Spatial beam reshaping and large-band nonlinear conversion in rectangular-core phosphate glass fibers

Clément Strutynski, Vincent Couderc, Tigran Mansuryan, Giorgio Santarelli, Philippe Thomas, Sylvain Danto, Thierry Cardinal

PDF(1368 KB)
PDF(1368 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (1) : 4. DOI: 10.1007/s12200-022-00007-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Spatial beam reshaping and large-band nonlinear conversion in rectangular-core phosphate glass fibers

Author information +
History +

Abstract

Here we present the ability of Nd3+-doped zinc-phosphate glasses to be shaped into rectangular core fibers. At first, the physico-chemical properties of the developed P2O5-based materials are investigated for different concentrations of neodymium oxide and core and cladding glass compositions are selected for further fiber development. A modified stack-and-draw technique is used to produce multimode large rectangular-core optical fibers. Self-guided nonlinear effects acting as spatial beam reshaping processes occurring in these newly-developed photonic structures lead to the generation of spectral broadenings in the visible and near-infrared spectral domains.

Graphical abstract

Keywords

Phosphate glasses / Neodymium / Optical fibers / Self-focusing / Super-continuum

Cite this article

Download citation ▾
Clément Strutynski, Vincent Couderc, Tigran Mansuryan, Giorgio Santarelli, Philippe Thomas, Sylvain Danto, Thierry Cardinal. Spatial beam reshaping and large-band nonlinear conversion in rectangular-core phosphate glass fibers. Front. Optoelectron., 2022, 15(1): 4 https://doi.org/10.1007/s12200-022-00007-6

References

[1]
Krupa,K., Tonello,A., Shalaby,B.M., Fabert,M., Barthélémy,A., Millot,G., Wabnitz,S., Couderc,V.: Spatial beam self-cleaning in multimode fibres. Nat. Photonics 11 (4), 237- 241 (2017)
[2]
Guenard,R., Krupa,K., Dupiol,R., Fabert,M., Bendahmane,A., Kermene,V., Desfarges-Berthelemot,A., Auguste,J.L., Tonello,A., Barthélémy,A., Millot,G., Wabnitz,S., Couderc,V.: Kerr selfcleaning of pulsed beam in an ytterbium doped multimode fiber. Opt. Express 25 (5), 4783- 4792 (2017)
[3]
Krupa,K., Louot,C., Couderc,V., Fabert,M., Guenard,R., Shalaby,B.M., Tonello,A., Pagnoux,D., Leproux,P., Bendahmane,A., Dupiol,R., Millot,G., Wabnitz,S.: Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber. Opt. Lett. 41 (24), 5785- 5788 (2016)
[4]
Lopez-Galmiche,G., Eznaveh,Z.S., Eftethkhar,A., Antonio-Lopez,J., Wise,F., Christodoulides,D., Correa,R.A.: Visible supercontinuum generation in a low DGD graded index multimode fiber. 2016 Conf. Lasers Electro-Optics, CLEO 2016 (41), 2553- 2556 (2016)
[5]
Alfano,R.R., Shapiro,S.L.: Emission in the region 4000 to 7000 Å via four-photon couplingin glass. Phys. Rev. Lett. 24 (11), 584- 587 (1970)
[6]
Ranka,J.K., Windeler,R.S., Stentz,A.J.: Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25 (1), 25- 27 (2000)
[7]
Dudley,J.M., Provino,L., Grossard,N., Maillotte,H., Windeler,R.S., Eggleton,B.J., Coen,S.: Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. J. Opt. Soc. Am. 19 (4), 765 (2002)
[8]
Kudlinski,A., Bouwmans,G., Vanvincq,O., Quiquempois,Y., Le Rouge,A., Bigot,L., Mélin,G., Mussot,A.: White-light cwpumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers. Opt. Lett. 34 (23), 3631- 3633 (2009)
[9]
Dudley,J.M., Genty,G., Coen,S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78 (4), 1135- 1184 (2006)
[10]
Bullington,A.L., Pax,P.H., Sridharan,A.K., Heebner,J.E., Messerly,M.J., Dawson,J.W.: Mode conversion in rectangular-core optical fibers. Appl. Opt. 51 (1), 84- 88 (2012)
[11]
Modotto,D., De Angelis,C., Magaña-Cervantes,M.A., De La Rue,R.M., Morandotti,R., Linden,S., van Driel,H.M., Aitchison,J.S.: From linear to cubic nonlinear imaging effects in multimode waveguides. J. Opt. Soc. Am. 22 (4), 870 (2005)
[12]
Li,W.L., Chen,D.C., Zhou,Q.Z., Hu,L.H.: Watt-level output rectangular-core neodymium-doped silicate glass fiber laser. Chin. Opt. Lett. 14 (1), 011402- 011404 (2016)
[13]
Drachenberg,D.R., Messerly,M.J., Pax,P.H., Sridharan,A.K., Tassano,J.B., Dawson,J.W.: Yb3+ doped ribbon fiber for high-average power lasers and amplifiers. In: Fiber Lasers XI: Technology, Systems, and Applications (SPIE, 2014), Vol. 8961, p. 89610T.
[14]
Mura,E., Lousteau,J., Milanese,D., Abrate,S., Sglavo,V.M.: Phosphate glasses for optical fibers: Synthesis, characterizationand mechanical properties. J. Non-Cryst. Solids 362, 147- 151 (2013)
[15]
Danto,S., Désévédavy,F., Petit,Y., Desmoulin,J.C., Abou Khalil,A., Strutynski,C., Dussauze,M., Smektala,F., Cardinal,T., Canioni,L.: Photowritable silver-containing phosphate glass ribbon fibers. Adv. Opt. Mater. 4 (1), 162- 168 (2016)
[16]
Lee,Y.W., Sinha,S., Digonnet,M.J.F., Byer,R.L., Jiang,S.: Measurement of high photodarkening resistance in heavily Yb3+-dopedphosphate fibres. Electron. Lett. 44 (1), 14- 16 (2008)
[17]
Shi,W., Petersen,E.B., Yao,Z., Nguyen,D.T., Zong,J., Stephen,M.A., Chavez-Pirson,A., Peyghambarian,N.: Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm. Opt. Lett. 35 (14), 2418- 2420 (2010)
[18]
Boetti,N., Pugliese,D., Ceci-Ginistrelli,E., Lousteau,J., Janner,D., Milanese,D.: Highly doped phosphate glass fibers for compact lasers and amplifiers: a review. Appl. Sci. 7 (12), 1295 (2017)
[19]
Schülzgen,A., Zhu,X., Temyanko,V.L., Peyghambarian,N., Li,L., Li,L.: Microstructured active phosphate glass fibers for fiber lasers. J. Lightwave Technol. 27 (11), 1734- 1740 (2009)
[20]
Lee,Y.W., Digonnet,M.J.F., Sinha,S., Urbanek,K.E., Byer,R.L., Jiang,S.: High-power Yb3+-doped phosphate fiber amplifier. IEEE J. Sel. Top. Quantum Electron. 15 (1), 93- 102 (2009)
[21]
Wang,C., Lin,Z., Zhang,L., Chen,D.: Single-mode laser output in a Yb3+-doped fluorophosphate fiber. J. Opt. Soc. Am. B: Opt. Phys. 33 (9), 1796- 1799 (2016)
[22]
Thapa,R., Nguyen,D., Zong,J., Chavez-Pirson,A.: All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/ Yb-doped phosphate glass fiber. Opt. Lett. 39 (6), 1418- 1421 (2014)
[23]
Shi,W., Petersen,E.B., Leigh,M., Zong,J., Yao,Z., Chavez-Pirson,A., Peyghambarian,N.: High-energy single-mode single-frequency all-fiber laser pulses coveringC-band based on highly co-doped phosphate glass fibers. Proc. SPIE 7195 71951H- H71961 (2009)
[24]
Akbulut,M., Miller,A., Wiersma,K., Zong,J., Rhonehouse,D., Nguyen,D., Chavez-Pirson,A.: High energy, high average and peak power Phosphate-Glass fiber amplifiersfor 1micron band. In: SPIE LASE, pp. 89611X- 89611X (2014)
[25]
Rota-Rodrigo,S., Gouhier,B., Laroche,M., Zhao,J., Canuel,B., Bertoldi,A., Bouyer,P., Traynor,N., Cadier,B., Robin,T., Santarelli,G.: Watt-level single-frequency tunable neodymium MOPA fiber laser operating at 915-937 nm. Opt. Lett. 42 (21), 4557- 4560 (2017)
[26]
Campbell,J.H., Suratwala,T.I., Thorsness,C.B., Hayden,J.S., Thorne,A.J., Cimino,J.M., Marker,A.J.I.I.I., Takeuchi,K., Smolley,M., Ficini-Dorn,G.F.: Continuous melting of phosphate laser glasses. J. Non-Cryst. Solids 263, 342- 357 (2000)
[27]
Fu,S., Zhu,X., Zong,J., Li,M., Zavala,I., Temyanko,V., Chavez-Pirson,A., Norwood,R.A., Peyghambarian,N.: Single-frequency Nd3+-doped phosphate fiber laser at 915 nm. J. Lightwave Technol. 39, 1808- 1813 (2021)
[28]
Strutynski,C., Meza,R.A., Teulé-Gay,L., El-Dib,G., Poulon-Quintin,A., Salvetat,J., Vellutini,L., Dussauze,M., Cardinal,T., Danto,S.: Stack-and-draw applied to the engineering of multi-material fibers with non-cylindrical profiles. Adv. Func. Mater. 31 (22), 2011063 (2021)
[29]
Bingham,P.A., Hand,R.J., Forder,S.D.: Doping of iron phosphate glasses with Al2O3, SiO2 or B2O3 for improved thermal stability. Mater. Res. Bull. 41 (9), 1622- 1630 (2006)
[30]
Cole,J.M., Van Eck,E.R.H., Mountjoy,G., Anderson,R., Brennan,T., Bushnell-Wye,G., Newport,R.J., Saunders,G.A.: An X-ray diffraction and 31P MAS NMR study of rare-earth phosphate glasses,(R2O3)x(P2O5)1-x, x = 0. 175-0.263, R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho. Er. J. Phys. Conden. Matter 13 (18), 4105- 4122 (2001)
[31]
Aida,K., Komatsu,T., Dimitrov,V.: Thermal stability, electronic polarisability and optical basicity of ternary tellurite glasses. Phys. Chem. Glasses 42, 103- 111 (2001)
[32]
Musinu,M., Piccaluga,G., Magini,M.: Coordination of Zinc (II) in ZnO-K2O-SiO2 Glasses by X-ray Diffraction. J. Am. Ceram. Soc. 71 (5), 256 (1988)
[33]
Campbell,J.H., Suratwala,T.I.: Nd-doped phosphate glasses for high-energy/high-peak-power lasers. J. Non-Cryst. Solids 263, 318- 341 (2000)
[34]
Caird,J.A., Ramponi,A.J., Staver,P.R.: Quantum efficiency and excited-state relaxation dynamics in neodymium-dopedphosphate laser glasses. J. Opt. Soc. Am. 8 (7), 1391- 1403 (1991)
[35]
Algradee,M.A., Sultan,M., Samir,O.M., Alwany,A.E.B.: Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses. Appl. Phys. A Mater. Sci. Process. 123 (8), 524 (2017)
[36]
Strutynski,C., Picot-Clémente,J., Lemiere,A., Froidevaux,P., Désévédavy,F., Gadret,G., Jules,J.C., Kibler,B., Smektala,F.: Fabrication and characterization of step-index tellurite fibers withvarying numerical aperture for near-and mid-infrared nonlinear optics. J. Opt. Soc. Am. B: Opt. Phys. 33, D12- D18 (2016)
[37]
Fan,Z.H., Harrison,D.J.: Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem. 66 (1), 177- 184 (1994)
[38]
Berthold,A., Jakoby,B., Vellekoop,M.J.: Wafer-to-wafer fusion bonding of oxidized silicon to silicon at low temperatures. Sens. Actuators 68 (1-3), 410- 413 (1998)
[39]
Cerenkov,P.: Visible glow under exposure of gamma-radiation. Dokl. Akad. Nauk SSSR 2, 451 (1934)
[40]
Saltiel,S.M., Sheng,Y., Voloch-Bloch,N., Neshev,D.N., Krolikowski,W., Arie,A., Koynov,K., Kivshar,Y.S.: Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE J. Quantum Electron. 45 (11), 1465- 1472 (2009)

RIGHTS & PERMISSIONS

2022 The Author(s)
AI Summary AI Mindmap
PDF(1368 KB)

Accesses

Citations

Detail

Sections
Recommended

/