Piezoelectric fibers for flexible and wearable electronics

Shengtai Qian, Xingbei Wang, Wei Yan

PDF(4178 KB)
PDF(4178 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (1) : 3. DOI: 10.1007/s12200-023-00058-3
REVIEW ARTICLE
REVIEW ARTICLE

Piezoelectric fibers for flexible and wearable electronics

Author information +
History +

Abstract

Flexible and wearable electronics represent paramount technologies offering revolutionized solutions for medical diagnosis and therapy, nerve and organ interfaces, fabric computation, robot-in-medicine and metaverse. Being ubiquitous in everyday life, piezoelectric materials and devices play a vital role in flexible and wearable electronics with their intriguing functionalities, including energy harvesting, sensing and actuation, personal health care and communications. As a new emerging flexible and wearable technology, fiber-shaped piezoelectric devices offer unique advantages over conventional thin-film counterparts. In this review, we survey the recent scientific and technological breakthroughs in thermally drawn piezoelectric fibers and fiber-enabled intelligent fabrics. We highlight the fiber materials, fiber architecture, fabrication, device integration as well as functions that deliver higher forms of unique applications across smart sensing, health care, space security, actuation and energy domains. We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this field.

Graphical abstract

Keywords

Piezoelectric materials and devices / Flexible electronics / Smart fibers / Intelligent fabrics

Cite this article

Download citation ▾
Shengtai Qian, Xingbei Wang, Wei Yan. Piezoelectric fibers for flexible and wearable electronics. Front. Optoelectron., 2023, 16(1): 3 https://doi.org/10.1007/s12200-023-00058-3

References

[1]
Song, Y. , Mukasa, D. , Zhang, H. , Gao, W. : Self-powered wearable biosensors. Acc. Mater. Res. 2 (3), 184- 197 (2021)
[2]
Wang, C. , Li, X. , Hu, H. , Zhang, L. , Huang, Z. , Lin, M. , Zhang, Z. , Yin, Z. , Huang, B. , Gong, H. , Bhaskaran, S. , Gu, Y. , Makihata, M. , Guo, Y. , Lei, Y. , Chen, Y. , Wang, C. , Li, Y. , Zhang, T. , Chen, Z. , Pisano, A.P. , Zhang, L. , Zhou, Q. , Xu, S. : Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2 (9), 687- 695 (2018)
[3]
Yan, W. , Richard, I. , Kurtuldu, G. , James, N.D. , Schiavone, G. , Squair, J.W. , Nguyen-Dang, T. , Das Gupta, T. , Qu, Y. , Cao, J.D. , Ignatans, R. , Lacour, S.P. , Tileli, V. , Courtine, G. , Löffler, J.F. , Sorin, F. : Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 15 (10), 875- 882 (2020)
[4]
Weng, W. , Yang, J. , Zhang, Y. , Li, Y. , Yang, S. , Zhu, L. , Zhu, M. : A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32 (5), e1902301 (2020)
[5]
Xu, B. , Ma, S. , Xiang, Y. , Zhang, J. , Zhu, M. , Wei, L. , Tao, G. , Deng, D. : In-fiber structured particles and filament arrays from the perspective of fluid instabilities. Adv. Fiber Mater. 2 (1), 1- 12 (2020)
[6]
Pan, S. , Zhu, M. : Fiber electronics bring a new generation of acoustic fabrics. Adv. Fiber Mater. 4 (3), 321- 323 (2022)
[7]
Pan, S. , Zhu, M. : Nanoprocessed silk makes skin feel cool. Adv. Fiber Mater. 4 (3), 319- 320 (2022)
[8]
Sun, H. , Xie, S. , Li, Y. , Jiang, Y. , Sun, X. , Wang, B. , Peng, H. : Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv. Mater. 28 (38), 8431- 8438 (2016)
[9]
Yan, W. , Page, A. , Nguyen-Dang, T. , Qu, Y. , Sordo, F. , Wei, L. , Sorin, F. : Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31 (1), 1802348 (2019)
[10]
Zeng, W. , Shu, L. , Li, Q. , Chen, S. , Wang, F. , Tao, X.M. : Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26 (31), 5310- 5336 (2014)
[11]
Loke, G. , Alain, J. , Yan, W. , Khudiyev, T. , Noel, G. , Yuan, R. , Missakian, A. , Fink, Y. : Computing fabrics. Matter 2 (4), 786- 788 (2020)
[12]
Leber, A. , Dong, C. , Chandran, R. , Das Gupta, T. , Bartolomei, N. , Sorin, F. : Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 3 (6), 316- 326 (2020)
[13]
Zhang, Y. , Li, X. , Kim, J. , Tong, Y. , Thompson, E.G. , Jiang, S. , Feng, Z. , Yu, L. , Wang, J. , Ha, D.S. , Sontheimer, H. , Johnson, B.N. , Jia, X. : Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing. Adv. Opt. Mater. 9 (6), 2001815- 2001823 (2021)
[14]
Wang, H. , Zhang, Y. , Liang, X. , Zhang, Y. : Smart fibers and textiles for personal health management. ACS Nano 15 (8), 12497- 12508 (2021)
[15]
Loke, G. , Khudiyev, T. , Wang, B. , Fu, S. , Payra, S. , Shaoul, Y. , Fung, J. , Chatziveroglou, I. , Chou, P.W. , Chinn, I. , Yan, W. , Gitelson-Kahn, A. , Joannopoulos, J. , Fink, Y. : Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12 (1), 3317 (2021)
[16]
Khudiyev, T. , Lee, J.T. , Cox, J.R. , Argentieri, E. , Loke, G. , Yuan, R. , Noel, G.H. , Tatara, R. , Yu, Y. , Logan, F. , Joannopoulos, J. , Shao-Horn, Y. , Fink, Y. : 100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles. Adv. Mater. 32 (49), 2004971 (2020)
[17]
Wei, L. , Hou, C. , Levy, E. , Lestoquoy, G. , Gumennik, A. , Abouraddy, A.F. , Joannopoulos, J.D. , Fink, Y. : Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Adv. Mater. 29 (1), 1603033 (2017)
[18]
Das Gupta, T. , Martin-Monier, L. , Yan, W. , Le Bris, A. , Nguyen-Dang, T. , Page, A.G. , Ho, K.T. , Yesilköy, F. , Altug, H. , Qu, Y. , Sorin, F. : Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nat. Nanotechnol. 14 (4), 320- 327 (2019)
[19]
Yan, W. , Burgos-Caminal, A. , Das Gupta, T. , Moser, J.E. , Sorin, F. : Direct synthesis of selenium nanowire mesh on a solid substrate and insights into ultrafast photocarrier dynamics. J. Phys. Chem. C 122 (43), 25134- 25141 (2018)
[20]
Martin-Monier, L. , Gupta, T.D. , Yan, W. , Lacour, S. , Sorin, F. : Nanoscale controlled oxidation of liquid metals for stretchable electronics and photonics. Adv. Funct. Mater. 31 (3), 2006711 (2021)
[21]
Dagdeviren, C. , Yang, B.D. , Su, Y. , Tran, P.L. , Joe, P. , Anderson, E. , Xia, J. , Doraiswamy, V. , Dehdashti, B. , Feng, X. , Lu, B. , Poston, R. , Khalpey, Z. , Ghaffari, R. , Huang, Y. , Slepian, M.J. , Rogers, J.A. : Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. U.S.A. 111 (5), 1927- 1932 (2014)
[22]
Curry, E.J. , Ke, K. , Chorsi, M.T. , Wrobel, K.S. , Miller, A.N. , 3rd., Patel, A. , Kim, I. , Feng, J. , Yue, L. , Wu, Q. , Kuo, C.L. , Lo, K.W. , Laurencin, C.T. , Ilies, H. , Purohit, P.K. , Nguyen, T.D. : Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. U.S.A. 115 (5), 909- 914 (2018)
[23]
Jiang, S. , Patel, D.C. , Kim, J. , Yang, S. , Mills, W.A. , 3rd., Zhang, Y. , Wang, K. , Feng, Z. , Vijayan, S. , Cai, W. , Wang, A. , Guo, Y. , Kimbrough, I.F. , Sontheimer, H. , Jia, X. : Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nat. Commun. 11 (1), 6115- 6128 (2020)
[24]
Liu, H. , Zhong, J. , Lee, C. , Lee, S.W. , Lin, L. : A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 5 (4), 041306- 041340 (2018)
[25]
Yang, Y. , Pan, H. , Xie, G. , Jiang, Y. , Chen, C. , Su, Y. , Wang, Y. , Tai, H. : Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/ PVDF composite film for human motion monitoring. Sensor. Actuat. A-Phys. 301, 111789- 111798 (2020)
[26]
Scheffler, S. , Poulin, P. : Piezoelectric fibers: processing and challenges. ACS Appl. Mater. Interfaces 14 (15), 16961- 16982 (2022)
[27]
Kanik, M. , Aktas, O. , Sen, H.S. , Durgun, E. , Bayindir, M. : Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique. ACS Nano 8 (9), 9311- 9323 (2014)
[28]
van Elst, L. , de Lima, C. , Gokce Kurtoglu, M. , Koraganji, V.N. , Zheng, M. , Gumennik, A. : 3D printing in fiber-device technology. Adv. Fiber Mater. 3 (2), 59- 75 (2021)
[29]
Kim, J. , Zhao, Y. , Yang, S. , Feng, Z. , Wang, A. , Davalos, R.V. , Jia, X. : Laser machined fiber-based microprobe: application in microscale electroporation. Adv. Fiber Mater. 4 (4), 859- 872 (2022)
[30]
Tao, X. : Acoustic fabrics enabled by piezoelectric polymer fibers. Natl. Sci. Rev. 9 (7), nwac098 (2022)
[31]
Zhang, S. , Wang, J. , Wang, X. : Bioinspired fabrics with single fiber as ultra-sensitive acoustic sensor. Matter 5 (8), 2399- 2402 (2022)
[32]
Liu, M. , Lin, Z. , Wang, X. , Yan, W. : Focused rotary jet spinning: a novel fiber technology for heart biofabrication. Matter 5 (11), 3576- 3579 (2022)
[33]
Qian, S. , Liu, M. , Dou, Y. , Fink, Y. , Yan, W. : A ‘Moore’s law’ for fibers enables intelligent fabrics. Natl. Sci. Rev. 10 (1), nwac202 (2023)
[34]
Zhang, H. , Xiong, T. , Zhou, T. , Zhang, X. , Wang, Y. , Zhou, X. , Wei, L. : Advanced fiber-shaped aqueous zn ion battery integrated with strain sensor. ACS Appl. Mater. Interfaces 14 (36), 41045- 41052 (2022)
[35]
Wang, Z. , Chen, M. , Zheng, Y. , Zhang, J. , Wang, Z. , Yang, J. , Zhang, Q. , He, B. , Qi, M. , Zhang, H. , Li, K. , Wei, L. : Advanced thermally drawn multimaterial fibers: structure-enabled functionalities. Advanced Devices & Instrumentation 2021, 1- 15 (2021)
[36]
Loke, G. , Yan, W. , Khudiyev, T. , Noel, G. , Fink, Y. : Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32 (1), 1904911 (2020)
[37]
Zhang, T. , Li, K. , Zhang, J. , Chen, M. , Wang, Z. , Ma, S. , Zhang, N. , Wei, L. : High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41, 35- 42 (2017)
[38]
Zhang, J. , Zhang, T. , Zhang, H. , Wang, Z. , Li, C. , Wang, Z. , Li, K. , Huang, X. , Chen, M. , Chen, Z. , Tian, Z. , Chen, H. , Zhao, L.D. , Wei, L. : Single-crystal SnSe thermoelectric fibers via laserinduced directional crystallization: from 1D fibers to multidimensional fabrics. Adv. Mater. 32 (36), e2002702 (2020)
[39]
Dong, C. , Page, A.G. , Yan, W. , Nguyen-Dang, T. , Sorin, F. : Microstructured multimaterial fibers for microfluidic sensing. Adv. Mater. Technol. 4 (10), 1900417 (2019)
[40]
Grena, B. , Alayrac, J.B. , Levy, E. , Stolyarov, A.M. , Joannopoulos, J.D. , Fink, Y. : Thermally-drawn fibers with spatially-selective porous domains. Nat. Commun. 8 (1), 364- 371 (2017)
[41]
Yan, W. , Qu, Y. , Gupta, T.D. , Darga, A. , Nguyên, D.T. , Page, A.G. , Rossi, M. , Ceriotti, M. , Sorin, F. : Semiconducting nanowire-based optoelectronic fibers. Adv. Mater. 29 (27), 1700681 (2017)
[42]
Yan, W. , Nguyen-Dang, T. , Cayron, C. , Das Gupta, T. , Page, A.G. , Qu, Y. , Sorin, F. : Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Opt. Mater. Express 7 (4), 1388- 1397 (2017)
[43]
Hou, C. , Jia, X. , Wei, L. , Stolyarov, A.M. , Shapira, O. , Joannopoulos, J.D. , Fink, Y. : Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing. Nano Lett. 13 (3), 975- 979 (2013)
[44]
Hou, C. , Jia, X. , Wei, L. , Tan, S.C. , Zhao, X. , Joannopoulos, J.D. , Fink, Y. : Crystalline silicon core fibres from aluminium core preforms. Nat. Commun. 6 (1), 6248- 6253 (2015)
[45]
Yu, L. , Parker, S. , Xuan, H. , Zhang, Y. , Jiang, S. , Tousi, M. , Manteghi, M. , Wang, A. , Jia, X. : Flexible multi-material fibers for distributed pressure and temperature sensing. Adv. Funct. Mater. 30 (9), 1908915- 1908923 (2020)
[46]
Nguyen-Dang, T. , Page, A.G. , Qu, Y. , Volpi, M. , Yan, W. , Sorin, F. : Multi-material micro-electromechanical fibers with bendable functional domains. J. Phys. D Appl. Phys. 50 (14), 144001- 144009 (2017)
[47]
Nguyen-Dang, T. , de Luca, A.C. , Yan, W. , Qu, Y. , Page, A.G. , Volpi, M. , Das Gupta, T. , Lacour, S.P. , Sorin, F. : Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing. Adv. Funct. Mater. 27 (10), 1605935 (2017)
[48]
Du, M. , Huang, L. , Zheng, J. , Xi, Y. , Dai, Y. , Zhang, W. , Yan, W. , Tao, G. , Qiu, J. , So, K.F. , Ren, C. , Zhou, S. : Flexible fiber probe for efficient neural stimulation and detection. Adv. Sci. 7 (15), 2001410 (2020)
[49]
Chin, A.L. , Jiang, S. , Jang, E. , Niu, L. , Li, L. , Jia, X. , Tong, R. : Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement. Nat. Commun. 12 (1), 5138- 5150 (2021)
[50]
Jiang, S. , Song, J. , Zhang, Y. , Nie, M. , Kim, J. , Marcano, A.L. , Kadlec, K. , Mills, W.A. , 3rd., Yan, X. , Liu, H. , Tong, R. , Wang, H. , Kimbrough, I.F. , Sontheimer, H. , Zhou, W. , Jia, X. : Nano-optoelectrodes integrated with flexible multifunctional fiber probes by high-throughput scalable fabrication. ACS Appl. Mater. Interfaces 13 (7), 9156- 9165 (2021)
[51]
Zhou, T. , Yu, Y. , He, B. , Wang, Z. , Xiong, T. , Wang, Z. , Liu, Y. , Xin, J. , Qi, M. , Zhang, H. , Zhou, X. , Gao, L. , Cheng, Q. , Wei, L. : Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat. Commun. 13 (1), 4564- 4577 (2022)
[52]
Lu, P. , Lalam, N. , Badar, M. , Liu, B. , Chorpening, B. , Buric, M. , Ohodnicki, P. : Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev. 87 (1), 041302- 041336 (2016)
[53]
Chen, M. , Wang, Z. , Li, K. , Wang, X. , Wei, L. : Elastic and stretchable functional fibers: a review of materials, Fabrication Methods, and Applications. Adv. Fiber Mater. 3 (1), 1- 13 (2021)
[54]
Gumennik, A. , Stolyarov, A.M. , Schell, B.R. , Hou, C. , Lestoquoy, G. , Sorin, F. , McDaniel, W. , Rose, A. , Joannopoulos, J.D. , Fink, Y. : All-in-fiber chemical sensing. Adv. Mater. 24 (45), 6005- 6009 (2012)
[55]
Egusa, S. , Wang, Z. , Chocat, N. , Ruff, Z.M. , Stolyarov, A.M. , Shemuly, D. , Sorin, F. , Rakich, P.T. , Joannopoulos, J.D. , Fink, Y. : Multimaterial piezoelectric fibres. Nat. Mater. 9 (8), 643- 648 (2010)
[56]
Habib, M. , Lantgios, I. , Hornbostel, K. : A review of ceramic, polymer and composite piezoelectric materials. J. Phys. D Appl. Phys. 55 (42), 423002- 423021 (2022)
[57]
Zhang, J. , Wang, C. , Bowen, C. : Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 6 (22), 13314- 13327 (2014)
[58]
Bhalla, A.S. , Guo, R. , Roy, R. : The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4 (1), 3- 26 (2016)
[59]
Martins, P. , Lopes, A.C. , Lanceros-Mendez, S. : Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39 (4), 683- 706 (2014)
[60]
Li, H. , Deng, Z.D. , Carlson, T.J. : Piezoelectric materials used in underwater acoustic transducers. Sens. Lett. 10 (3), 679- 697 (2012)
[61]
Hasegawa, R. , Takahashi, Y. , Chatani, Y. , Tadokoro, H. : Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym. J. 3, 600- 610 (1972)
[62]
Jurczuk, K. , Galeski, A. , Mackey, M. , Hiltner, A. , Baer, E. : Orientation of PVDF α and γ crystals in nanolayered films. Colloid Polym. Sci. 293 (4), 1289- 1297 (2015)
[63]
Cortili, G. , Zerbi, G. : Further infra-red data on polyvinylidene fluoride. Spectrochim. Acta A 23 (7), 2216- 2218 (1967)
[64]
Weinhold, S. , Litt, M.H. , Lando, J.B. : The crystal structure of the γ phase of poly(vinylidene fluoride). Macromolecules 13 (5), 1178- 1183 (1980)
[65]
Takase, Y. , Lee, J.W. , Scheinbeim, J.I. , Newman, B.A. : Hightemperature characteristics of nylon-11 and nylon-7 piezoelectrics. Macromolecules 24 (25), 6644- 6652 (1991)
[66]
Lovinger, A.J. : Poly(Vinylidene Fluoride). Springer, Netherlands (1982)
[67]
Jayasuriya, A.C. , Scheinbeim, J.I. : Ferroelectric behavior in solvent cast poly(vinylidene fluoride/hexafluoropropylene) copolymer films. Appl. Surf. Sci. 175 176, 386- 390 (2001)
[68]
Pradhan, S.K. , Kumar, A. , Kour, P. , Pandey, R. , Kumar, P. , Kar, M. , Sinha, A.N. : Piezoelectric and mechanical properties of PVDF-PZT composite. Ferroelectrics 558 (1), 59- 66 (2020)
[69]
Glauß, B. , Steinmann, W. , Walter, S. , Beckers, M. , Seide, G. , Gries, T. , Roth, G. : Spinnability and characteristics of polyvinylidene fluoride (PVDF)-based bicomponent fibers with a carbon nanotube (CNT) modified polypropylene core for piezoelectric applications. Materials (Basel) 6 (7), 2642- 2661 (2013)
[70]
Shen, Y. , Wang, Z. , Wang, Z. , Wang, J. , Yang, X. , Zheng, X. , Chen, H. , Li, K. , Wei, L. , Zhang, T. : Thermally drawn multifunctional fibers: toward the next generation of information technology. InfoMat (2022)
[71]
Wang, S. , Zhang, T. , Li, K. , Ma, S. , Chen, M. , Lu, P. , Wei, L. : Flexible piezoelectric fibers for acoustic sensing and positioning. Adv. Electron. Mater. 3 (3), 1600449- 1600455 (2017)
[72]
Lestoquoy, G. , Chocat, N. , Wang, Z. , Joannopoulos, J.D. , Fink, Y. : Fabrication and characterization of thermally drawn fiber capacitors. Appl. Phys. Lett. 102 (15), 152908- 152912 (2013)
[73]
Chocat, N. , Lestoquoy, G. , Wang, Z. , Rodgers, D.M. , Joannopoulos, J.D. , Fink, Y. : Piezoelectric fibers for conformal acoustics. Adv. Mater. 24 (39), 5327- 5332 (2012)
[74]
Rein, M. , Favrod, V.D. , Hou, C. , Khudiyev, T. , Stolyarov, A. , Cox, J. , Chung, C.C. , Chhav, C. , Ellis, M. , Joannopoulos, J. , Fink, Y. : Diode fibres for fabric-based optical communications. Nature 560 (7717), 214- 218 (2018)
[75]
Yan, W. , Noel, G. , Loke, G. , Meiklejohn, E. , Khudiyev, T. , Marion, J. , Rui, G. , Lin, J. , Cherston, J. , Sahasrabudhe, A. , Wilbert, J. , Wicaksono, I. , Hoyt, R.W. , Missakian, A. , Zhu, L. , Ma, C. , Joannopoulos, J. , Fink, Y. : Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603 (7902), 616- 623 (2022)
[76]
Chen, M. , Wang, Z. , Zhang, Q. , Wang, Z. , Liu, W. , Chen, M. , Wei, L. : Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat. Commun. 12 (1), 1416- 1425 (2021)
[77]
Qu, Y. , Nguyen-Dang, T. , Page, A.G. , Yan, W. , Das Gupta, T. , Rotaru, G.M. , Rossi, R.M. , Favrod, V.D. , Bartolomei, N. , Sorin, F. : Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30 (27), 1707251 (2018)
[78]
Marion, J.S. , Gupta, N. , Cheung, H. , Monir, K. , Anikeeva, P. , Fink, Y. : Thermally drawn highly conductive fibers with controlled elasticity. Adv. Mater. 34 (19), e2201081 (2022)
[79]
Lu, X. , Qu, H. , Skorobogatiy, M. : Piezoelectric micro-and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications. ACS Nano 11 (2), 2103- 2114 (2017)
[80]
Rajabi, A.H. , Jaffe, M. , Arinzeh, T.L. : Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 24, 12- 23 (2015)
[81]
Mariello, M. , Fachechi, L. , Guido, F. , De Vittorio, M. : Conformal, ultra-thin skin-contact-actuated hybrid piezo/triboelectric wearable sensor based on AlN and parylene-encapsulated elastomeric blend. Adv. Funct. Mater. 31 (27), 2101047- 2101065 (2021)
[82]
Dagdeviren, C. , Shi, Y. , Joe, P. , Ghaffari, R. , Balooch, G. , Usgaonkar, K. , Gur, O. , Tran, P.L. , Crosby, J.R. , Meyer, M. , Su, Y. , Chad Webb, R. , Tedesco, A.S. , Slepian, M.J. , Huang, Y. , Rogers, J.A. : Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14 (7), 728- 736 (2015)
[83]
Heidemann, J. , Stojanovic, M. , Zorzi, M. : Underwater sensor networks: applications, advances and challenges. Phil. Trans. R. Soc. A 370 (1958), 158- 175 (2012)
[84]
Kharat, D.K. , Mitra, S. , Akhtar, S. , Kumar, V. : Polymeric piezoelectric transducers for hydrophone applications. Def. Sci. J. 57 (1), 7- 22 (2007)
[85]
Song, W. : A smart sensor that can be woven into everyday life. Nature 603 (7902), 585- 586 (2022)
[86]
Kim, J. , Jia, X. : From space to battlefield: a new breed of multifunctional fiber sheets for extreme environments. Matter 3 (3), 602- 604 (2020)
[87]
Cherston, J. : What the well-dressed spacecraft will be wearing. IEEE Spectrum. spectrum.ieee.org/e-textiles-for-space (2021)
[88]
Chen, X. , Qin, H. , Qian, X. , Zhu, W. , Li, B. , Zhang, B. , Lu, W. , Li, R. , Zhang, S. , Zhu, L. , Domingues Dos Santos, F. , Bernholc, J. , Zhang, Q.M. : Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 375 (6587), 1418- 1422 (2022)

RIGHTS & PERMISSIONS

2023 The Author(s)
AI Summary AI Mindmap
PDF(4178 KB)

Accesses

Citations

Detail

Sections
Recommended

/