All-solid anti-resonant single crystal fibers
Jinmin Ding, Fanchao Meng, Xiaoting Zhao, Xin Wang, Shuqin Lou, Xinzhi Sheng, Luyun Yang, Guangming Tao, Sheng Liang
All-solid anti-resonant single crystal fibers
In this paper, a novel all-solid anti-resonant single crystal fiber (AR-SCF) with high refractive index tubes cladding is proposed. By producing the cladding tubes with high refractive index material, the AR guiding mechanism can be realized for the SCF, which can reduce the mode number to achieve single-mode or few-mode transmission. The influences of different materials and structures on the confinement loss and effective guided mode number for wavelengths of 2–3 μm are investigated. Then, the optimal AR-SCF structures for different wavelengths are determined. Furthermore, the influences of different fabrication errors are analyzed. This work would provide insight to new opportunities in the novel design of SCFs by AR, which would greatly impact the fields of laser application, supercontinum generation, and SCF sensors.
Single crystal fiber (SCF) / Anti-resonant (AR) optical fiber / Few-mode fiber / Modal reduction / Confinement loss / Finite element method
[1] |
Wang, T. , Zhang, J. , Zhang, N. , Wang, S. , Wu, B. , Lin, N. , Kusalik, P. , Jia, Z. , Tao, X. : Single crystal fibers: diversified functional crystal material. Adv. Fiber Mater. 1 (3-4), 163- 187 (2019)
|
[2] |
Luo, Q. , Tang, G. , Sun, M. , Qian, G. , Shi, Z. , Qian, Q. , Yang, Z. : Single crystal tellurium semiconductor core optical fibers. Opt. Mater. Express 10 (4), 1072 (2020)
|
[3] |
Soleimani, N. , Ponting, B. , Gebremichael, E. , Ribuot, A. , Maxwell, G. : Coilable single crystals fibers of doped-YAG for high power laser applications. J. Cryst. Growth 393, 18- 22 (2014)
|
[4] |
Kim W , Shaw B , Bayya S , Askins C , Peele J , Rhonehouse D , Meyers J , Thapa R , Gibson D , Sanghera J . Cladded single crystal fibers for high power fiber lasers. In: Proceedings of Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X. San Diego: SPIE, 2016, 99580O
|
[5] |
Yang, T.T. , Yang, T.I. , Soundararajan, R. , Yeh, P.S. , Kuo, C.Y. , Huang, S.L. , Donati, S. : Widely tunable, 25-mW power, Ti:sapphire crystalfiber laser. IEEE Photonics Technol. Lett. 31 (24), 1921- 1924 (2019)
|
[6] |
Yin, S.S. , Kim, J. , Zhan, C. , An, J. , Lee, J. , Ruffin, P. , Edwards, E. , Brantley, C. , Luo, C. : Supercontinuum generation in single crystal sapphire fibers. Opt. Commun. 281 (5), 1113- 1117 (2008)
|
[7] |
Bezgabadi, A.S. , Bolorizadeh, M.A. : Dispersion properties of a singlemode windmill single crystal sapphire optical fiber and its broadband infrared supercontinuum generation. Opt. Eng. 57 (11), 1 (2018)
|
[8] |
Pfeiffenberger, N. : Sapphire photonic crystal fibers. Opt. Eng. 49 (9), 090501 (2010)
|
[9] |
Hill, C. , Homa, D. , Liu, B. , Yu, Z. , Wang, A. , Pickrell, G. : Submicron diameter single crystal sapphire optical fiber. Mater. Lett. 138, 71- 73 (2015)
|
[10] |
Chen, H. , Tian, F. , Chi, J. , Kanka, J. , Du, H. : Advantage of multimode sapphire optical fiber for evanescent-field SERS sensing. Opt. Lett. 39 (20), 5822- 5825 (2014)
|
[11] |
Chen, H. , Buric, M. , Ohodnicki, P.R. , Nakano, J. , Liu, B. , Chorpening, B.T. : Review and perspective: sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev. 5 (1), 011102 (2018)
|
[12] |
Myers J D , Kim W , Shaw L B , Bayya S , Qadri S N , Rhonehouse D , Askins C , Peele J , Thapa R , Bekele R Y , McClain C , Sanghera J S . Development of thin film claddings for single crystal optical fiber. In: Proceedings of Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Zurich: OSA, NoTu4D.4 (2018)
|
[13] |
Lai, C.C. , Gao, W.T. , Nguyen, D.H. , Ma, Y.R. , Cheng, N.C. , Wang, S.C. , Tjiu, J.W. , Huang, C.M. : Toward single-mode active crystal fibers for next-generation high-power fiber devices. ACS Appl. Mater. Interfaces. 6 (16), 13928- 13936 (2014)
|
[14] |
Bera S , Liu B , Wuenschell J K , Baltrus J , Lau D , Howard B , Buric M P , Chorpening B T , Ohodnicki P R . Epitaxial RE3+: YAG planar waveguide lasersFabrication and evaluation of sapphire fiber cladding via magnesium aluminate spinel solgel based approaches. In: Proceedings of Fiber Optic Sensors and Applications XVI. Baltimore: SPIE, 19 (2019)
|
[15] |
Malinowski, M. , Sarnecki, J. , Piramidowicz, R. , Szczepanski, P. , Wolinski, W. : Epitaxial RE3+: YAG planar waveguide lasers. Opto-Electron. Rev. 9 (1), 67- 74 (2001)
|
[16] |
Lo, C.Y. , Huang, K.Y. , Chen, J.C. , Tu, S.Y. , Huang, S.L. : Glassclad Cr4+: YAG crystal fiber for the generation of superwideband amplified spontaneous emission. Opt. Lett. 29 (5), 439- 441 (2004)
|
[17] |
Lo, C.Y. , Huang, K.Y. , Chen, J.C. , Chuang, C.Y. , Lai, C.C. , Huang, S.L. , Lin, Y.S. , Yeh, P.S. : Double-clad Cr4+: YAG crystal fiber amplifier. Opt. Lett. 30 (2), 129- 131 (2005)
|
[18] |
Huang, K.Y. , Hsu, K.Y. , Jheng, D.Y. , Zhuo, W.J. , Chen, P.Y. , Yeh, P.S. , Huang, S.L. : Low-loss propagation in Cr4+: YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique. Opt. Express 16 (16), 12264- 12271 (2008)
|
[19] |
Tong, L. , Gattass, R.R. , Ashcom, J.B. , He, S. , Lou, J. , Shen, M. , Maxwell, I. , Mazur, E. : Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426 (6968), 816- 819 (2003)
|
[20] |
Lan, C.W. , Tu, C.Y. : Three-dimensional simulation of facet formation and the coupled heat flow and segregation in bridgman growth of oxide crystals. J. Cryst. Growth 233 (3), 523- 536 (2001)
|
[21] |
Bera S , Nie C D , Harrington J A , Chick T , Chakrabarty A , Trembath-Reichert S , Chapman J , Rand S C . Cladding single crystal yag fibers grown by laser heated pedestal growth. In: Proceedings of Solid State Lasers XXV: Technology and Devices. San Francisco: SPIE, 97260C (2016)
|
[22] |
Bufetova, G.A. , Rusanov, S.Y. , Seregin, V.F. , Pyrkov, Y.N. , Kamynin, V.A. , Tsvetkov, V.B. : Temperature distribution across the growth zone of sapphire (Al2O3) and yttrium-aluminum garnet (YAG) single crystal fibers. J. Cryst. Growth 433, 54- 58 (2016)
|
[23] |
Bufetova, G.A. , Rusanov, S.Y. , Seregin, V.F. , Pyrkov, Y.N. , Tsvetkov, V.B. : Temperature and emissivity measurements at the sapphire single crystal fiber growth process. J. Cryst. Growth 480, 85- 89 (2017)
|
[24] |
Wang, W.L. , Tseng, Y.H. , Cheng, W.H. , Wang, J.S. : Silica cladded Nd3+: YAG single crystal core optical fiber and its submicron residual stress detection. Opt. Mater. Express 4 (4), 656 (2014)
|
[25] |
Spratt, W. , Huang, M. , Murray, T. , Xia, H. : Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation. J. Appl. Phys. 114 (20), 203501 (2013)
|
[26] |
Spratt, W.T. , Huang, M. , Jia, C. , Wang, L. , Kamineni, V.K. , Diebold, A.C. , Matyi, R. , Xia, H. : Effects of hydrogen ion implantation and thermal annealing on structural and optical properties of single-crystal sapphire. Mater. Res. Soc. Online Proc. Lib. 1354, 609 (2011)
|
[27] |
Spratt, W.T. , Huang, M. , Jia, C. , Wang, L. , Kamineni, V.K. , Diebold, A.C. , Xia, H. : Formation of optical barriers with excellent thermal stability in single-crystal sapphire by hydrogen ion implantation and thermal annealing. Appl. Phys. Lett. 99 (11), 111909 (2011)
|
[28] |
Wilson, B.A. , Rana, S. , Subbaraman, H. , Kandadai, N. , Blue, T.E. : Modeling of the creation of an internal cladding in sapphire optical fiber using the 6Li(n, α)3H reaction. J. Lightwave Technol. 36 (23), 5381- 5387 (2018)
|
[29] |
Cheng, Y. , Hill, C. , Liu, B. , Yu, Z. , Xuan, H. , Homa, D. , Wang, A. , Pickrell, G. : Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber. Opt. Eng. 55 (6), 066101 (2016)
|
[30] |
Hill, C. , Homa, D. , Yu, Z. , Cheng, Y. , Liu, B. , Wang, A. , Pickrell, G. : Single mode air-clad single crystal sapphire optical fiber. Appl. Sci. 7 (5), 473 (2017)
|
[31] |
Wei, C. , Joseph Weiblen, R. , Menyuk, C.R. , Hu, J. : Negative curvature fibers. Adv. Opt. Photon. 9 (3), 504 (2017)
|
[32] |
Lian, X. , Farrell, G. , Wu, Q. , Han, W. , Shen, C. , Ma, Y. , Semenova, Y. : Anti-resonance, inhibited coupling and mode transition in depressed core fibers. Opt. Express 28 (11), 16526- 16541 (2020)
|
[33] |
Hossain, M. M. , Maniruzzaman, M. : Analysis of dispersion and confinement loss in photonic crystal fiber. In: Proceedings of 2014 International Conference on Electrical Engineering and Information & Communication Technology. IEEE (2014)
|
[34] |
Xu, S. , Yao, Z. , Pei, G. , Luo, X. , Wu, X. , Lin, Y. : Preparation and properties of sapphire by edge-defined film-fed growth (EFG) method with different growth directions. J. Wuhan Univ. Technol. 33 (5), 1022- 1027 (2018)
|
[35] |
Maclean J O , Hodson J R , Voisey K T . Laser drilling of via microholes in single-crystal semiconductor substrates using a 1070 nm fibre laser with millisecond pulse widths. In: Proceedings of Industrial Laser Applications Symposium (ILAS 2015). Kenilworth: SPIE, 965704 (2015)
|
/
〈 | 〉 |