Fiber structures and material science in optical fiber magnetic field sensors
Jing Zhang, Chen Wang, Yunkang Chen, Yudiao Xiang, Tianye Huang, Perry Ping Shum, Zhichao Wu
Fiber structures and material science in optical fiber magnetic field sensors
Magnetic field sensing plays an important role in many fields of scientific research and engineering applications. Benefiting from the advantages of optical fibers, the optical fiber-based magnetic field sensors demonstrate characteristics of light weight, small size, remote controllability, reliable security, and wide dynamic ranges. This paper provides an overview of the basic principles, development, and applications of optical fiber magnetic field sensors. The sensing mechanisms of fiber grating, interferometric and evanescent field fiber are discussed in detail. Magnetic fluid materials, magneto-strictive materials, and magneto-optical materials used in optical fiber sensing systems are also introduced. The applications of optical fiber magnetic field sensors as current sensors, geomagnetic monitoring, and quasi-distributed magnetic sensors are presented. In addition, challenges and future development directions are analyzed.
Optical fiber magnetic field sensors / Optical fiber structures / Magnetically sensitive materials / Optical fiber current sensors / Geomagnetic monitoring / Distributed magnetic fields sensors
[1] |
Ripka, P., Janosek, M.: Advances in magnetic field sensors. IEE. Sens. J. 10(6), 1108–1116 (2010)
CrossRef
Google scholar
|
[2] |
Tumanski, S.: Modern magnetic field sensors—a review. Organ. 10(1), 1–12 (2013)
|
[3] |
Murzin, D., Mapps, D.J., Levada, K., Belyaev, V., Omelyanchik, A., Panina, L., Rodionova, V.: Ultrasensitive magnetic field sensors for biomedical applications. Sensors 20(6), 1569 (2020)
CrossRef
Google scholar
|
[4] |
Melzer, M., Mönch, J.I., Makarov, D., Zabila, Y., Bermúdez, G.S.C., Karnaushenko, D., Baunack, S., Bahr, F., Yan, C., Kaltenbrunner, M., Schmidt, O.G.: Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27(7), 1274–1280 (2015)
CrossRef
Google scholar
|
[5] |
Lenz, J., Edelstein, A.S.: Magnetic sensors and their applications. IEE. Sens. J. 6(3), 631–649 (2006)
CrossRef
Google scholar
|
[6] |
Liu, C., Shen, T., Wu, H.B., Feng, Y., Chen, J.J.: Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: a review. Opt. Fiber Technol. 65, 102634 (2021)
CrossRef
Google scholar
|
[7] |
Alberto, N., Domingues, M.F., Marques, C., André, P., Antunes, P.: Optical fiber magnetic field sensors based on magnetic fluid: a review. Sensors 18(12), 4325 (2018)
CrossRef
Google scholar
|
[8] |
Castrellon-Uribe J. Optical fiber sensors: an overview. IntechOpen. (2012)
CrossRef
Google scholar
|
[9] |
Othonos, A.: Fiber Bragg gratings. Rev. Sci. Instrum. 68(12), 4309–4341 (1997)
CrossRef
Google scholar
|
[10] |
Bartelt, H.: Fiber Bragg grating sensors and sensor arrays. Adv. Sci. Technol. 55, 138–144 (2008)
CrossRef
Google scholar
|
[11] |
Liu, H., Or, S.W., Tam, H.Y.: Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor. Sens. Actuators A 173(1), 122–126 (2012)
CrossRef
Google scholar
|
[12] |
Wu, B. J., Yang, Y., Qiu, K.: Magneto-optic fiber Bragg gratings with application to high-resolution magnetic field sensors. In: 2008 1st Asia-Pacific Optical Fiber Sensors Conference. Chengdu: IEEE: 1–3 (2008)
CrossRef
Google scholar
|
[13] |
Yang, M., Dai, J., Zhou, C., Jiang, D.: Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials. Opt. Express 17(23), 20777–20782 (2009)
CrossRef
Google scholar
|
[14] |
Dai, Y., Yang, M., Xu, G., Yuan, Y.: Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser. Opt. Express 21(14), 17386–17391 (2013)
CrossRef
Google scholar
|
[15] |
Bao, L., Dong, X., Zhang, S., Shen, C., Shum, P.P.: Magnetic field sensor based on magnetic fluid-infiltrated phase-shifted fiber Bragg grating. IEE. Sens. J. 18(10), 4008–4012 (2018)
CrossRef
Google scholar
|
[16] |
Estudillo-Ayala, J. M., Mata-Chávez, R. I., Hernández-García, J. C., Rojas-Laguna, R.: Long period fiber grating produced by arc discharges. Fiber Opt. Sens. IntechOpen (2012)
|
[17] |
Gao, L., Zhu, T., Deng, M., Chiang, K.S., Sun, X., Dong, X., Hou, Y.: Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection. IEEE Photonics J. 4(6), 2095–2104 (2012)
CrossRef
Google scholar
|
[18] |
Chiang, C.C., Chen, Z.J.: A novel optical fiber magnetic sensor based on electroforming long-period fiber grating. J. Lightwave Technol. 32(19), 3331–3336 (2014)
CrossRef
Google scholar
|
[19] |
Zhao, Y., Liu, S., Xiong, C., Wang, Y., Li, Z., Sun, Z., Li, J., Wang, Y.: Magnetic field sensor based on helical long-period fiber grating with a three-core optical fiber. Opt. Express 29(13), 20649–20656 (2021)
CrossRef
Google scholar
|
[20] |
Albert, J., Shao, L.Y., Caucheteur, C.: Tilted fiber Bragg grating sensors. Laser Photonic. Rev. 7(1), 83–108 (2013)
CrossRef
Google scholar
|
[21] |
Erdogan, T., Sipe, J.E.: Tilted fiber phase gratings. JOSA A 13(2), 296–313 (1996)
CrossRef
Google scholar
|
[22] |
Yang, D., Du, L., Xu, Z., Jiang, Y., Xu, J., Wang, M., Bai, Y., Wang, H.: Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid. Appl. Phys. Lett. 104(6), 061903 (2014)
CrossRef
Google scholar
|
[23] |
Childs, P., Candiani, A., Pissadakis, S.: Optical fiber cladding ring magnetic field sensor. IEEE Photonics Technol. Lett. 23(13), 929–931 (2011)
CrossRef
Google scholar
|
[24] |
Zheng, J., Dong, X., Zu, P., Ji, J., Su, H., Shum, P.P.: Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings. Appl. Phys. Lett. 103(18), 183511 (2013)
CrossRef
Google scholar
|
[25] |
Nguyen, L.V., Hwang, D., Moon, S., Moon, D.S., Chung, Y.: High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 16(15), 11369–11375 (2018)
CrossRef
Google scholar
|
[26] |
Tofighi, S., Bahrampour, A., Pishbin, N., Bahrampour, A.: Interferometric fiber-optic sensors, 1st edn. CRC Press, Boca Raton (2015)
|
[27] |
Li, Z., Liao, C., Song, J., Wang, Y., Zhu, F., Wang, Y., Dong, X.: Ultrasensitive magnetic field sensor based on an in-fiber Mach-Zehnder interferometer with a magnetic fluid component. Photonics Res. 4(5), 197–201 (2016)
CrossRef
Google scholar
|
[28] |
de Souza, F.C.D.N., Maia, L.S.P., de Medeiros, G.M., Miranda, M.A.R., Sasaki, J.M., Guimarães, G.F.: Optical current and magnetic field sensor using Mach-Zehnder interferometer with nanoparticles. IEE. Sens. J. 18(19), 7998–8004 (2018)
CrossRef
Google scholar
|
[29] |
Zhang, N., Wang, M., Wu, B., Han, M., Yin, B., Cao, J., Wang, C.: Temperature-insensitive magnetic field sensor based on an optoelectronic oscillator merging a Mach-Zehnder interferometer. IEE. Sens. J. 20(13), 7053–7059 (2020)
CrossRef
Google scholar
|
[30] |
Zeng, L., Sun, X., Zhang, L., Hu, Y., Duan, J.: High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid. Optik 249, 168234 (2022)
CrossRef
Google scholar
|
[31] |
Rao, C.N., Gui, X., Pawar, D., Huang, Q.G., Beera, C.S., Cao, P.J., Wen, J.L., Zhu, D.L., Lu, Y.Y.: Magneto-optical fiber sensor based on Fabry-Perot interferometer with perovskite magnetic material. J. Magn. Magn. Mater. 499, 166298 (2020)
CrossRef
Google scholar
|
[32] |
Yin, S., Ruffin, P.B., Francis, T.S.: Fiber optic sensors, 2nd edn. CRC Press, Boca Raton (2008)
|
[33] |
Lv, R.Q., Zhao, Y., Wang, D., Wang, Q.: Magnetic fluid-filled optical fiber Fabry-Pérot sensor for magnetic field measurement. IEEE Photonics Technol. Lett. 26(3), 217–219 (2013)
CrossRef
Google scholar
|
[34] |
Xia, J., Wang, F., Luo, H., Wang, Q., Xiong, S.: A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors. 16(5), 620 (2016)
CrossRef
Google scholar
|
[35] |
Zhang, D., Wei, H., Hu, H., Krishnaswamy, S.: Highly sensitive magnetic field microsensor based on direct laser writing of fiber-tip optofluidic Fabry-Pérot cavity. APL Photonics. 5(7), 076112 (2020)
CrossRef
Google scholar
|
[36] |
Zheng, Y., Chen, L.H., Yang, J., Raghunandhan, R., Dong, X., So, P.L., Chan, C.C.: Fiber optic Fabry-Perot optofluidic sensor with a focused ion beam ablated microslot for fast refractive index and magnetic field measurement. IEEE J. Sel. Top. Quantum Electron. 23(2), 322–326 (2017)
CrossRef
Google scholar
|
[37] |
Wang, X., Zhao, Y., Lv, R., Zheng, H., Cai, L.: Magnetic field measurement method based on the magneto-volume effect of hollow core fiber filled with magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–8 (2021)
CrossRef
Google scholar
|
[38] |
Culshaw, B.: The optical fiber Sagnac interferometer: an overview of its principles and applications. Meas. Sci. Technol. 17(1), R1 (2005)
CrossRef
Google scholar
|
[39] |
Zu, P., Chan, C.C., Lew, W.S., Jin, Y., Zhang, Y., Liew, H.F., Chen, L.H., Wong, W.C., Dong, X.: Magneto-optical fiber sensor based on magnetic fluid. Opt. Lett. 37(3), 398–400 (2012)
CrossRef
Google scholar
|
[40] |
Zu, P., Chan, C.C., Koh, G.W., Lew, W.S., Jin, Y., Liew, H.F., Wong, W.C., Dong, X.: Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer. Sens. Actuators B Chem. 191, 19–23 (2014)
CrossRef
Google scholar
|
[41] |
Zhao, Y., Wu, D., Lv, R.Q., Li, J.: Magnetic field measurement based on the Sagnac interferometer with a ferrofluid-filled high-birefringence photonic crystal fiber. IEEE Trans. Instrum. Meas. 65(6), 1503–1507 (2016)
CrossRef
Google scholar
|
[42] |
Kashyap, R., Nayar, B.K.: An all single-mode fiber Michelson interferometer sensor. J. Lightwave Technol. 1(4), 619–624 (1983)
CrossRef
Google scholar
|
[43] |
Deng, M., Sun, X., Han, M., Li, D.: Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid. Appl. Opt. 52(4), 734–741 (2013)
CrossRef
Google scholar
|
[44] |
Chen, F., Jiang, Y.: Fiber optic magnetic field sensor based on the TbDyFe rod. Meas. Sci. Technol. 25(8), 085106 (2014)
CrossRef
Google scholar
|
[45] |
Pu, S., Mao, L., Yao, T., Gu, J., Lahoubi, M., Zeng, X.: Microfiber coupling structures for magnetic field sensing with enhanced sensitivity. IEE. Sens. J. 17(18), 5857–5861 (2017)
CrossRef
Google scholar
|
[46] |
Feng, X., Jiang, Y., Zhang, H.: Fiber-optic Michelson magnetic field sensor based on a mechanical amplifier structure. Appl. Opt. 60(33), 10359–10364 (2021)
CrossRef
Google scholar
|
[47] |
Harun, S.W., Lim, K.S., Tio, C.K., Dimyati, K., Ahmad, H.: Theoretical analysis and fabrication of tapered fiber. Optik 124(6), 538–543 (2013)
CrossRef
Google scholar
|
[48] |
Zhao, Y., Wu, D., Lv, R.Q.: Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett. 27(1), 26–29 (2014)
CrossRef
Google scholar
|
[49] |
Rodríguez-Schwendtner, E., Díaz-Herrera, N., Navarrete, M.C., Gonzalez-Cano, A., Esteban, O.: Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields. Sens. Actuators A 264, 58–62 (2017)
CrossRef
Google scholar
|
[50] |
Herrera-Piad, L.A., Haus, J.W., Jauregui-Vazquez, D., Sierra-Hernandez, J.M., Estudillo-Ayala, J.M., Lopez-Dieguez, Y., Rojas-Laguna, R.: Magnetic field sensing based on bi-tapered optical fibers using spectral phase analysis. Sensors 17(10), 2393 (2017)
CrossRef
Google scholar
|
[51] |
Zhang, J., Qiao, X., Wang, R., Chen, F., Bao, W.: Highly sensitivity fiber-optic vector magnetometer based on two-mode fiber and magnetic fluid. IEE. Sens. J. 19(7), 2576–2580 (2018)
CrossRef
Google scholar
|
[52] |
Zhang, Y., Ning, Y., Zhang, M., Guo, H., Zhang, Y., Liu, Z., Ji, X., Zhang, J., Yang, X., Yuan, L.: Spider silk-based fiber magnetic field sensor. J. Lightwave Technol. 39(20), 6631–6636 (2021)
CrossRef
Google scholar
|
[53] |
Tam, J. M., Szunerits, S., Walt, D. R.: Optical fibers for nanodevices. Encyclopedia of nanoscience and nanotechnology. America: American Scientific Publishers. 8(177): 167–177 (2004)
|
[54] |
Dai, J., Yang, M., Li, X., Liu, H., Tong, X.: Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt. Fiber Technol. 17(3), 210–213 (2011)
CrossRef
Google scholar
|
[55] |
Wang, H., Pu, S., Wang, N., Dong, S., Huang, J.: Magnetic field sensing based on single-mode-multimode-single-mode fiber structures using magnetic fluids as cladding. Opt. Lett. 38(19), 3765–3768 (2013)
CrossRef
Google scholar
|
[56] |
Wang, Q., Liu, X., Zhao, Y., Lv, R., Hu, H., Li, J.: Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid. Opt. Commun. 356, 628–633 (2015)
CrossRef
Google scholar
|
[57] |
Ying, Y., Xu, K., Sun, L.L., Zhang, R., Guo, X.F., Si, G.Y.: D-shaped fiber magnetic-field sensor based on fine-tuning magnetic fluid grating period. IEEE Trans. Electron Dev. 64(4), 1735–1741 (2017)
CrossRef
Google scholar
|
[58] |
Liu, H., Li, H., Wang, Q., Wang, M., Ding, Y., Zhu, C., Cheng, D.: Temperature-compensated magnetic field sensor based on surface plasmon resonance and directional resonance coupling in a D-shaped photonic crystal fiber. Optik 158, 1402–1409 (2018)
CrossRef
Google scholar
|
[59] |
Gupta, B.D., Dodeja, H., Tomar, A.K.: Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt. Quant. Electron. 28(11), 1629–1639 (1996)
CrossRef
Google scholar
|
[60] |
Zhang, R., Liu, T., Han, Q., Chen, Y., Li, L.: U-bent single-mode-multimode-single-mode fiber optic magnetic field sensor based on magnetic fluid. Appl. Phys. Express 7(7), 072501 (2014)
CrossRef
Google scholar
|
[61] |
Zhu, L., Lin, Q., Yao, K., Zhao, N., Yang, P., Jiang, Z.: Fiber vector magnetometer based on balloon-like fiber structure and magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)
CrossRef
Google scholar
|
[62] |
Grant, I.S., Phillips, W.R.: Electromagnetism, 2nd edn. Wiley, New York (2013)
|
[63] |
Zheng, H., Shao, H.P., Lin, T., Zhao, Z.F., Guo, Z.M.: Preparation and characterization of silicone-oil-based γ-Fe2O3 magnetic fluid. Rare Met. 37(9), 803–807 (2018)
CrossRef
Google scholar
|
[64] |
Chen, B., Fan, Y.G., Zhou, S.P.: Study on preparation of oil-based Fe3O4 nano magnetic fluid. Adv. Mater. Res. 148, 808–811 (2011)
CrossRef
Google scholar
|
[65] |
Huang, W., Wu, J., Guo, W., Li, R., Cui, L.: Study on the magnetic stability of iron-nitride magnetic fluid. J. Alloy. Compd. 443(1–2), 195–198 (2007)
CrossRef
Google scholar
|
[66] |
Martinez, L., Cecelja, F., Rakowski, R.: A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators A 123, 438–443 (2005)
CrossRef
Google scholar
|
[67] |
Yang, S.Y., Chieh, J.J., Horng, H.E., Hong, C.Y., Yang, H.C.: Origin and applications of magnetically tunable refractive index of magnetic fluid films. Appl. Phys. Lett. 84(25), 5204–5206 (2004)
CrossRef
Google scholar
|
[68] |
Zhou, X., Li, X., Li, S., An, G.W., Cheng, T.: Magnetic field sensing based on SPR optical fiber sensor interacting with magnetic fluid. IEEE Trans. Instrum. Meas. 68(1), 234–239 (2018)
CrossRef
Google scholar
|
[69] |
Cennamo, N., Arcadio, F., Marletta, V., Baglio, S., Zeni, L., Andò, B.: A magnetic field sensor based on spr-pof platforms and ferrofluids. IEEE Trans. Instrum. Meas. 70, 1–10 (2020)
CrossRef
Google scholar
|
[70] |
Ou, Y., Chen, J., Chen, W., Zhu, Y., Xiao, W., Xiao, M., Cheng, C.: Multipoint magnetic field measurement based on magnetic fluid and FSI-FLRD. IEE. Sens. J. 21(16), 18249–18255 (2021)
CrossRef
Google scholar
|
[71] |
Mochizuki, M., Furukawa, N., Nagaosa, N.: Erratum: Spin Model of Magnetostrictions in Multiferroic Mn Perovskites [Phys. Rev. Lett. 105, 037205 (2010)]. Phys. Rev. Lett. 106(11), 119901 (2011)
CrossRef
Google scholar
|
[72] |
Del Moral, A., Algarabel, P.A., Arnaudas, J.I., Benito, L., Ciria, M., De la Fuente, C., Garcia-Landa, B., Ibarra, M.R., Marquina, C., Morellón, L., De Teresa, J.M.: Magnetostriction effects. J. Magn. Magn. Mater. 242, 788–796 (2002)
CrossRef
Google scholar
|
[73] |
Tiercelin, N., Preobrazhensky, V., Pernod, P., Ostaschenko, A.: Enhanced magnetoelectric effect in nanostructured magnetostrictive thin film resonant actuator with field induced spin reorientation transition. Appl. Phys. Lett. 92(6), 062904 (2008)
CrossRef
Google scholar
|
[74] |
Shi, C., Chen, J., Wu, G., Li, X., Zhou, J., Ou, F.: Stable dynamic detection scheme for magnetostrictive fiber-optic interferometric sensors. Opt. Express 14(12), 5098–5102 (2006)
CrossRef
Google scholar
|
[75] |
Chen, F., Jiang, Y., Gao, H., Jiang, L.: A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor. Opt. Lasers Eng. 71, 62–65 (2015)
CrossRef
Google scholar
|
[76] |
Filograno, M.L., Pisco, M., Catalano, A., Forte, E., Aiello, M., Soricelli, A., Davino, D., Visone, C., Cutolo, A., Cusano, A.: Triaxial fiber optic magnetic field sensor for MRI applications. Eur. Workshop Opt. Fiber Sens. 9916, 106–109 (2016)
CrossRef
Google scholar
|
[77] |
De Angulo, L.R., Abell, J.S., Harris, I.R.: Magnetostrictive properties of polymer bonded Terfenol-D. J. Magn. Magn. Mater. 157, 508–509 (1996)
CrossRef
Google scholar
|
[78] |
Imaizumi, D., Hayakawa, T., Nogami, M.: Faraday rotation effects of Mn2+-modified Tb2O3-B2O3 glass in pulsed magnetic field. J. Lightwave Technol. 20(4), 740 (2002)
CrossRef
Google scholar
|
[79] |
Sun, L., Jiang, S., Zuegel, J.D., Marciante, J.R.: Effective Verdet constant in a terbium-doped-core phosphate fiber. Opt. Lett. 34(11), 1699–1701 (2009)
CrossRef
Google scholar
|
[80] |
Huang, M., Xu, Z.C.: Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications. Appl. Phys. A 81(1), 193–196 (2005)
CrossRef
Google scholar
|
[81] |
Chen, Z., Wang, X., Wang, J., Hang, Y.: Highly transparent terbium gallium garnet crystal fabricated by the floating zone method for visible–infrared optical isolators. Opt. Mater. 46, 12–15 (2015)
CrossRef
Google scholar
|
[82] |
Snetkov, I.L., Yasuhara, R., Starobor, A.V., Mironov, E.A., Palashov, O.V.: Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals. IEEE J. Quantum Electron. 51(7), 1–7 (2015)
CrossRef
Google scholar
|
[83] |
Jiang, J., Wu, Z., Sheng, J., Zhang, J., Song, M., Ryu, K., Li, Z., Hong, Z., Jin, Z.: A new approach to measure magnetic field of high-temperature superconducting coil based on magneto-optical Faraday Effect. IEEE Trans. Appl. Supercond. 31(1), 1–5 (2020)
CrossRef
Google scholar
|
[84] |
Babaev, O. G. O., SMatyunin, S. A., SVirchenko, M. K.: Modeling of the magneto-optical channel of a fiber-optic displacement sensor. In: 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok: IEEE, 1–6 (2018)
CrossRef
Google scholar
|
[85] |
Ni, X. J., Huang, M.: Faraday effect optical current/magnetic field sensors based on cerium-substituted yttrium iron garnet single crystal. In: 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE: 1–4 (2010)
CrossRef
Google scholar
|
[86] |
Shreeve, B., Selfridge, R., Schultz, S., Gaeta, C., Forber, R.: Magnetic field sensing using D-fiber coupled Bi: RIG slab.21st International Conference on Optical Fiber Sensors. International Society for Optics and Photonics. 7753: 77534S (2011)
CrossRef
Google scholar
|
[87] |
DaSilva, A.A.D., Alves, H.P., Marcolino, F.C., DoNascimento, J.F., Martins-Filho, J.F.: Computational modeling of optical fiber-based magnetic field sensors using the Faraday and Kerr magnetooptic effects. IEEE Trans. Magn. 56(9), 1–9 (2020)
CrossRef
Google scholar
|
[88] |
Zubia, J., Casado, L., Aldabaldetreku, G., Montero, A., Zubia, E., Durana, G.: Design and development of a low-cost optical current sensor. Sensors. 13(10), 13584–13595 (2013)
CrossRef
Google scholar
|
[89] |
Jia, Q., Han, Q., Liang, Z., Cheng, Z., Hu, H., Wang, S., Ren, K., Jiang, J., Liu, T.: Temperature compensation of optical fiber current sensors with a static bias. IEE. Sens. J. 22(1), 352–356 (2021)
CrossRef
Google scholar
|
[90] |
Katsukawa, H., Ishikawa, H., Okajima, H., Cease, T.W.: Development of an optical current transducer with a bulk type Faraday sensor for metering. IEEE Trans. Power Delivery 11(2), 702–707 (1996)
CrossRef
Google scholar
|
[91] |
Malewski, R.: High-voltage current transformers with optical signal transmission. Opt. Eng. 20(1), 200154 (1981)
CrossRef
Google scholar
|
[92] |
Papp, A., Harms, H.: Magnetooptical current transformer. 1: principles. Appl. Opt. 19(22), 3729–3734 (1980)
CrossRef
Google scholar
|
[93] |
Han, J., Hu, H., Wang, H., Zhang, B., Song, X., Ding, Z., Zhang, X., Liu, T.: Temperature-compensated magnetostrictive current sensor based on the configuration of dual fiber Bragg gratings. J. Lightwave Technol. 35(22), 4910–4915 (2017)
CrossRef
Google scholar
|
[94] |
Qi, Y., Wang, M., Jiang, F., Zhang, X., Cong, B., Liu, Y.: Novel fiber optic current transformer with new phase modulation method. Photonic Sens. 10(3), 275–282 (2020)
CrossRef
Google scholar
|
[95] |
Gao, H., Wang, G., Gao, W., Li, S.: A chiral photonic crystal fiber sensing coil for decreasing the polarization error in a fiber optic current sensor. Opt. Commun. 469, 125755 (2020)
CrossRef
Google scholar
|
[96] |
Bucholtz, F., Villarruel, C.A., Davis, A.R., Kirkendall, C.K., Dagenais, D.M., McVicker, J.A., Knudsen, T.: Multichannel fiber-optic magnetometer system for undersea measurements. J. Lightwave Technol. 13(7), 1385–1395 (1995)
CrossRef
Google scholar
|
[97] |
Coghill, P., Bassett, I., Barrow, R., Rohatgi, S., Vance, R.: Field trial of an electrically passive optical-fiber magnetometer. Appl. Opt. 34(31), 7258–7262 (1995)
CrossRef
Google scholar
|
[98] |
Zhang, X.L., Zhou, X.J., Hu, Y.M., Ni, M., Yu, Y.M.: All polarization- maintaining fiber earth magnetic field sensor. Zhongguo Jiguang Chin. J. Laser. 32(11), 1515–1518 (2005)
|
[99] |
Zhao, Q., Zhou, K., Wu, Z., Yang, C., Feng, Z., Cheng, H., Xu, S.: Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser. Opt. Lett. 43(1), 42–45 (2018)
CrossRef
Google scholar
|
[100] |
Li, J., Deng, Y., Wang, X., Lu, H., Liu, Y.: Miniature wide-range three-axis vector atomic magnetometer. IEE. Sens. J. 21(21), 23943–23948 (2021)
CrossRef
Google scholar
|
[101] |
Barrias, A., Casas, J.R., Villalba, S.: A review of distributed optical fiber sensors for civil engineering applications. Sensors. 16(5), 748 (2016)
CrossRef
Google scholar
|
[102] |
Zhao, Z., Tang, M., Lu, C.: Distributed multicore fiber sensors. Opto-Electron. Adv. 3(2), 02190024 (2020)
|
[103] |
Li, M., Zhou, J., Xiang, Z., Lv, F.: Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings. In: 2005 IEEE Networking. Tucson: IEEE: 490–495 (2005)
|
[104] |
Palmieri, L., Galtarossa, A.: Distributed polarization-sensitive reflectometry in nonreciprocal single-mode optical fibers. J. Lightwave Technol. 29(21), 3178–3184 (2011)
CrossRef
Google scholar
|
[105] |
Palmieri, L.: Distributed polarimetric measurements for optical fiber sensing. Opt. Fiber Technol. 19(6), 720–728 (2013)
CrossRef
Google scholar
|
[106] |
Masoudi, A., Newson, T.P.: Distributed optical fiber dynamic magnetic field sensor based on magnetostriction. Appl. Opt. 53(13), 2833–2838 (2014)
CrossRef
Google scholar
|
[107] |
Ou, Y., Chen, J., Chen, W., Cheng, C., Zhu, Y., Xiao, W., Lv, H.: A quasi-distributed fiber magnetic field sensor based on frequency-shifted interferometry fiber cavity ringdown technique. Opt. Laser Technol. 146, 107607 (2022)
CrossRef
Google scholar
|
/
〈 | 〉 |