Advanced functional nanofibers: strategies to improve performance and expand functions
Xinyu Chen, Honghao Cao, Yue He, Qili Zhou, Zhangcheng Li, Wen Wang, Yu He, Guangming Tao, Chong Hou
Advanced functional nanofibers: strategies to improve performance and expand functions
Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work.
Functional nanofiber / Nanofiber fabrication / Nanofiber structure / Nanofiber materials / Nanofiber assembly
[1] |
Xie, F., Wang, Y., Zhuo, L., Jia, F., Ning, D., Lu, Z.: Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture. ACS Appl. Mater. Interfaces 12(50), 56499–56508(2020)
CrossRef
Google scholar
|
[2] |
Wu, Q., Xu, Y., Yao, Z., Liu, A., Shi, G.: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963–1970(2010)
CrossRef
Google scholar
|
[3] |
Wang, M., Li, D., Li, J., Li, S., Chen, Z., Yu, D.G., Liu, Z., Guo, J.Z.: Electrospun Janus zein–PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater. Des. 196, 109075(2020)
CrossRef
Google scholar
|
[4] |
Wang, X., Drew, C., Lee, S.H., Senecal, K.J., Kumar, J., Samuelson, L.A.: Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2(11), 1273–1275(2002)
CrossRef
Google scholar
|
[5] |
Nikfarjam, A., Hosseini, S., Salehifar, N.: Fabrication of a highly sensitive single aligned TiO2 and gold nanoparticle embedded TiO2 nano-fiber gas sensor. ACS Appl. Mater. Interfaces 9(18), 15662–15671(2017)
CrossRef
Google scholar
|
[6] |
Yue, X., Yi, S., Wang, R., Zhang, Z., Qiu, S.: Well-controlled SrTiO3@Mo2C core-shell nanofiber photocatalyst: boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 47, 463–473(2018)
CrossRef
Google scholar
|
[7] |
Wan, K., Wang, D., Wang, F., Li, H., Xu, J., Wang, X., Yang, J.: Hierarchical In2O3@SnO2 core–shell nanofiber for high efficiency formaldehyde detection. ACS Appl. Mater. Interfaces 11(48), 45214–45225(2019)
CrossRef
Google scholar
|
[8] |
Tomboc, G.M., Kim, H.: Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: an efficient electrode towards high energy density supercapacitor. Electrochim. Acta 318, 392–404(2019)
CrossRef
Google scholar
|
[9] |
Choi, J., Chan, S., Joo, H., Yang, H., Ko, F.K.: Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photocatalyst for water treatment. Water Res. 101, 362–369(2016)
CrossRef
Google scholar
|
[10] |
Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M.: Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 80(293), 1455–1457(2001)
CrossRef
Google scholar
|
[11] |
Chakrabarty, A., Raffy, G., Maity, M., Gartzia-Rivero, L., Marre, S., Aymonier, C., Maitra, U., Del Guerzo, A.: Nanofiber-directed anisotropic self-assembly of CdSe-CdS quantum rods for linearly polarized light emission evidenced by quantum rod orientation microscopy. Small 14(37), e1802311(2018)
CrossRef
Google scholar
|
[12] |
Nanofibers, B., Simbrunner, C., Quochi, F., Hernandez-sosa, G., Oehzelt, M., Resel, R., Arndt, M., Saba, M., Mura, A., Bongiovanni, G., Sitter, H.: Organic–organic heteroepitaxy of red-, green-, and blue-emitting nanofiber. ACS Nano 2010(4), 6244–6250(2010)
CrossRef
Google scholar
|
[13] |
Yin, K., Zhang, L., Lai, C., Zhong, L., Smith, S., Fong, H., Zhu, Z.: Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT. J. Mater. Chem. 21(2), 444–448(2011)
CrossRef
Google scholar
|
[14] |
Liao, X., Kahle, F.J., Liu, B., Bässler, H., Zhang, X., Köhler, A., Greiner, A.: Polarized blue photoluminescence of mesoscopically ordered electrospun non-conjugated polyacrylonitrile nanofibers. Mater. Horiz. 7(6), 1605–1612(2020)
CrossRef
Google scholar
|
[15] |
Wang, Q., Schniepp, H.C.: Strength of recluse spider’s silk originates from nanofibrils. ACS Macro Lett. 7(11), 1364–1370(2018)
CrossRef
Google scholar
|
[16] |
Yang, X., Li, L., Yang, D., Nie, J., Ma, G.: Electrospun core–shell fibrous 2D Scaffold with biocompatible poly(glycerol sebacate) and poly-l-lactic acid for wound healing. Adv. Fiber Mater. 2(2), 105–117(2020)
CrossRef
Google scholar
|
[17] |
Cui, T., Yu, J., Li, Q., Wang, C.F., Chen, S., Li, W., Wang, G.: Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Adv. Mater. 32(32), e2000982(2020)
CrossRef
Google scholar
|
[18] |
Fei, L., Hu, Y., Li, X., Song, R., Sun, L., Huang, H., Gu, H., Chan, H.L.W., Wang, Y.: Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. ACS Appl. Mater. Interfaces 7(6), 3665–3670(2015)
CrossRef
Google scholar
|
[19] |
An, A.K., Guo, J., Lee, E.J., Jeong, S., Zhao, Y., Wang, Z., Leiknes, T.O.: PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J. Membr. Sci. 525, 57–67(2017)
CrossRef
Google scholar
|
[20] |
Ning, Y., Zhang, Z., Teng, F., Fang, X.: Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14(13), e1703754(2018)
CrossRef
Google scholar
|
[21] |
Wang, Q., Jian, M., Wang, C., Zhang, Y.: Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27(9), 1605657(2017)
CrossRef
Google scholar
|
[22] |
Zhang, R., Liu, C., Hsu, P.C., Zhang, C., Liu, N., Zhang, J., Lee, H.R., Lu, Y., Qiu, Y., Chu, S., Cui, Y.: Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 16(6), 3642–3649(2016)
CrossRef
Google scholar
|
[23] |
Qin, R., Shao, G., Hou, J., Zheng, Z., Zhai, T., Li, H.: One-pot synthesis of Li3VO4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries. Sci. Bull. (Beijing) 62(15), 1081–1088(2017)
CrossRef
Google scholar
|
[24] |
Kaufman, J.J., Tao, G., Shabahang, S., Deng, D.S., Fink, Y., Abouraddy, A.F.: Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires. Nano Lett. 11(11), 4768–4773(2011)
CrossRef
Google scholar
|
[25] |
Yaman, M., Khudiyev, T., Ozgur, E., Kanik, M., Aktas, O., Ozgur, E.O., Deniz, H., Korkut, E., Bayindir, M.: Arrays of indefinitely long uniform nanowires and nanotubes. Nat. Mater. 10(7), 494–501(2011)
CrossRef
Google scholar
|
[26] |
Deng, D.S., Orf, N.D., Abouraddy, A.F., Stolyarov, A.M., Joannopoulos, J.D., Stone, H.A., Fink, Y.: In-fiber semiconductor filament arrays. Nano Lett. 8(12), 4265–4269(2008)
CrossRef
Google scholar
|
[27] |
Zuo, F., Tan, D.H., Wang, Z., Jeung, S., Macosko, C.W., Bates, F.S.: Nanofibers from melt blown fiber-in-fiber polymer blends. ACS Macro Lett. 2(4), 301–305(2013)
CrossRef
Google scholar
|
[28] |
Hassan, M.A., Yeom, B.Y., Wilkie, A., Pourdeyhimi, B., Khan, S.A.: Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 427, 336–344(2013)
CrossRef
Google scholar
|
[29] |
Ellison, C.J., Phatak, A., Giles, D.W., Macosko, C.W., Bates, F.S.: Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48, 3306–3316(2007)
CrossRef
Google scholar
|
[30] |
Yang, Z., Peng, H., Wang, W., Liu, T.: Crystallization behavior of poly(ϵ-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116, 2658–2667(2010)
CrossRef
Google scholar
|
[31] |
Wang, D., Sun, G., Chiou, B.S.: A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol. Mater. Eng. 292(4), 407–414(2007)
CrossRef
Google scholar
|
[32] |
Nakata, K., Fujii, K., Ohkoshi, Y., et al.: Poly(ethylene terephthalate) nanofibers made by sea-island-type conjugated melt spinning and laser-heated flow drawing. Macromol Rapid Commun. 28(6), 792–795(2007)
CrossRef
Google scholar
|
[33] |
Cheng, K.C.K., Bedolla-Pantoja, M.A., Kim, Y.K., Gregory, J.V., Xie, F., De France, A., Hussal, C., Sun, K., Abbott, N.L., Lahann, J.: Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science 80(362), 804–808(2018)
CrossRef
Google scholar
|
[34] |
Virji, S., Huang, J., Kaner, R.B., Weiller, B.H.: Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 4(3), 491–496(2004)
CrossRef
Google scholar
|
[35] |
Wang, Y., Xu, S., Cheng, H., Liu, W., Chen, F., Liu, X., Liu, J., Chen, S., Hu, C.: Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method. Appl. Surf. Sci. 428, 315–321(2018)
CrossRef
Google scholar
|
[36] |
Huang, J., Kaner, R.B.: A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126(3), 851–855(2004)
CrossRef
Google scholar
|
[37] |
Harfenist, S.A., Cambron, S.D., Nelson, E.W., Berry, S.M., Isham, A.W., Crain, M.M., Walsh, K.M., Keynton, R.S., Cohn, R.W.: Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers. Nano Lett. 4(10), 1931–1937(2004)
CrossRef
Google scholar
|
[38] |
Gu, F., Zhang, L., Yin, X., Tong, L.: Polymer single-nanowire optical sensors. Nanoscale Res Lett 4, 94(2009)
CrossRef
Google scholar
|
[39] |
Wang, C., Kim, J., Kim, M., Lim, H., Zhang, M., You, J., Yun, J.H., Bando, Y., Li, J., Yamauchi, Y.: Nanoarchitectured metal– organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes. J. Mater. Chem. A Mater. Energy Sustain 7(22), 13743–13750(2019)
CrossRef
Google scholar
|
[40] |
Hwang, I., Guan, Z., Cao, C., Tang, W., Chui, C.O., Li, X.: Nanoparticles suppress fluid instabilities in the thermal drawing of ultralong nanowires. Nat. Commun. 11(1), 5932(2020)
CrossRef
Google scholar
|
[41] |
Li, D., Wang, Y., Xia, Y.: Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 3(8), 1167–1171(2003)
CrossRef
Google scholar
|
[42] |
Marek, P., Senecal, K., Nida, D., Magnone, J., Senecal, A.: Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane. J. Nanobiotechnol 9(1), 48(2011)
CrossRef
Google scholar
|
[43] |
Lin, M.F., Xiong, J., Wang, J., Parida, K., Lee, P.S.: Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44, 248–255(2018)
CrossRef
Google scholar
|
[44] |
Wu, J., Wang, N., Zhao, Y., Jiang, L.: Electrospinning of multi-level structured functional micro-/nanofibers and their applications. J. Mater. Chem. A Mater. Energy Sustain. 1(25), 7290–7305(2013)
CrossRef
Google scholar
|
[45] |
Frenot, A., Chronakis, I.S.: Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8(1), 64–75(2003)
CrossRef
Google scholar
|
[46] |
Wen, X., Xiong, J., Lei, S., Wang, L., Qin, X.: Diameter refinement of electrospun nanofibers: from mechanism. Strategies to applications. Adv. Fiber Mater. (2022)
CrossRef
Google scholar
|
[47] |
Deng, Y., Lu, T., Cui, J., Keshari, S., Xiong, R., Huang, C.: Biobased electrospun nanofiber as building blocks for a novel ecofriendly air filtration membrane: a review. Separ. Purif. Tech. 277, 119623(2021)
CrossRef
Google scholar
|
[48] |
Cao, X., Deng, J., Pan, K.: Electrospinning Janus type CoOx/C nanofibers as electrocatalysts for oxygen reduction reaction. Adv. Fiber Mater. 2(2), 85–92(2020)
CrossRef
Google scholar
|
[49] |
Chen, J., Pakdel, E., Xie, W., Sun, L., Xu, M., Liu, Q., Wang, D.: High-performance natural melanin/poly(vinyl alcohol-co-ethylene) nanofibers/PA6 fiber for twisted and coiled fiber-based actuator. Adv. Fiber Mater. 2(2), 64–73(2020)
CrossRef
Google scholar
|
[50] |
Arshad, S.N., Naraghi, M., Chasiotis, I.: Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5), 1710–1719(2011)
CrossRef
Google scholar
|
[51] |
Wang, L., Wu, Y., Guo, B., Ma, P.X.: Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9(9), 9167–9179(2015)
CrossRef
Google scholar
|
[52] |
Yan, W., Richard, I., Kurtuldu, G., James, N.D., Schiavone, G., Squair, J.W., Nguyen-Dang, T., Das Gupta, T., Qu, Y., Cao, J.D., Ignatans, R., Lacour, S.P., Tileli, V., Courtine, G., Löffler, J.F., Sorin, F.: Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 15(10), 875–882(2020)
CrossRef
Google scholar
|
[53] |
Hu, X., Zhang, X., Shen, X., Li, H.: Plasma-induced synthesis of CuO nanofibers and ZnO nanoflowers in water. Plasma Chem Plasma Process 34, 1129–1139(2014)
CrossRef
Google scholar
|
[54] |
Huang, J., Kaner, R.B.: Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. 116(43), 5941–5945(2004)
CrossRef
Google scholar
|
[55] |
Loscertales, I.G., Barrero, A., Márquez, M., Spretz, R., Velarde-Ortiz, R., Larsen, G.: Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc. 126(17), 5376–5377(2004)
CrossRef
Google scholar
|
[56] |
Hasegawa, T., Mikuni, T.: Higher-order structural analysis of Nylon-66 nanofibers prepared by carbon dioxide laser supersonic drawing and exhibiting near-equilibrium melting temperature. J. Appl. Polym. Sci. 131, 40361(2014)
CrossRef
Google scholar
|
[57] |
Behrens, A.M., Casey, B.J., Sikorski, M.J., Wu, K.L., Tutak, W., Sandler, A.D., Ko, P.: In situ deposition of PLGA nano fibers via solution blow spinning. ACS Macro Lett. 3(3), 249(2014)
CrossRef
Google scholar
|
[58] |
Ren, L., Ozisik, R., Kotha, S.P.: Rapid and efficient fabrication of multilevel structured silica micro-/nanofibers by centrifugal jet spinning. J. Colloid Interface Sci. 425, 136–142(2014)
CrossRef
Google scholar
|
[59] |
Rolandi, M., Rolandi, R.: Self-assembled chitin nanofibers and applications. Adv. Colloid Interface Sci. 207, 216–222(2014)
CrossRef
Google scholar
|
[60] |
Song, J., Zhang, B., Lu, Z., Xin, Z., Liu, T., Wei, W., Zia, Q., Pan, K., Gong, R.H., Bian, L., Li, Y., Li, J.: Hierarchical porous poly (l-lactic acid) nano fi brous membrane for ultra fi ne particulate aerosol filtration. ACS Appl. Mater. Interfaces (2019)
CrossRef
Google scholar
|
[61] |
Im, J.S., Park, S.J., Kim, T.J., Kim, Y.H., Lee, Y.S.: The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J. Colloid Interface Sci. 318(1), 42–49(2008)
CrossRef
Google scholar
|
[62] |
Ji, L., Rao, M., Aloni, S., Wang, L., Cairns, E.J., Zhang, Y.: Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4(12), 5053–5059(2011)
CrossRef
Google scholar
|
[63] |
Liu, Q., Wang, Y., Dai, L., Yao, J.: Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28(15), 3000–3006(2016)
CrossRef
Google scholar
|
[64] |
Lee, C.G., Javed, H., Zhang, D., Kim, J.H., Westerhoff, P., Li, Q., Alvarez, P.J.J.: Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52(7), 4285–4293(2018)
CrossRef
Google scholar
|
[65] |
Ma, W., Li, Y., Zhang, M., Gao, S., Cui, J., Huang, C., Fu, G.: Biomimetic durable multifunctional self-cleaning nano fibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances. ACS Appl. Mater. Interfaces. 12(31), 34999–35010(2020)
CrossRef
Google scholar
|
[66] |
Zhu, L.F., Zheng, Y., Fan, J., Yao, Y., Ahmad, Z., Chang, M.W.: A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci. 137, 105002(2019)
CrossRef
Google scholar
|
[67] |
Zhu, Y., Song, L., Song, N., Li, M., Wang, C., Lu, X.: Bifunctional and efficient CoS2-C@MoS2 core–shell nanofiber electrocatalyst for water splitting. ACS Sustain. Chem. Eng. 7(3), 2899–2905(2019)
CrossRef
Google scholar
|
[68] |
Wu, X., Han, Z., Zheng, X., Yao, S., Yang, X., Zhai, T.: Core–shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31, 410–417(2017)
CrossRef
Google scholar
|
[69] |
Wang, K., Liu, X.K., Chen, X.H., Yu, D.G., Yang, Y.Y., Liu, P.: Electrospun hydrophilic Janus nanocomposites for the rapid onset of therapeutic action of helicid. ACS Appl. Mater. Interfaces 10(3), 2859–2867(2018)
CrossRef
Google scholar
|
[70] |
Hwang, S.H., Kim, Y.K., Hong, S.H., Lim, S.K.: Cu/CuO@ ZnO hollow nanofiber gas sensor: effect of hollow nanofiber structure and P-N junction on operating temperature and sensitivity. Sensors (Basel) 19(14), 1–11(2019)
CrossRef
Google scholar
|
[71] |
Zheng, G., Yang, Y., Cha, J.J., Hong, S.S., Cui, Y.: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462–4467(2011)
CrossRef
Google scholar
|
[72] |
Kong, X., Zheng, Y., Wang, Y., Liang, S., Cao, G., Pan, A.: Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Sci. Bull. (Beijing) 64(4), 261–269(2019)
CrossRef
Google scholar
|
[73] |
Sun, F., Qi, H., Xie, Y., Ma, Q., He, W., Xu, D., Wang, G., Yu, W., Wang, T., Dong, X.: Flexible self-supporting bifunctional [TiO2/C]//[Bi2WO6/C] carbon-based Janus nanofiber heterojunction photocatalysts for efficient hydrogen evolution and degradation of organic pollutant. J. Alloys Compd. 830, 154673(2020)
CrossRef
Google scholar
|
[74] |
Yang, J., Wang, K., Yu, D.G., Yang, Y., Bligh, S.W.A., Williams, G.R.: Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 111, 110805(2020)
CrossRef
Google scholar
|
[75] |
Gao, Y., Xiao, Z., Kong, D., Iqbal, R., Yang, Q.H., Zhi, L.: N, P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy 64, 103879(2019)
CrossRef
Google scholar
|
[76] |
Zhu, R., Chen, F., Wang, J., Song, Y., Cheng, J., Mao, M., Ma, H., Lu, J., Cheng, Y.: Multi-channel V-doped CoP hollow nanofibers as high-performance hydrogen evolution reaction electrocatalysts. Nanoscale 12(16), 9144–9151(2020). (PMID:32296800)
CrossRef
Google scholar
|
[77] |
Liu, J., Yuan, H., Qiao, J., Feng, J., Xu, C., Wang, Z., Sun, W., Sun, K.: Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells. J. Mater. Chem. A Mater. Energy Sustain. 5(33), 17216–17220(2017)
CrossRef
Google scholar
|
[78] |
Li, S., Yin, J., Xu, L.: Batch fabrication and characterization of ZnO/PLGA/PCL nanofiber membranes for antibacterial materials. Fibers Polym. 23(5), 1225–1234(2022)
CrossRef
Google scholar
|
[79] |
Zhang, M., Yang, J., Kang, Z., Wu, X., Tang, L., Qiang, Z., Zhang, D., Pan, X.: Removal of micron-scale microplastic particles from different waters with efficient tool of surface-functionalized microbubbles. J. Hazard. Mater. 404(Pt A), 124095(2021)
CrossRef
Google scholar
|
[80] |
Shao, Z., Chen, Y., Jiang, J., Xiao, Y., Kang, G., Wang, X., Li, W., Zheng, G.: Multistage-split ultrafine fluffy nanofibrous membrane for high-efficiency antibacterial air filtration. ACS Appl. Mater. Interfaces 14(16), 18989–19001(2022)
CrossRef
Google scholar
|
[81] |
Zupančič, Š, Sinha-Ray, S., Sinha-Ray, S., Kristl, J., Yarin, A.L.: Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers. Mol. Pharm. 13(1), 295–305(2016)
CrossRef
Google scholar
|
[82] |
Yao, Q., Cosme, J.G.L., Xu, T., Miszuk, J.M., Picciani, P.H.S., Fong, H., Sun, H.: Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115, 115–127(2017)
CrossRef
Google scholar
|
[83] |
Lobo, A.O., Afewerki, S., de Paula, M.M.M., Ghannadian, P., Marciano, F.R., Zhang, Y.S., Webster, T.J., Khademhosseini, A.: Electrospun nanofiber blend with improved mechanical and biological performance. Int. J. Nanomed 13, 7891–7903(2018)
CrossRef
Google scholar
|
[84] |
Sun, H.W., Zhang, H., Zhen, Q., Wang, S.F., Hu, J.J., Cui, J.Q., Qian, X.M.: Large-scale preparation of polylactic acid/polyethylene glycol micro/nanofiber fabrics with aligned fibers via a post-drafting melt blown process. J. Polym. Res. 29(8), 1–10(2022)
CrossRef
Google scholar
|
[85] |
Panomsuwan, G., Saito, N., Ishizaki, T.: Nitrogen-doped carbon nanoparticle-carbon nanofiber composite as an efficient metal-free cathode catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8(11), 6962–6971(2016)
CrossRef
Google scholar
|
[86] |
Al-Hammadi, S.A., Al-Amer, A.M., Saleh, T.A.: Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions. Chem. Eng. J. 345, 242–251(2018)
CrossRef
Google scholar
|
[87] |
Xu, T., Zheng, F., Chen, Z., Ding, Y., Liang, Z., Liu, Y., Zhu, Z., Fong, H.: Halloysite nanotubes sponges with skeletons made of electrospun nanofibers as innovative dye adsorbent and catalyst support. Chem. Eng. J. 360, 280–288(2019)
CrossRef
Google scholar
|
[88] |
Choi, S.J., Kim, S.J., Cho, H.J., Jang, J.S., Lin, Y.M., Tuller, H.L., Rutledge, G.C., Kim, I.D.: WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates. Small 12(7), 911–920(2016)
CrossRef
Google scholar
|
[89] |
Wang, K., Li, J., Li, W., Wei, W., Zhang, H., Wang, L.: Highly active Co-based catalyst in nanofiber matrix as advanced sensing layer for high selectivity of flexible sensing device. Adv. Mater. Technol. 4, 1–8(2018)
CrossRef
Google scholar
|
[90] |
Wang, Y., Górecki, R.P., Stamate, E., Norrman, K., Aili, D., Zuo, M., Guo, W., Hélix-Nielsen, C., Zhang, W.: Preparation of superhydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv. 9(1), 278–286(2019)
CrossRef
Google scholar
|
[91] |
Cheng, H., Xiao, D., Tang, Y., Wang, B., Feng, X., Lu, M., Vancso, G.J., Sui, X.: Sponges with Janus character from nanocellulose: preparation and applications in the treatment of hemorrhagic wounds. Adv. Healthc. Mater. 9(17), e1901796(2020)
CrossRef
Google scholar
|
[92] |
Chen, W.S., Hsieh, P.H., Yang, W.N., Fan-Jen, P.Z., Yang, M.L., Yeh, J.M., Wei, Y., Chin, T.Y., Chen-Yang, Y.W.: Chemically modified electrospun silica nanofibers for promoting growth and differentiation of neural stem cells. J. Mater. Chem. B Mater. Biol. Med. 2(9), 1205–1215(2014)
CrossRef
Google scholar
|
[93] |
Saeed, K., Haider, S., Oh, T.J., Park, S.Y.: Preparation of amidoxime- modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 322(2), 400–405(2008)
CrossRef
Google scholar
|
[94] |
Yazdi, M.G., Ivanic, M., Mohamed, A., Uheida, A.: Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. RSC Adv. 8(43), 24588–24598(2018)
CrossRef
Google scholar
|
[95] |
Morillo Martín, D., Faccini, M., García, M.A., Amantia, D.: Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J. Environ. Chem. Eng. 6(1), 236–245(2018)
CrossRef
Google scholar
|
[96] |
Zhao, R., Li, X., Sun, B., Shen, M., Tan, X., Ding, Y., Jiang, Z., Wang, C.: Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem. Eng. J. 268, 290–299(2015)
CrossRef
Google scholar
|
[97] |
Meng, C., Xiao, Y., Wang, P., Zhang, L., Liu, Y., Tong, L.: Quantum-dot-doped polymer nanofibers for optical sensing. Adv. Mater. 23(33), 3770–3774(2011)
CrossRef
Google scholar
|
[98] |
Ma, W., Jiang, Z., Lu, T., Xiong, R., Huang, C.: Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil / water separation and pressure sensing. Chem. Eng. J. 430, 132989(2022)
CrossRef
Google scholar
|
[99] |
Deng, Y., Lu, T., Cui, J., Ma, W., Qu, Q., Zhang, X., Zhang, Y., Zhu, M., Xiong, R., Huang, C.: Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration. Separ. Purif. Tech. 294, 121093(2022)
CrossRef
Google scholar
|
[100] |
Ma, W., Zhang, M., Liu, Z., Kang, M., Huang, C., Fu, G.: Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation. J. Membr. Sci. 570–571, 303–313(2019)
CrossRef
Google scholar
|
[101] |
Zhu, J., Sun, H., Xu, Y., Liu, T., Hou, T., Liu, L., Li, Y., Lin, T., Xin, Y.: Preparation of PVDF/TiO2 nanofibers with enhanced piezoelectric properties for geophone applications. Smart Mater. Struct. 28(8), 085006(2019)
CrossRef
Google scholar
|
[102] |
Cao, X., Zhu, Y., Shi, T., Lei, J., Tang, X., Zhang, D.: Electrospinning preparation of La-doped SnO2 hollow nanofibers: an improvement of their gas sensing properties. J. Nanosci. Nanotechnol. 18(10), 6965–6970(2018)
CrossRef
Google scholar
|
[103] |
Shi, C., Zhu, Y., Xu, Q., Tao, X., Kong, C.: A study of ordered La-doped SnO2 nanofibers in light of their length and gas sensitivity. Phys. E. 124, 114294(2020)
CrossRef
Google scholar
|
[104] |
Yao, Z., Xia, M., Xiong, Z., Wu, Y., Cheng, P., Cheng, Q., Xu, J., Wang, D., Liu, K.: A hierarchical structure of flower-like zinc oxide and poly(vinyl alcohol-co-ethylene) nanofiber hybrid membranes for high-performance air filters. ACS Omega 7(3), 3030–3036(2022)
CrossRef
Google scholar
|
[105] |
Katta, P., Alessandro, M., Ramsier, R.D., Chase, G.G.: Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett. 4(11), 2215–2218(2004)
CrossRef
Google scholar
|
[106] |
Fennessey, S.F., Farris, R.J.: Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer (Guildf.) 45(12), 4217–4225(2004)
CrossRef
Google scholar
|
[107] |
Lunni, D., Cianchetti, M., Filippeschi, C., Sinibaldi, E., Mazzolai, B.: Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces 7(4), 1–8(2020)
CrossRef
Google scholar
|
[108] |
Li, D., Wang, Y., Xia, Y.: Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16(4), 361–366(2004)
CrossRef
Google scholar
|
[109] |
Liu, J., Chen, G., Gao, H., Zhang, L., Ma, S., Liang, J., Fong, H.: Structure and thermo-chemical properties of continuous bundles of aligned and stretched electrospun polyacrylonitrile precursor nanofibers collected in a flowing water bath. Carbon 50(3), 1262–1270(2012)
CrossRef
Google scholar
|
[110] |
Lee, J., Choi, J., Cho, A.E., Kumar, S., Jang, S.S., Kim, Y.H.: Origin and control of polyacrylonitrile alignments on carbon nanotubes and graphene nanoribbons. Adv. Funct. Mater. 28(15), 1–7(2018)
CrossRef
Google scholar
|
[111] |
Ma, S., Liu, J., Liu, Q., Liang, J., Zhao, Y., Fong, H.: Investigation of structural conversion and size effect from stretched bundle of electrospun polyacrylonitrile copolymer nanofibers during oxidative stabilization. Mater Des. 95, 387–397(2016)
CrossRef
Google scholar
|
[112] |
Kim, D.W., Kim, C.H., Yang, C.M., Ahn, S., Kim, Y.H., Hong, S.K., Kim, K.S., Hwang, J.Y., Choi, G.B., Kim, Y.A., Yang, K.S.: Deriving structural perfection in the structure of polyacrylonitrile based electrospun carbon nanofiber. Carbon 147, 612–615(2019)
CrossRef
Google scholar
|
[113] |
Zhang, B., Kang, F., Tarascon, J.M., Kim, J.K.: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380(2016)
CrossRef
Google scholar
|
[114] |
Li, W.T., Zhang, X.D., Guo, X.: Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sens. Actuators B Chem. 244, 509–521(2017)
CrossRef
Google scholar
|
[115] |
Cai, J., Chawla, S., Naraghi, M.: Microstructural evolution and mechanics of hot-drawn CNT-reinforced polymeric nanofibers. Carbon 109, 813–822(2016)
CrossRef
Google scholar
|
[116] |
Song, Y.N., Lei, M.Q., Deng, L.F., Lei, J., Li, Z.M.: Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl. Polym. Mater. 2(11), 4379–4386(2020)
CrossRef
Google scholar
|
[117] |
Kong, L., Fu, X., Fan, X., Wang, Y., Qi, S., Wu, D., Tian, G., Zhong, W.H.: A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium-sulfur batteries. Nanoscale 11(39), 18090–18098(2019)
CrossRef
Google scholar
|
[118] |
Ahmed Babar, A., Zhao, X., Wang, X., Yu, J., Ding, B.: One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport. J. Colloid Interface Sci. 577, 207–216(2020)
CrossRef
Google scholar
|
[119] |
Wang, Z., Ma, Q., Dong, X., Li, D., Xi, X., Yu, W., Wang, J., Liu, G.: Novel electrospun dual-layered composite nanofibrous membrane endowed with electricity-magnetism bifunctionality at one layer and photoluminescence at the other layer. ACS Appl. Mater. Interfaces 8(39), 26226–26234(2016)
CrossRef
Google scholar
|
[120] |
Oh, Y.S., Jung, G.Y., Kim, J.H., Kim, J.H., Kim, S.H., Kwak, S.K., Lee, S.Y.: Janus-faced, dual-conductive/chemically active battery separator membranes. Adv. Funct. Mater. 26(39), 7074–7083(2016)
CrossRef
Google scholar
|
[121] |
Liang, C., He, J., Zhang, Y., Zhang, W., Liu, C., Ma, X., Liu, Y., Gu, J.: MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445(2022)
CrossRef
Google scholar
|
[122] |
Rodríguez-Fabià, S., Chinga-Carrasco, G.: Effects of a poly(hydroxyalkanoate) elastomer and kraft pulp fibres on biocomposite properties and three-dimensional (3D) printability of filaments for fused deposition modelling. J. Bioresour. Bioprod. 7(3), 161–172(2022)
CrossRef
Google scholar
|
[123] |
Wei, D.W., Wei, H., Gauthier, A.C., Song, J., Jin, Y., Xiao, H.: Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications. J. Bioresour. Bioprod. 5(1), 1–15(2020)
CrossRef
Google scholar
|
[124] |
Kelly, T.L., Gao, T., Sailor, M.J.: Carbon and carbon/silicon composites templated in rugate filters for the adsorption and detection of organic vapors. Adv. Mater. 23(15), 1776–1781(2011)
CrossRef
Google scholar
|
[125] |
Zhang, J., Yan, Z., Ouyang, J., Yang, H., Chen, D.: Highly dispersed sepiolite-based organic modified nanofibers for enhanced adsorption of Congo red. Appl. Clay Sci. 157, 76–85(2018)
CrossRef
Google scholar
|
/
〈 | 〉 |