Preface to the special issue on „Recent Advances in Functional Fibers”

Lei Wei, Guangming Tao, Chong Hou, Wei Yan

PDF(645 KB)
PDF(645 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (4) : 53. DOI: 10.1007/s12200-022-00054-z
EDITORIAL
EDITORIAL

Preface to the special issue on „Recent Advances in Functional Fibers”

Author information +
History +

Cite this article

Download citation ▾
Lei Wei, Guangming Tao, Chong Hou, Wei Yan. Preface to the special issue on „Recent Advances in Functional Fibers”. Front. Optoelectron., 2022, 15(4): 53 https://doi.org/10.1007/s12200-022-00054-z

References

[1]
Kvavadze, E., Bar-Yosef, O., Belfer-Cohen, A., Boaretto, E., Jakeli, N., Matskevich, Z., Meshveliani, T.: 30,000-year-old wild flax fibers. Science 325(5946), 1359(2009)
CrossRef Google scholar
[2]
Kao, C., Hockham, A.: Dielectric-fibre surface waveguides for optical frequencies. Optoelectronics, IEE Proceedings J 113(7), 1151(1986)
CrossRef Google scholar
[3]
Jauregui, C., Limpert, J., Tünnermann, A.: High-power fibre lasers. Nat. Photon 7, 861–867(2013)
CrossRef Google scholar
[4]
Xiong, J., Chen, J., Lee, P.S.: Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv. Mater. 33, 2002640(2021)
CrossRef Google scholar
[5]
Haines, C.S., Lima, M.D., Li, N., Spinks, G.M., Foroughi, J., Madden, J.D., Kim, S.H., Fang, S., Jung de Andrade, M., Göktepe, F., Göktepe, Ö., Mirvakili, S.M., Naficy, S., Lepró, X.,, Oh, J., Kozlov, M.E., Kim, S.J., Xu, X., Swedlove, B.J., Wallace, G.G., Baughman, R.H.: Artificial muscles from fishing line and sewing thread. Science 343(6173), 868–872(2014)
CrossRef Google scholar
[6]
Kanik, M., Orguc, S., Varnavides, G., Kim, J., Benavides, T., Gonzalez, D., Akintilo, T., Tasan, C.C., Chandrakasan, A.P., Fink, Y., Anikeeva, P.: Strain-programmable fiber-based artificial muscle. Science 365(6449), 145–150(2019)
CrossRef Google scholar
[7]
Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A.E., Ramachandran, S.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140), 1545–1548(2013)
CrossRef Google scholar
[8]
Tan, W., Shi, Z.Y., Smith, S., Birnbaum, D., Kopelman, R.: Sub-micrometer intracellular chemical optical fiber sensors. Science 258(5083), 778–781(1992)
CrossRef Google scholar
[9]
Zeng, S., Pian, S., Su, M., Wang, Z., Wu, M., Liu, X., Chen, M., Xiang, Y., Wu, J., Zhang, M., Cen, Q., Tang, Y., Zhou, X., Huang, Z., Wang, R., Tunuhe, A., Sun, X., Xia, Z., Tian, M., Chen, M., Ma, X., Yang, L., Zhou, J., Zhou, H., Yang, Q., Li, X., Ma, Y., Tao, G.: Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696(2021)
CrossRef Google scholar
[10]
Abouraddy, A., Bayindir, M., Benoit, G., Hart, S., Kuriki, K., Orf, N., Shapira, O., Sorin, F., Temelkuran, B., Fink, Y.: Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347(2007)
CrossRef Google scholar
[11]
Egusa, S., Wang, Z., Chocat, N., Ruff, Z., Stolyarov, A., Shemuly, D., Sorin, F., Rakich, P., Joannopoulos, J., Fink, Y.: Multimaterial piezoelectric fibres. Nat. Mater. 9, 643–648(2010)
CrossRef Google scholar
[12]
Yan, W., Noel, G., Loke, G., Meiklejohn, E., Khudiyev, T., Marion, J., Rui, G., Lin, J., Cherston, J., Sahasrabudhe, A., Wilbert, J., Wicaksono, I., Hoyt, R., Missakian, A., Zhu, L., Ma, C., Joannopoulos, J., Fink, Y.: Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623(2022)
CrossRef Google scholar
[13]
Canales, A., Jia, X., Froriep, U., Koppes, R., Tringides, C., Selvidge, J., Lu, C., Hou, C., Wei, L., Fink, Y., Anikeeva, P.: Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284(2015)
CrossRef Google scholar
[14]
Park, S., Guo, Y., Jia, X., Choe, H., Grena, B., Kang, J., Park, J., Lu, C., Canales, A., Chen, R., Yim, Y., Choi, G., Fink, Y., Anikeeva, P.: One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619(2017)
CrossRef Google scholar
[15]
Strutynski, C., Couderc, V., Mansuryan, T., Santarelli, G., Thomas, P., Danto, S., Cardinal, T.: Spatial beam reshaping and large-band nonlinear conversion in rectangular-core phosphate glass fibers. Front. Optoelectron. 15(1), 4(2022)
CrossRef Google scholar
[16]
Ding, J., Meng, F., Zhao, X., Wang, X., Lou, S., Sheng, X., Yang, L., Tao, G., Liang, S.: All-solid anti-resonant single crystal fibers. Front. Optoelectron. 15(1), 3(2022)
CrossRef Google scholar
[17]
Li, P., Sun, Z., Wang, R., Gong, Y., Zhou, Y., Wang, Y., Liu, X., Zhou, X., Ouyang, J., Chen, M., Hou, C., Chen, M., Tao, G.: Flexible thermochromic fabrics enabling dynamic colored display. Front. Optoelectron. 15(3), 40(2022)
CrossRef Google scholar
[18]
Tsui, H.C.L., Healy, N.: Recent progress of semiconductor opto-electronic fibers. Front. Optoelectron. 14(4), 383–398(2021)
CrossRef Google scholar
[19]
Zhang, H., Wang, Z., Wang, Z.X., He, B., Chen, M., Qi, M., Liu, Y., Xin, J., Wei, L.: Recent progress of fiber-based transistors: materials, structures and applications. Front. Optoelectron. 15(1), 2(2022)
CrossRef Google scholar
[20]
Zhang, J., Wang, C., Chen, Y., Xiang, Y., Huang, T., Shum, P., Wu, Z.: Fiber structures and material science in optical fiber magnetic field sensors. Front. Optoelectron. 15(3), 34(2022)
CrossRef Google scholar
[21]
Qian, S., Wang, X., Yin, H., Yan, W.: Thermally drawn piezo-electric fibers for flexible and wearable electronics. Front. Optoelectron. 16(1), 3(2023)
[22]
Chen, X., Cao, H., He, Y., Zhou, Q., Li, Z., Wang, W., He, Y., Tao, G., Hou, C.: Advanced functional nanofibers: strategies to improve performance and expand functions. Front. Optoelectron. 15(4), 50(2022)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(645 KB)

Accesses

Citations

Detail

Sections
Recommended

/