Fiber structures and material science in optical fiber magnetic field sensors

Jing Zhang, Chen Wang, Yunkang Chen, Yudiao Xiang, Tianye Huang, Perry Ping Shum, Zhichao Wu

PDF(1499 KB)
PDF(1499 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (3) : 34. DOI: 10.1007/s12200-022-00037-0
REVIEW ARTICLE
REVIEW ARTICLE

Fiber structures and material science in optical fiber magnetic field sensors

Author information +
History +

Abstract

Magnetic field sensing plays an important role in many fields of scientific research and engineering applications. Benefiting from the advantages of optical fibers, the optical fiber-based magnetic field sensors demonstrate characteristics of light weight, small size, remote controllability, reliable security, and wide dynamic ranges. This paper provides an overview of the basic principles, development, and applications of optical fiber magnetic field sensors. The sensing mechanisms of fiber grating, interferometric and evanescent field fiber are discussed in detail. Magnetic fluid materials, magneto-strictive materials, and magneto-optical materials used in optical fiber sensing systems are also introduced. The applications of optical fiber magnetic field sensors as current sensors, geomagnetic monitoring, and quasi-distributed magnetic sensors are presented. In addition, challenges and future development directions are analyzed.

Graphical abstract

Keywords

Optical fiber magnetic field sensors / Optical fiber structures / Magnetically sensitive materials / Optical fiber current sensors / Geomagnetic monitoring / Distributed magnetic fields sensors

Cite this article

Download citation ▾
Jing Zhang, Chen Wang, Yunkang Chen, Yudiao Xiang, Tianye Huang, Perry Ping Shum, Zhichao Wu. Fiber structures and material science in optical fiber magnetic field sensors. Front. Optoelectron., 2022, 15(3): 34 https://doi.org/10.1007/s12200-022-00037-0

References

[1]
Ripka, P., Janosek, M.: Advances in magnetic field sensors. IEE. Sens. J. 10(6), 1108–1116 (2010)
CrossRef Google scholar
[2]
Tumanski, S.: Modern magnetic field sensors—a review. Organ. 10(1), 1–12 (2013)
[3]
Murzin, D., Mapps, D.J., Levada, K., Belyaev, V., Omelyanchik, A., Panina, L., Rodionova, V.: Ultrasensitive magnetic field sensors for biomedical applications. Sensors 20(6), 1569 (2020)
CrossRef Google scholar
[4]
Melzer, M., Mönch, J.I., Makarov, D., Zabila, Y., Bermúdez, G.S.C., Karnaushenko, D., Baunack, S., Bahr, F., Yan, C., Kaltenbrunner, M., Schmidt, O.G.: Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27(7), 1274–1280 (2015)
CrossRef Google scholar
[5]
Lenz, J., Edelstein, A.S.: Magnetic sensors and their applications. IEE. Sens. J. 6(3), 631–649 (2006)
CrossRef Google scholar
[6]
Liu, C., Shen, T., Wu, H.B., Feng, Y., Chen, J.J.: Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: a review. Opt. Fiber Technol. 65, 102634 (2021)
CrossRef Google scholar
[7]
Alberto, N., Domingues, M.F., Marques, C., André, P., Antunes, P.: Optical fiber magnetic field sensors based on magnetic fluid: a review. Sensors 18(12), 4325 (2018)
CrossRef Google scholar
[8]
Castrellon-Uribe J. Optical fiber sensors: an overview. IntechOpen. (2012)
CrossRef Google scholar
[9]
Othonos, A.: Fiber Bragg gratings. Rev. Sci. Instrum. 68(12), 4309–4341 (1997)
CrossRef Google scholar
[10]
Bartelt, H.: Fiber Bragg grating sensors and sensor arrays. Adv. Sci. Technol. 55, 138–144 (2008)
CrossRef Google scholar
[11]
Liu, H., Or, S.W., Tam, H.Y.: Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor. Sens. Actuators A 173(1), 122–126 (2012)
CrossRef Google scholar
[12]
Wu, B. J., Yang, Y., Qiu, K.: Magneto-optic fiber Bragg gratings with application to high-resolution magnetic field sensors. In: 2008 1st Asia-Pacific Optical Fiber Sensors Conference. Chengdu: IEEE: 1–3 (2008)
CrossRef Google scholar
[13]
Yang, M., Dai, J., Zhou, C., Jiang, D.: Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials. Opt. Express 17(23), 20777–20782 (2009)
CrossRef Google scholar
[14]
Dai, Y., Yang, M., Xu, G., Yuan, Y.: Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser. Opt. Express 21(14), 17386–17391 (2013)
CrossRef Google scholar
[15]
Bao, L., Dong, X., Zhang, S., Shen, C., Shum, P.P.: Magnetic field sensor based on magnetic fluid-infiltrated phase-shifted fiber Bragg grating. IEE. Sens. J. 18(10), 4008–4012 (2018)
CrossRef Google scholar
[16]
Estudillo-Ayala, J. M., Mata-Chávez, R. I., Hernández-García, J. C., Rojas-Laguna, R.: Long period fiber grating produced by arc discharges. Fiber Opt. Sens. IntechOpen (2012)
[17]
Gao, L., Zhu, T., Deng, M., Chiang, K.S., Sun, X., Dong, X., Hou, Y.: Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection. IEEE Photonics J. 4(6), 2095–2104 (2012)
CrossRef Google scholar
[18]
Chiang, C.C., Chen, Z.J.: A novel optical fiber magnetic sensor based on electroforming long-period fiber grating. J. Lightwave Technol. 32(19), 3331–3336 (2014)
CrossRef Google scholar
[19]
Zhao, Y., Liu, S., Xiong, C., Wang, Y., Li, Z., Sun, Z., Li, J., Wang, Y.: Magnetic field sensor based on helical long-period fiber grating with a three-core optical fiber. Opt. Express 29(13), 20649–20656 (2021)
CrossRef Google scholar
[20]
Albert, J., Shao, L.Y., Caucheteur, C.: Tilted fiber Bragg grating sensors. Laser Photonic. Rev. 7(1), 83–108 (2013)
CrossRef Google scholar
[21]
Erdogan, T., Sipe, J.E.: Tilted fiber phase gratings. JOSA A 13(2), 296–313 (1996)
CrossRef Google scholar
[22]
Yang, D., Du, L., Xu, Z., Jiang, Y., Xu, J., Wang, M., Bai, Y., Wang, H.: Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid. Appl. Phys. Lett. 104(6), 061903 (2014)
CrossRef Google scholar
[23]
Childs, P., Candiani, A., Pissadakis, S.: Optical fiber cladding ring magnetic field sensor. IEEE Photonics Technol. Lett. 23(13), 929–931 (2011)
CrossRef Google scholar
[24]
Zheng, J., Dong, X., Zu, P., Ji, J., Su, H., Shum, P.P.: Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings. Appl. Phys. Lett. 103(18), 183511 (2013)
CrossRef Google scholar
[25]
Nguyen, L.V., Hwang, D., Moon, S., Moon, D.S., Chung, Y.: High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 16(15), 11369–11375 (2018)
CrossRef Google scholar
[26]
Tofighi, S., Bahrampour, A., Pishbin, N., Bahrampour, A.: Interferometric fiber-optic sensors, 1st edn. CRC Press, Boca Raton (2015)
[27]
Li, Z., Liao, C., Song, J., Wang, Y., Zhu, F., Wang, Y., Dong, X.: Ultrasensitive magnetic field sensor based on an in-fiber Mach-Zehnder interferometer with a magnetic fluid component. Photonics Res. 4(5), 197–201 (2016)
CrossRef Google scholar
[28]
de Souza, F.C.D.N., Maia, L.S.P., de Medeiros, G.M., Miranda, M.A.R., Sasaki, J.M., Guimarães, G.F.: Optical current and magnetic field sensor using Mach-Zehnder interferometer with nanoparticles. IEE. Sens. J. 18(19), 7998–8004 (2018)
CrossRef Google scholar
[29]
Zhang, N., Wang, M., Wu, B., Han, M., Yin, B., Cao, J., Wang, C.: Temperature-insensitive magnetic field sensor based on an optoelectronic oscillator merging a Mach-Zehnder interferometer. IEE. Sens. J. 20(13), 7053–7059 (2020)
CrossRef Google scholar
[30]
Zeng, L., Sun, X., Zhang, L., Hu, Y., Duan, J.: High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid. Optik 249, 168234 (2022)
CrossRef Google scholar
[31]
Rao, C.N., Gui, X., Pawar, D., Huang, Q.G., Beera, C.S., Cao, P.J., Wen, J.L., Zhu, D.L., Lu, Y.Y.: Magneto-optical fiber sensor based on Fabry-Perot interferometer with perovskite magnetic material. J. Magn. Magn. Mater. 499, 166298 (2020)
CrossRef Google scholar
[32]
Yin, S., Ruffin, P.B., Francis, T.S.: Fiber optic sensors, 2nd edn. CRC Press, Boca Raton (2008)
[33]
Lv, R.Q., Zhao, Y., Wang, D., Wang, Q.: Magnetic fluid-filled optical fiber Fabry-Pérot sensor for magnetic field measurement. IEEE Photonics Technol. Lett. 26(3), 217–219 (2013)
CrossRef Google scholar
[34]
Xia, J., Wang, F., Luo, H., Wang, Q., Xiong, S.: A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors. 16(5), 620 (2016)
CrossRef Google scholar
[35]
Zhang, D., Wei, H., Hu, H., Krishnaswamy, S.: Highly sensitive magnetic field microsensor based on direct laser writing of fiber-tip optofluidic Fabry-Pérot cavity. APL Photonics. 5(7), 076112 (2020)
CrossRef Google scholar
[36]
Zheng, Y., Chen, L.H., Yang, J., Raghunandhan, R., Dong, X., So, P.L., Chan, C.C.: Fiber optic Fabry-Perot optofluidic sensor with a focused ion beam ablated microslot for fast refractive index and magnetic field measurement. IEEE J. Sel. Top. Quantum Electron. 23(2), 322–326 (2017)
CrossRef Google scholar
[37]
Wang, X., Zhao, Y., Lv, R., Zheng, H., Cai, L.: Magnetic field measurement method based on the magneto-volume effect of hollow core fiber filled with magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–8 (2021)
CrossRef Google scholar
[38]
Culshaw, B.: The optical fiber Sagnac interferometer: an overview of its principles and applications. Meas. Sci. Technol. 17(1), R1 (2005)
CrossRef Google scholar
[39]
Zu, P., Chan, C.C., Lew, W.S., Jin, Y., Zhang, Y., Liew, H.F., Chen, L.H., Wong, W.C., Dong, X.: Magneto-optical fiber sensor based on magnetic fluid. Opt. Lett. 37(3), 398–400 (2012)
CrossRef Google scholar
[40]
Zu, P., Chan, C.C., Koh, G.W., Lew, W.S., Jin, Y., Liew, H.F., Wong, W.C., Dong, X.: Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer. Sens. Actuators B Chem. 191, 19–23 (2014)
CrossRef Google scholar
[41]
Zhao, Y., Wu, D., Lv, R.Q., Li, J.: Magnetic field measurement based on the Sagnac interferometer with a ferrofluid-filled high-birefringence photonic crystal fiber. IEEE Trans. Instrum. Meas. 65(6), 1503–1507 (2016)
CrossRef Google scholar
[42]
Kashyap, R., Nayar, B.K.: An all single-mode fiber Michelson interferometer sensor. J. Lightwave Technol. 1(4), 619–624 (1983)
CrossRef Google scholar
[43]
Deng, M., Sun, X., Han, M., Li, D.: Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid. Appl. Opt. 52(4), 734–741 (2013)
CrossRef Google scholar
[44]
Chen, F., Jiang, Y.: Fiber optic magnetic field sensor based on the TbDyFe rod. Meas. Sci. Technol. 25(8), 085106 (2014)
CrossRef Google scholar
[45]
Pu, S., Mao, L., Yao, T., Gu, J., Lahoubi, M., Zeng, X.: Microfiber coupling structures for magnetic field sensing with enhanced sensitivity. IEE. Sens. J. 17(18), 5857–5861 (2017)
CrossRef Google scholar
[46]
Feng, X., Jiang, Y., Zhang, H.: Fiber-optic Michelson magnetic field sensor based on a mechanical amplifier structure. Appl. Opt. 60(33), 10359–10364 (2021)
CrossRef Google scholar
[47]
Harun, S.W., Lim, K.S., Tio, C.K., Dimyati, K., Ahmad, H.: Theoretical analysis and fabrication of tapered fiber. Optik 124(6), 538–543 (2013)
CrossRef Google scholar
[48]
Zhao, Y., Wu, D., Lv, R.Q.: Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett. 27(1), 26–29 (2014)
CrossRef Google scholar
[49]
Rodríguez-Schwendtner, E., Díaz-Herrera, N., Navarrete, M.C., Gonzalez-Cano, A., Esteban, O.: Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields. Sens. Actuators A 264, 58–62 (2017)
CrossRef Google scholar
[50]
Herrera-Piad, L.A., Haus, J.W., Jauregui-Vazquez, D., Sierra-Hernandez, J.M., Estudillo-Ayala, J.M., Lopez-Dieguez, Y., Rojas-Laguna, R.: Magnetic field sensing based on bi-tapered optical fibers using spectral phase analysis. Sensors 17(10), 2393 (2017)
CrossRef Google scholar
[51]
Zhang, J., Qiao, X., Wang, R., Chen, F., Bao, W.: Highly sensitivity fiber-optic vector magnetometer based on two-mode fiber and magnetic fluid. IEE. Sens. J. 19(7), 2576–2580 (2018)
CrossRef Google scholar
[52]
Zhang, Y., Ning, Y., Zhang, M., Guo, H., Zhang, Y., Liu, Z., Ji, X., Zhang, J., Yang, X., Yuan, L.: Spider silk-based fiber magnetic field sensor. J. Lightwave Technol. 39(20), 6631–6636 (2021)
CrossRef Google scholar
[53]
Tam, J. M., Szunerits, S., Walt, D. R.: Optical fibers for nanodevices. Encyclopedia of nanoscience and nanotechnology. America: American Scientific Publishers. 8(177): 167–177 (2004)
[54]
Dai, J., Yang, M., Li, X., Liu, H., Tong, X.: Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt. Fiber Technol. 17(3), 210–213 (2011)
CrossRef Google scholar
[55]
Wang, H., Pu, S., Wang, N., Dong, S., Huang, J.: Magnetic field sensing based on single-mode-multimode-single-mode fiber structures using magnetic fluids as cladding. Opt. Lett. 38(19), 3765–3768 (2013)
CrossRef Google scholar
[56]
Wang, Q., Liu, X., Zhao, Y., Lv, R., Hu, H., Li, J.: Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid. Opt. Commun. 356, 628–633 (2015)
CrossRef Google scholar
[57]
Ying, Y., Xu, K., Sun, L.L., Zhang, R., Guo, X.F., Si, G.Y.: D-shaped fiber magnetic-field sensor based on fine-tuning magnetic fluid grating period. IEEE Trans. Electron Dev. 64(4), 1735–1741 (2017)
CrossRef Google scholar
[58]
Liu, H., Li, H., Wang, Q., Wang, M., Ding, Y., Zhu, C., Cheng, D.: Temperature-compensated magnetic field sensor based on surface plasmon resonance and directional resonance coupling in a D-shaped photonic crystal fiber. Optik 158, 1402–1409 (2018)
CrossRef Google scholar
[59]
Gupta, B.D., Dodeja, H., Tomar, A.K.: Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt. Quant. Electron. 28(11), 1629–1639 (1996)
CrossRef Google scholar
[60]
Zhang, R., Liu, T., Han, Q., Chen, Y., Li, L.: U-bent single-mode-multimode-single-mode fiber optic magnetic field sensor based on magnetic fluid. Appl. Phys. Express 7(7), 072501 (2014)
CrossRef Google scholar
[61]
Zhu, L., Lin, Q., Yao, K., Zhao, N., Yang, P., Jiang, Z.: Fiber vector magnetometer based on balloon-like fiber structure and magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)
CrossRef Google scholar
[62]
Grant, I.S., Phillips, W.R.: Electromagnetism, 2nd edn. Wiley, New York (2013)
[63]
Zheng, H., Shao, H.P., Lin, T., Zhao, Z.F., Guo, Z.M.: Preparation and characterization of silicone-oil-based γ-Fe2O3 magnetic fluid. Rare Met. 37(9), 803–807 (2018)
CrossRef Google scholar
[64]
Chen, B., Fan, Y.G., Zhou, S.P.: Study on preparation of oil-based Fe3O4 nano magnetic fluid. Adv. Mater. Res. 148, 808–811 (2011)
CrossRef Google scholar
[65]
Huang, W., Wu, J., Guo, W., Li, R., Cui, L.: Study on the magnetic stability of iron-nitride magnetic fluid. J. Alloy. Compd. 443(1–2), 195–198 (2007)
CrossRef Google scholar
[66]
Martinez, L., Cecelja, F., Rakowski, R.: A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators A 123, 438–443 (2005)
CrossRef Google scholar
[67]
Yang, S.Y., Chieh, J.J., Horng, H.E., Hong, C.Y., Yang, H.C.: Origin and applications of magnetically tunable refractive index of magnetic fluid films. Appl. Phys. Lett. 84(25), 5204–5206 (2004)
CrossRef Google scholar
[68]
Zhou, X., Li, X., Li, S., An, G.W., Cheng, T.: Magnetic field sensing based on SPR optical fiber sensor interacting with magnetic fluid. IEEE Trans. Instrum. Meas. 68(1), 234–239 (2018)
CrossRef Google scholar
[69]
Cennamo, N., Arcadio, F., Marletta, V., Baglio, S., Zeni, L., Andò, B.: A magnetic field sensor based on spr-pof platforms and ferrofluids. IEEE Trans. Instrum. Meas. 70, 1–10 (2020)
CrossRef Google scholar
[70]
Ou, Y., Chen, J., Chen, W., Zhu, Y., Xiao, W., Xiao, M., Cheng, C.: Multipoint magnetic field measurement based on magnetic fluid and FSI-FLRD. IEE. Sens. J. 21(16), 18249–18255 (2021)
CrossRef Google scholar
[71]
Mochizuki, M., Furukawa, N., Nagaosa, N.: Erratum: Spin Model of Magnetostrictions in Multiferroic Mn Perovskites [Phys. Rev. Lett. 105, 037205 (2010)]. Phys. Rev. Lett. 106(11), 119901 (2011)
CrossRef Google scholar
[72]
Del Moral, A., Algarabel, P.A., Arnaudas, J.I., Benito, L., Ciria, M., De la Fuente, C., Garcia-Landa, B., Ibarra, M.R., Marquina, C., Morellón, L., De Teresa, J.M.: Magnetostriction effects. J. Magn. Magn. Mater. 242, 788–796 (2002)
CrossRef Google scholar
[73]
Tiercelin, N., Preobrazhensky, V., Pernod, P., Ostaschenko, A.: Enhanced magnetoelectric effect in nanostructured magnetostrictive thin film resonant actuator with field induced spin reorientation transition. Appl. Phys. Lett. 92(6), 062904 (2008)
CrossRef Google scholar
[74]
Shi, C., Chen, J., Wu, G., Li, X., Zhou, J., Ou, F.: Stable dynamic detection scheme for magnetostrictive fiber-optic interferometric sensors. Opt. Express 14(12), 5098–5102 (2006)
CrossRef Google scholar
[75]
Chen, F., Jiang, Y., Gao, H., Jiang, L.: A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor. Opt. Lasers Eng. 71, 62–65 (2015)
CrossRef Google scholar
[76]
Filograno, M.L., Pisco, M., Catalano, A., Forte, E., Aiello, M., Soricelli, A., Davino, D., Visone, C., Cutolo, A., Cusano, A.: Triaxial fiber optic magnetic field sensor for MRI applications. Eur. Workshop Opt. Fiber Sens. 9916, 106–109 (2016)
CrossRef Google scholar
[77]
De Angulo, L.R., Abell, J.S., Harris, I.R.: Magnetostrictive properties of polymer bonded Terfenol-D. J. Magn. Magn. Mater. 157, 508–509 (1996)
CrossRef Google scholar
[78]
Imaizumi, D., Hayakawa, T., Nogami, M.: Faraday rotation effects of Mn2+-modified Tb2O3-B2O3 glass in pulsed magnetic field. J. Lightwave Technol. 20(4), 740 (2002)
CrossRef Google scholar
[79]
Sun, L., Jiang, S., Zuegel, J.D., Marciante, J.R.: Effective Verdet constant in a terbium-doped-core phosphate fiber. Opt. Lett. 34(11), 1699–1701 (2009)
CrossRef Google scholar
[80]
Huang, M., Xu, Z.C.: Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications. Appl. Phys. A 81(1), 193–196 (2005)
CrossRef Google scholar
[81]
Chen, Z., Wang, X., Wang, J., Hang, Y.: Highly transparent terbium gallium garnet crystal fabricated by the floating zone method for visible–infrared optical isolators. Opt. Mater. 46, 12–15 (2015)
CrossRef Google scholar
[82]
Snetkov, I.L., Yasuhara, R., Starobor, A.V., Mironov, E.A., Palashov, O.V.: Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals. IEEE J. Quantum Electron. 51(7), 1–7 (2015)
CrossRef Google scholar
[83]
Jiang, J., Wu, Z., Sheng, J., Zhang, J., Song, M., Ryu, K., Li, Z., Hong, Z., Jin, Z.: A new approach to measure magnetic field of high-temperature superconducting coil based on magneto-optical Faraday Effect. IEEE Trans. Appl. Supercond. 31(1), 1–5 (2020)
CrossRef Google scholar
[84]
Babaev, O. G. O., SMatyunin, S. A., SVirchenko, M. K.: Modeling of the magneto-optical channel of a fiber-optic displacement sensor. In: 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok: IEEE, 1–6 (2018)
CrossRef Google scholar
[85]
Ni, X. J., Huang, M.: Faraday effect optical current/magnetic field sensors based on cerium-substituted yttrium iron garnet single crystal. In: 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE: 1–4 (2010)
CrossRef Google scholar
[86]
Shreeve, B., Selfridge, R., Schultz, S., Gaeta, C., Forber, R.: Magnetic field sensing using D-fiber coupled Bi: RIG slab.21st International Conference on Optical Fiber Sensors. International Society for Optics and Photonics. 7753: 77534S (2011)
CrossRef Google scholar
[87]
DaSilva, A.A.D., Alves, H.P., Marcolino, F.C., DoNascimento, J.F., Martins-Filho, J.F.: Computational modeling of optical fiber-based magnetic field sensors using the Faraday and Kerr magnetooptic effects. IEEE Trans. Magn. 56(9), 1–9 (2020)
CrossRef Google scholar
[88]
Zubia, J., Casado, L., Aldabaldetreku, G., Montero, A., Zubia, E., Durana, G.: Design and development of a low-cost optical current sensor. Sensors. 13(10), 13584–13595 (2013)
CrossRef Google scholar
[89]
Jia, Q., Han, Q., Liang, Z., Cheng, Z., Hu, H., Wang, S., Ren, K., Jiang, J., Liu, T.: Temperature compensation of optical fiber current sensors with a static bias. IEE. Sens. J. 22(1), 352–356 (2021)
CrossRef Google scholar
[90]
Katsukawa, H., Ishikawa, H., Okajima, H., Cease, T.W.: Development of an optical current transducer with a bulk type Faraday sensor for metering. IEEE Trans. Power Delivery 11(2), 702–707 (1996)
CrossRef Google scholar
[91]
Malewski, R.: High-voltage current transformers with optical signal transmission. Opt. Eng. 20(1), 200154 (1981)
CrossRef Google scholar
[92]
Papp, A., Harms, H.: Magnetooptical current transformer. 1: principles. Appl. Opt. 19(22), 3729–3734 (1980)
CrossRef Google scholar
[93]
Han, J., Hu, H., Wang, H., Zhang, B., Song, X., Ding, Z., Zhang, X., Liu, T.: Temperature-compensated magnetostrictive current sensor based on the configuration of dual fiber Bragg gratings. J. Lightwave Technol. 35(22), 4910–4915 (2017)
CrossRef Google scholar
[94]
Qi, Y., Wang, M., Jiang, F., Zhang, X., Cong, B., Liu, Y.: Novel fiber optic current transformer with new phase modulation method. Photonic Sens. 10(3), 275–282 (2020)
CrossRef Google scholar
[95]
Gao, H., Wang, G., Gao, W., Li, S.: A chiral photonic crystal fiber sensing coil for decreasing the polarization error in a fiber optic current sensor. Opt. Commun. 469, 125755 (2020)
CrossRef Google scholar
[96]
Bucholtz, F., Villarruel, C.A., Davis, A.R., Kirkendall, C.K., Dagenais, D.M., McVicker, J.A., Knudsen, T.: Multichannel fiber-optic magnetometer system for undersea measurements. J. Lightwave Technol. 13(7), 1385–1395 (1995)
CrossRef Google scholar
[97]
Coghill, P., Bassett, I., Barrow, R., Rohatgi, S., Vance, R.: Field trial of an electrically passive optical-fiber magnetometer. Appl. Opt. 34(31), 7258–7262 (1995)
CrossRef Google scholar
[98]
Zhang, X.L., Zhou, X.J., Hu, Y.M., Ni, M., Yu, Y.M.: All polarization- maintaining fiber earth magnetic field sensor. Zhongguo Jiguang Chin. J. Laser. 32(11), 1515–1518 (2005)
[99]
Zhao, Q., Zhou, K., Wu, Z., Yang, C., Feng, Z., Cheng, H., Xu, S.: Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser. Opt. Lett. 43(1), 42–45 (2018)
CrossRef Google scholar
[100]
Li, J., Deng, Y., Wang, X., Lu, H., Liu, Y.: Miniature wide-range three-axis vector atomic magnetometer. IEE. Sens. J. 21(21), 23943–23948 (2021)
CrossRef Google scholar
[101]
Barrias, A., Casas, J.R., Villalba, S.: A review of distributed optical fiber sensors for civil engineering applications. Sensors. 16(5), 748 (2016)
CrossRef Google scholar
[102]
Zhao, Z., Tang, M., Lu, C.: Distributed multicore fiber sensors. Opto-Electron. Adv. 3(2), 02190024 (2020)
[103]
Li, M., Zhou, J., Xiang, Z., Lv, F.: Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings. In: 2005 IEEE Networking. Tucson: IEEE: 490–495 (2005)
[104]
Palmieri, L., Galtarossa, A.: Distributed polarization-sensitive reflectometry in nonreciprocal single-mode optical fibers. J. Lightwave Technol. 29(21), 3178–3184 (2011)
CrossRef Google scholar
[105]
Palmieri, L.: Distributed polarimetric measurements for optical fiber sensing. Opt. Fiber Technol. 19(6), 720–728 (2013)
CrossRef Google scholar
[106]
Masoudi, A., Newson, T.P.: Distributed optical fiber dynamic magnetic field sensor based on magnetostriction. Appl. Opt. 53(13), 2833–2838 (2014)
CrossRef Google scholar
[107]
Ou, Y., Chen, J., Chen, W., Cheng, C., Zhu, Y., Xiao, W., Lv, H.: A quasi-distributed fiber magnetic field sensor based on frequency-shifted interferometry fiber cavity ringdown technique. Opt. Laser Technol. 146, 107607 (2022)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(1499 KB)

Accesses

Citations

Detail

Sections
Recommended

/