar
|
[40] |
Healy N, Gibson U, Peacock A C. A review of materials engineering in silicon-based optical fibres. Semiconductor Science and Technology, 2018, 33(2): 023001
CrossRef
Google scholar
|
[41] |
Tyagi H K, Schmidt M A, Prill Sempere L, Russell P S. Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Optics Express, 2008, 16(22): 17227–17236
CrossRef
Pubmed
Google scholar
|
[42] |
Lee H W, Schmidt M A, Russell R F, Joly N Y, Tyagi H K, Uebel P, Russell P S J. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Optics Express, 2011, 19(13): 12180–12189
CrossRef
Pubmed
Google scholar
|
[43] |
Chen H, Fan S, Li G, Schmidt M A, Healy N. Single crystal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization. IEEE Photonics Technology Letters, 2020, 32(2): 81–84
CrossRef
Google scholar
|
[44] |
Ballato J, Snitzer E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Applied Optics, 1995, 34(30): 6848–6854
CrossRef
Pubmed
Google scholar
|
[45] |
Ballato J, Hawkins T, Foy P, Stolen R, Kokuoz B, Ellison M, McMillen C, Reppert J, Rao A M, Daw M, Sharma S R, Shori R, Stafsudd O, Rice R R, Powers D R. Silicon optical fiber. Optics Express, 2008, 16(23): 18675–18683
CrossRef
Pubmed
Google scholar
|
[46] |
Scott B L, Pickrell G R. Silicon optical fiber diameter dependent grain size. Journal of Crystal Growth, 2013, 371: 134–141
CrossRef
Google scholar
|
[47] |
Ballato J, Hawkins T, Foy P, Yazgan-Kokuoz B, Stolen R, McMillen C, Hon N K, Jalali B, Rice R. Glass-clad single-crystal germanium optical fiber. Optics Express, 2009, 17(10): 8029–8035
CrossRef
Pubmed
Google scholar
|
[48] |
Nordstrand E F, Dibbs A N, Eraker A J, Gibson U J. Alkaline oxide interface modifiers for silicon fiber production. Optical Materials Express, 2013, 3(5): 651–657
CrossRef
Google scholar
|
[49] |
Hou C, Jia X, Wei L, Tan S C, Zhao X, Joannopoulos J D, Fink Y. Crystalline silicon core fibres from aluminium core preforms. Nature Communications, 2015, 6(1): 6248
CrossRef
Pubmed
Google scholar
|
[50] |
Hou C, Jia X, Wei L, Stolyarov A M, Shapira O, Joannopoulos J D, Fink Y. Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing. Nano Letters, 2013, 13(3): 975–979
CrossRef
Pubmed
Google scholar
|
[51] |
Spinella C, Lombardo S, Priolo F. Crystal grain nucleation in amorphous silicon. Journal of Applied Physics, 1998, 84(10): 5383–5414
CrossRef
Google scholar
|
[52] |
Bo X Z, Yao N, Shieh S R, Duffy T S, Sturm J C. Large-grain polycrystalline silicon films with low intra- granular defect density by low-temperature solid-phase crystallization without underlying oxide. Journal of Applied Physics, 2002, 91(5): 2910–2915
CrossRef
Google scholar
|
[53] |
Chaudhuri S, Sparks J R, Ji X, Krishnamurthi M, Shen L, Healy N, Peacock A C, Gopalan V, Badding J V. Crystalline silicon optical fibers with low optical loss. ACS Photonics, 2016, 3(3): 378–384
CrossRef
Google scholar
|
[54] |
Gupta N, McMillen C, Singh R, Podila R, Rao A M, Hawkins T, Foy P, Morris S, Rice R, Poole K F, Zhu L, Ballato J. Annealing of silicon optical fibers. Journal of Applied Physics, 2011, 110(9): 093107
CrossRef
Google scholar
|
[55] |
Xue S, van Eijkelenborg M A, Barton G W, Hambley P. Theoretical, numerical, and experimental analysis of optical fiber tapering. Journal of Lightwave Technology, 2007, 25(5): 1169–1176
CrossRef
Google scholar
|
[56] |
Suhailin F H, Shen L, Healy N, Xiao L, Jones M, Hawkins T, Ballato J, Gibson U J, Peacock A C. Tapered polysilicon core fibers for nonlinear photonics. Optics Letters, 2016, 41(7): 1360–1363
CrossRef
Pubmed
Google scholar
|
[57] |
Franz Y, Runge A F J, Ren H, Healy N, Ignatyev K, Jones M, Hawkins T, Ballato J, Gibson U J, Peacock A C. Material properties of tapered crystalline silicon core fibers. Optical Materials Express, 2017, 7(6): 2055–2061
CrossRef
Google scholar
|
[58] |
Healy N, Fokine M, Franz Y, Hawkins T, Jones M, Ballato J, Peacock A C, Gibson U J. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss. Advanced Optical Materials, 2016, 4(7): 1004–1008
CrossRef
Google scholar
|
[59] |
Ji X, Lei S, Yu S Y, Cheng H Y, Liu W, Poilvert N, Xiong Y, Dabo I, Mohney S E, Badding J V, Gopalan V. Single-crystal silicon optical fiber by direct laser crystallization. ACS Photonics, 2017, 4(1): 85–92
CrossRef
Google scholar
|
[60] |
Zhao Z, Mao Y, Ren L, Zhang J, Chen N, Wang T. CO2 laser annealing of Ge core optical fibers with different laser power. Optical Materials Express, 2019, 9(3): 1333–1347
CrossRef
Google scholar
|
[61] |
Coucheron D A, Fokine M, Patil N, Breiby D W, Buset O T, Healy N, Peacock A C, Hawkins T, Jones M, Ballato J, Gibson U J. Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres. Nature Communications, 2016, 7(1): 13265
CrossRef
Pubmed
Google scholar
|
[62] |
Wu W, Balci M, Song S, Liu C, Fokine M, Laurell F, Hawkins T, Ballato J, Gibson U J. CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients. Optical Materials Express, 2020, 10(4): 926–936
CrossRef
Google scholar
|
[63] |
Fokine M, Theodosiou A, Song S, Hawkins T, Ballato J, Kalli K, Gibson U J. Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers. Optical Materials Express, 2017, 7(5): 1589
CrossRef
Google scholar
|
[64] |
Healy N, Sparks J R, Petrovich M N, Sazio P J A, Badding J V, Peacock A C. Large mode area silicon microstructured fiber with robust dual mode guidance. Optics Express, 2009, 17(20): 18076–18082
CrossRef
Pubmed
Google scholar
|
[65] |
Healy N, Sparks J R, He R R, Sazio P J A, Badding J V, Peacock A C. High index contrast semiconductor ARROW and hybrid ARROW fibers. Optics Express, 2011, 19(11): 10979–10985
CrossRef
Pubmed
Google scholar
|
[66] |
Wu D, Shen L, Ren H, Huang M, Lacava C, Campling J, Sun S, Hawkins T W, Gibson U J, Petropoulos P, Ballato J, Peacock A C. Four-wave mixing-based wavelength conversion and parametric amplification in submicron silicon core fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(2): 1–11
CrossRef
Google scholar
|
[67] |
Kudinova M, Bouwmans G, Habert R, Plus S, Baudelle K, Bernard R, Chazallon B, Cassez A, Hamzaoui H E, Vanvincq O, Troles J, Bigot L. Hundreds of meter-long low-loss silicon-core optical fiber. In: Proceedings of SPIE 11276, Optical Components and Materials XVII. San Francisco: SPIE, 2020, 161–166
|
[68] |
Zhao Z, Ren L, Zhang J, Wang S, Xue F, Mao Y. High temperature annealing of Si core fiber with different annealing time. Optical Fiber Technology, 2020, 58: 102288
CrossRef
Google scholar
|
[69] |
Finlayson C E, Amezcua-Correa A, Sazio P J A, Baril N F, Badding J V. Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers. Applied Physics Letters, 2007, 90(13): 132110
CrossRef
Google scholar
|
[70] |
Mehta P, Krishnamurthi M, Healy N, Baril N F, Sparks J R, Sazio P J A, Gopalan V, Badding J V, Peacock A C. Mid-infrared transmission properties of amorphous germanium optical fibers. Applied Physics Letters, 2010, 97(7): 071117
CrossRef
Google scholar
|
[71] |
Ji X, Page R L, Chaudhuri S, Liu W, Yu S Y, Mohney S E, Badding J V, Gopalan V. Single-crystal germanium core optoelectronic fibers. Advanced Optical Materials, 2017, 5(1): 1600592
CrossRef
Google scholar
|
[72] |
Ballato J, Hawkins T, Foy P, Morris S, Hon N K, Jalali B, Rice R. Silica-clad crystalline germanium core optical fibers. Optics Letters, 2011, 36(5): 687–688
CrossRef
Pubmed
Google scholar
|
[73] |
Ordu M, Guo J, Tai B, Hong M K, Erramilli S, Ramachandran S, Basu S N. Mid-infrared transmission through germanium-core borosilicate glass-clad semiconductor fibers. Optical Materials Express, 2017, 7(9): 3107–3115
CrossRef
Google scholar
|
[74] |
Shi J, Han F, Cui C, Yu Y, Feng X. Mid-infrared dielectric-metal-semiconductor composite fiber. Optics Communications, 2020, 459: 125093
CrossRef
Google scholar
|
[75] |
Caldwell R S, Fan H Y. Optical properties of tellurium and selenium. Physical Review, 1959, 114(3): 664–675
CrossRef
Google scholar
|
[76] |
Tang G W, Qian Q, Peng K L, Wen X, Zhou G X, Sun M, Chen X D, Yang Z M. Selenium semiconductor core optical fibers. AIP Advances, 2015, 5(2): 027113
CrossRef
Google scholar
|
[77] |
Peng S, Tang G, Huang K, Qian Q, Chen D, Zhang Q, Yang Z. Crystalline selenium core optical fibers with low optical loss. Optical Materials Express, 2017, 7(6): 1804–1812
CrossRef
Google scholar
|
[78] |
Sparks J R, He R, Healy N, Krishnamurthi M, Peacock A C, Sazio P J A, Gopalan V, Badding J V. Zinc selenide optical fibers. Advanced Materials, 2011, 23(14): 1647–1651
CrossRef
Pubmed
Google scholar
|
[79] |
Sparks J R, Aro S C, He R, Goetz M L, Krug J P, McDaniel S A, Berry P A, Cook G, Schepler K L, Sazio P J, Gopalan V, Badding J V. Chromium doped zinc selenide optical fiber lasers. Optical Materials Express, 2020, 10(8): 1843–1852
CrossRef
Google scholar
|
[80] |
Huang K, Tang G, Luo Q, Qian G, Yang L, Yuan F, Shi Z, Qian Q, Yang Z. SeTe alloy semiconductor core optical fibers. Materials Research Bulletin, 2018, 100: 382–385
CrossRef
Google scholar
|
[81] |
Sinobad M, Monat C, Luther-davies B, Ma P, Madden S, Moss D J, Mitchell A, Allioux D, Orobtchouk R, Boutami S, Hartmann J M, Fedeli J M, Grillet C. Mid-infrared octave spanning supercontinuum generation to 8.5 µm in silicon-germanium waveguides. Optica, 2018, 5(4): 360–366
CrossRef
Google scholar
|
[82] |
Chaudhuri S, Ji X, Huang H T, Day T, Gopalan V, Badding J. Small core SiGe alloy optical fibers by templated deposition. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2017, JW2A.69
|
[83] |
Wu W, Balci M H, Mühlberger K, Fokine M, Laurell F, Hawkins T, Ballato J, Gibson U J. Ge-capped SiGe core optical fibers. Optical Materials Express, 2019, 9(11): 4301–4306
CrossRef
Google scholar
|
[84] |
Ordu M, Guo J, Akosman A E, Erramilli S, Ramachandran S, Basu S N. Effect of thermal annealing on mid-infrared transmission in semiconductor alloy-core glass-cladded fibers. Advanced Fiber Materials, 2020, 2(3): 178–184
CrossRef
Google scholar
|
[85] |
Gavrushchuk E M. Polycrystalline zinc selenide for IR optical applications. Inorganic Materials, 2003, 39(9): 883–899
CrossRef
Google scholar
|
[86] |
Sorokina I T. Cr2+-doped II–VI materials for lasers and nonlinear optics. Optical Materials, 2004, 26(4): 395–412
|
[87] |
Mirov S, Fedorov V, Moskalev I, Martyshkin D, Kim C. Progress in Cr2+ and Fe2+ doped mid-IR laser materials. Laser & Photonics Reviews, 2010, 4(1): 21–41
CrossRef
Google scholar
|
[88] |
Coco M G, Aro S C, McDaniel S A, Hendrickson A, Krug J P, Sazio P J, Cook G, Gopalan V, Badding J V. Continuous wave Fe2+:ZnSe mid-IR optical fiber lasers. Optics Express, 2020, 28(20): 30263–30274
CrossRef
Pubmed
Google scholar
|
[89] |
Ballato J, Hawkins T, Foy P, McMillen C, Burka L, Reppert J, Podila R, Rao A M, Rice R R. Binary III-V semiconductor core optical fiber. Optics Express, 2010, 18(5): 4972–4979
CrossRef
Pubmed
Google scholar
|
[90] |
Song S, Healy N, Svendsen S K, Österberg U L, Covian A V C, Liu J, Peacock A C, Ballato J, Laurell F, Fokine M, Gibson U J. Crystalline GaSb-core optical fibers with room-temperature photoluminescence. Optical Materials Express, 2018, 8(6): 1435–1440
CrossRef
Google scholar
|
[91] |
Song S, Lønsethagen K, Laurell F, Hawkins T W, Ballato J, Fokine M, Gibson U J. Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres. Nature Communications, 2019, 10(1): 1790
CrossRef
Pubmed
Google scholar
|
[92] |
Tang G, Qian Q, Wen X, Chen X, Liu W, Sun M, Yang Z. Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers. Optics Express, 2015, 23(18): 23624–23633
CrossRef
Pubmed
Google scholar
|
[93] |
Dudley J M, Genty G, Coen S. Fibre Supercontinuum Generation Overview. Cambridge: Cambridge University Press, 2010, 52–61
|
[94] |
Shen L, Healy N, Xu L, Cheng H Y, Day T D, Price J H V, Badding J V, Peacock A C. Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. Optics Letters, 2014, 39(19): 5721–5724
CrossRef
Pubmed
Google scholar
|
[95] |
Won D J, Ramirez M O, Kang H, Gopalan V, Baril N F, Calkins J, Badding J V, Sazio P J A. All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers. Applied Physics Letters, 2007, 91(16): 161112
CrossRef
Google scholar
|
[96] |
Mehta P, Healy N, Day T D, Sparks J R, Sazio P J A, Badding J V, Peacock A C. All-optical modulation using two-photon absorption in silicon core optical fibers. Optics Express, 2011, 19(20): 19078–19083
CrossRef
Pubmed
Google scholar
|
[97] |
Mehta P, Healy N, Day T D, Badding J V, Peacock A C. Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers. Optics Express, 2012, 20(24): 26110–26116
CrossRef
Pubmed
Google scholar
|
[98] |
Peacock A C. Soliton propagation in tapered silicon core fibers. Optics Letters, 2010, 35(21): 3697–3699
CrossRef
Pubmed
Google scholar
|
[99] |
Peacock A, Healy N. Parabolic pulse generation in tapered silicon fibers. Optics Letters, 2010, 35(11): 1780–1782
CrossRef
Pubmed
Google scholar
|
[100] |
He R, Sazio P J A, Peacock A C, Healy N, Sparks J R, Krishnamurthi M, Gopalan V, Badding J V. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nature Photonics, 2012, 6(3): 174–179
CrossRef
Google scholar
|
[101] |
He R, Day T D, Krishnamurthi M, Sparks J R, Sazio P J A, Gopalan V, Badding J V. Silicon p-i-n junction fibers. Advanced Materials, 2013, 25(10): 1461–1467
CrossRef
Pubmed
Google scholar
|
[102] |
Davis R, Rice R, Ballato A, Hawkins T, Foy P, Ballato J. Toward a photoconducting semiconductor RF optical fiber antenna array. Applied Optics, 2010, 49(27): 5163–5168
CrossRef
Pubmed
Google scholar
|
[103] |
Sui K, Feng X, Hou Y, Zhang Q, Qi S, Wang Y, Wang P. Glass-clad semiconductor germanium fiber for high-speed photodetecting applications. Optical Materials Express, 2017, 7(4): 1211–1219
CrossRef
Google scholar
|
[104] |
Lühder T, Plentz J, Kobelke J, Wondraczek K, Schmidt M A. All-fiber integrated in-line semiconductor photoconductor. Journal of Lightwave Technology, 2019, 37(13): 3244–3251
CrossRef
Google scholar
|
[105] |
Healy N, Mailis S, Bulgakova N M, Sazio P J A, Day T D, Sparks J R, Cheng H Y, Badding J V, Peacock A C. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres. Nature Materials, 2014, 13(12): 1122–1127
CrossRef
Pubmed
Google scholar
|
[106] |
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
CrossRef
Google scholar
|
[107] |
Grischkowsky D, Keiding S, van Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics, 1990, 7(10): 2006–2015
CrossRef
Google scholar
|
[108] |
Bas D A, Cushing S K, Ballato J, Bristow A D. Terahertz waveguiding in silicon-core fibers. 2013, arXiv:1305.0520
|
[109] |
Sørgård T, Song S, Vullum P E, Kores C, Mølster K M, Laurell F, Hawkins T, Ballato J, Österberg U L, Gibson U J. Broadband infrared and THz transmitting silicon core optical fiber. Optical Materials Express, 2020, 10(10): 2491–2499
CrossRef
Google scholar
|
[110] |
Sørgård T, Hawkins T, Ballato J, Österberg U L, Gibson U J. All-optical high-speed modulation of THz transmission through silicon core optical fibers. Optics Express, 2021, 29(3): 3543–3552
CrossRef
Pubmed
Google scholar
|
[111] |
Zhou P, Wang X, Ma Y, Lu H, Liu Z. Review on recent progress on mid-infrared fiber lasers. Laser Physics, 2012, 22(11): 1744–1751
CrossRef
Google scholar
|
[112] |
Danto S, Sorin F, Orf N D, Wang Z, Speakman S A, Joannopoulos J D, Fink Y. Fiber field-effect device via in situ channel crystallization. Advanced Materials, 2010, 22(37): 4162–4166
CrossRef
Pubmed
Google scholar
|
[113] |
Yan W, Nguyen-Dang T, Cayron C, Gupta T D, Page A G, Qu Y, Sorin F. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Optical Materials Express, 2017, 7(4): 1388–1397
CrossRef
Google scholar
|
[114] |
Wei L, Hou C, Levy E, Lestoquoy G, Gumennik A, Abouraddy A F, Joannopoulos J D, Fink Y. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Advanced Materials, 2017, 29(1): 1603033
CrossRef
Pubmed
Google scholar
|
[115] |
Gumennik A, Wei L, Lestoquoy G, Stolyarov A M, Jia X, Rekemeyer P H, Smith M J, Liang X, Grena B J B, Johnson S G, Gradečak S, Abouraddy A F, Joannopoulos J D, Fink Y. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Communications, 2013, 4(1): 2216
CrossRef
Pubmed
Google scholar
|
[116] |
Rein M, Favrod V D, Hou C, Khudiyev T, Stolyarov A, Cox J, Chung C C, Chhav C, Ellis M, Joannopoulos J, Fink Y. Diode fibres for fabric-based optical communications. Nature, 2018, 560(7717): 214–218
CrossRef
Pubmed
Google scholar
|
[117] |
Yan W, Qu Y, Gupta T D, Darga A, Nguyên D T, Page A G, Rossi M, Ceriotti M, Sorin F. Semiconducting nanowire-based optoelectronic fibers. Advanced Materials, 2017, 29(27): 1700681
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |