Cover illustration
Cover Story ( Jihong ZHU, Jiannan YANG, Weihong ZHANG, Xiaojun GU, Han ZHOU. Design and applications of morphing aircraft and their structures. Front. Mech. Eng., 2023, 18(3): 34)
Morphing aircraft hold immense potential in accomplishing diverse missions with a single aircraft. Therefore, they have become a crucial design direction for future aircraft. Researchers took inspiration from flying anima
[Detail] ...
This study focused on the development of austempered ductile iron (ADI) with desirable combination of mechanical properties for crankshaft applications by the combined effect of vanadium (V) alloying and an optimized heat treatment process. The produced unalloyed GGG60, 0.15% V-alloyed GGG60 (V-15), and 0.30% V-alloyed GGG60 samples were subjected to austenitizing at 900 °C for 1 h and subsequent austempering processes at 250, 300, and 350 °C for 15, 30, 60, 90, and 180 min. As a result of these austempering processes, different bainitic structures were obtained, which led to the formation of diverse combinations of mechanical properties. The mechanical properties of the austempered samples were tested comprehensively, and the results were correlated with their microstructures and the stability of the retained austenite phases. From the microstructural observations, the V-alloyed samples exhibited a finer microstructure and a more acicular ferrite phase than unalloyed samples. The V addition delayed the coarsening of the acicular ferrite structures and considerably contributed to the improvement of the mechanical properties of GGG60. Moreover, the X-ray diffraction results revealed that the retained austenite volume and the carbon enrichment of austenite phases in ADI samples were remarkably affected by the addition of vanadium. The increase in volume fraction of retained austenite and its carbon content provided favorable ductility and toughness to V-15, as confirmed by the elongation and impact test results. Consequently, the dual-phase ausferrite microstructure of V-15 that was austempered at 300 °C for 60 min exhibited high strength with substantial ductility and toughness for crankshaft applications.
Morphing aircraft can adaptively regulate their aerodynamic layout to meet the demands of varying flight conditions, improve their aerodynamic efficiency, and reduce their energy consumption. The design and fabrication of high-performance, lightweight, and intelligent morphing structures have become a hot topic in advanced aircraft design. This paper discusses morphing aircraft development history, structural characteristics, existing applications, and future prospects. First, some conventional mechanical morphing aircraft are examined with focus on their morphing modes, mechanisms, advantages, and disadvantages. Second, the novel applications of several technologies for morphing unmanned aerial vehicles, including additive manufacturing for fabricating complex morphing structures, lattice technology for reducing structural weight, and multi-mode morphing combined with flexible skins and foldable structures, are summarized and categorized. Moreover, in consideration of the further development of active morphing aircraft, the paper reviews morphing structures driven by smart material actuators, such as shape memory alloy and macro-fiber composites, and analyzes their advantages and limitations. Third, the paper discusses multiple challenges, including flexible structures, flexible skins, and control systems, in the design of future morphing aircraft. Lastly, the development and application of morphing structures in the aerospace field are discussed to provide a reference for future research and engineering applications.
Polycrystalline tin is an ideal excitation material for extreme ultraviolet light sources. However, the existence of grain boundary (GB) limits the surface roughness of polycrystalline tin after single-point diamond turning (SPDT). In this work, a novel method termed inductively coupled plasma (ICP)-assisted cutting was developed for the sub-nanometer finishing of polycrystalline tin. The relationship between ICP power, processing time, and modification depth was established by thermodynamic simulation, and the fitted heat transfer coefficient of polycrystalline tin was 540 W/(m2·K). The effects of large-thermal-gradient ICP treatment on the microstructure of polycrystalline tin were studied. After 0.9 kW ICP processing for 3.0 s, corresponding to the temperature gradient of 0.30 K/µm, the grain size of polycrystalline tin was expanded from a size of approximately 20–80 μm to a millimeter scale. The Taguchi method was used to investigate the effects of rotational speed, depth of cut, and feed rate on SPDT. Experiments conducted based on the ICP system indicated that the plasma-assisted cutting method promoted the reduction of the influence of GB steps on the finishing of polycrystalline tin, thereby achieving a surface finish from 8.53 to 0.80 nm in Sa. The results of residual stress release demonstrated that the residual stress of plasma-assisted turning processing after 504 h stress release was 10.7 MPa, while that of the turning process without the ICP treatment was 41.6 MPa.
Although the manufacturing industry has improved the quality of processing, optimization and upgrading must be performed to meet the requirements of global sustainable development. Sustainable production is considered to be a favorable strategy for achieving machining upgrades characterized by high quality, high efficiency, energy savings, and emission reduction. Sustainable production has aroused widespread interest, but only a few scholars have studied the sustainability of machining from multiple dimensions. The sustainability of machining must be investigated multidimensionally and accurately. Thus, this study explores the sustainability of machining from the aspects of equipment, process, and strategy. In particular, the equipment, process, and strategy of sustainable machining are systematically analyzed and integrated into a research framework. Then, this study analyzes sustainable machining-oriented machining equipment from the aspects of machine tools, cutting tools, and materials such as cutting fluid. Machining processes are explored as important links of sustainable machining from the aspects of dry cutting, microlubrication, microcutting, low-temperature cutting, and multidirectional cutting. The strategies for sustainable machining are also analyzed from the aspects of energy-saving control, machining simulation, and process optimization of machine tools. Finally, opportunities and challenges, including policies and regulations toward sustainable machining, are discussed. This study is expected to offer prospects for sustainable machining development and strategies for implementing sustainable machining.
To achieve the collision-free trajectory tracking of the four-wheeled mobile robot (FMR), existing methods resolve the tracking control and obstacle avoidance separately. Guaranteeing the synergistic robustness and smooth navigation of mobile robots subjected to motion uncertainties in a dynamic environment using this non-cooperative processing method is difficult. To address this challenge, this paper proposes an obstacle-circumventing adaptive control (OCAC) framework. Specifically, a novel anti-disturbance terminal slide mode control with adaptive gains is formulated, incorporating specified control laws for different stages. This formulation guarantees rapid convergence and simultaneous chattering elimination. By introducing sub-target points, a new sub-target dynamic tracking regression obstacle avoidance strategy is presented to transfer the obstacle avoidance problem into a dynamic tracking one, thereby reducing the burden of local path searching while ensuring system stability during obstacle circumvention. Comparative experiments demonstrate that the proposed OCAC method can strengthen the convergence and obstacle avoidance efficiency of the concerned FMR system.
Given limited terrain adaptability, most existing multirobot cooperative transportation systems (MRCTSs) mainly work on flat pavements, restricting their outdoor applications. The connectors’ finite deformation capability and the control strategies’ limitations are primarily responsible for this phenomenon. This study proposes a novel MRCTS based on tracked mobile robots (TMRs) to improve terrain adaptability and expand the application scenarios of MRCTSs. In structure design, we develop a novel 6-degree-of-freedom passive adaptive connector to link multiple TMRs and the transported object (the communal payload). In addition, the connector is set with sensors to measure the position and orientation of the robot with respect to the object for feedback control. In the control strategy, we present a virtual leader–physical follower collaborative paradigm. The leader robot is imaginary to describe the movement of the entire system and manage the follower robots. All the TMRs in the system act as follower robots to transport the object cooperatively. Having divided the whole control structure into the leader robot level and the follower robot level, we convert the motion control of the two kinds of robots to trajectory tracking control problems and propose a novel double closed-loop kinematics control framework. Furthermore, a control law satisfying saturation constraints is derived to ensure transportation stability. An adaptive control algorithm processes the wheelbase uncertainty of the TMR. Finally, we develop a prototype of the TMR-based MRCTS for experiments. In the trajectory tracking experiment, the developed MRCTS with the proposed control scheme can converge to the reference trajectory in the presence of initial tracking errors in a finite time. In the outdoor experiment, the proposed MRCTS consisting of four TMRs can successfully transport a payload weighing 60 kg on an uneven road with the single TMR’s maximum load limited to 15 kg. The experimental results demonstrate the effectiveness of the structural design and control strategies of the TMR-based MRCTS.
A considerable portion of space mechanism failures are related to space tribological problems. Cold welding in high vacuum; surface erosion and collision damage caused by various radiations, high temperature oxidation under atomic oxygen (AO) bombardment; and thermal stress caused by temperature alternation all alter the physical, chemical, and friction properties of materials. In particular, the space vibration caused by alternating temperatures and microgravity environments can alter the motion of the contact body, further affecting its friction properties. Improving the friction properties of contact surfaces in the space environment is an important way to extend the service life of spacecraft. Traditional lubricants can no longer meet the lubrication requirements of the space environment. This study describes the characteristics of the space environment and the applications of solid lubricants. The friction properties of MoS2, a solid lubricant widely used in space, are discussed. The synergistic lubrication of MoS2 with surface textures or metals is presented. Advances in research on the friction properties of collision sliding contacts in the space environment are reviewed. The combination of MoS2 and soft metals with surface textures is introduced to reduce the effects of vibration environments on the friction properties of moving parts in space mechanisms. Finally, the challenges and future research interests of MoS2 films in space tribology are presented.
In-situ maintenance is of great significance for improving the efficiency and ensuring the safety of aero-engines. The cable-driven continuum robot (CDCR) with twin-pivot compliant mechanisms, which is enabled with flexible deformation capability and confined space accessibility, has emerged as a novel tool that aims to promote the development of intelligence and efficiency for in-situ aero-engine maintenance. The high-fidelity model that describes the kinematic and morphology of CDCR lays the foundation for the accurate operation and control for in-situ maintenance. However, this model was not well addressed in previous literature. In this study, a general kinetostatic modeling and morphology characterization methodology that comprehensively contains the effects of cable-hole friction, gravity, and payloads is proposed for the CDCR with twin-pivot compliant mechanisms. First, a novel cable-hole friction model with the variable friction coefficient and adaptive friction direction criterion is proposed through structure optimization and kinematic parameter analysis. Second, the cable-hole friction, all-component gravities, deflection-induced center-of-gravity shift of compliant joints, and payloads are all considered to deduce a comprehensive kinetostatic model enabled with the capacity of accurate morphology characterization for CDCR. Finally, a compact continuum robot system is integrated to experimentally validate the proposed kinetostatic model and the concept of in-situ aero-engine maintenance. Results indicate that the proposed model precisely predicts the morphology of CDCR and outperforms conventional models. The compact continuum robot system could be considered a novel solution to perform in-situ maintenance tasks of aero-engines in an invasive manner.
Flanks of end mills are prone to wear in a long machining process. Regrinding is widely used in workshops to restore the flank to an original-like state. However, the traditional method involves material waste by trial and error and dramatically decreases the potential regrinding. Moreover, over-cut would happen to the flutes of worn cutters in the regrinding processes because of improper wheel path. This study presented a new approach to planning the wheel path for regrinding worn end mills to minimize material loss and recover the over-cut. In planning, a scaling method was developed to determine the maximum size of the new cutter according to the similarity of cutter shapes before and after regrinding. Then, the wheel path is first generated by envelope theory to regrind the worn area with a four-axis computer numerical control grinder according to the new size of cutters. Moreover, a second regrinding strategy is applied to recover the flute shape over-cut in the first grinding. Finally, the proposed method is verified by an experiment. Results showed that the proposed approach could save 25% of cutter material compared with the traditional method and ensure at least three regrinding times. This work effectively provides a general regrinding solution for the worn flank with maximum material-saving and regrinding period.
Accurately controlling the nodal lines of vibrating structures with topology optimization is a highly challenging task. The major difficulties in this type of problem include a large number of design variables, the highly nonlinear and multi-peak characteristics of iteration, and the changeable orders of eigenmodes. In this study, an effective material-field series-expansion (MFSE)-based topology optimization design strategy for precisely controlling nodal lines is proposed. Here, two typical optimization targets are established: (1) minimizing the difference between structural nodal lines and their desired positions, and (2) keeping the position of nodal lines within the specified range while optimizing certain dynamic performance. To solve this complex optimization problem, the structural topology of structures is first represented by a few design variables on the basis of the MFSE model. Then, the problems are effectively solved using a sequence Kriging-based optimization algorithm without requiring design sensitivity analysis. The proposed design strategy inherently circumvents various numerical difficulties and can effectively obtain the desired vibration modes and nodal lines. Numerical examples are provided to validate the proposed topology optimization models and the corresponding solution strategy.
Reliable foot-to-ground contact state detection is crucial for the locomotion control of quadruped robots in unstructured environments. To improve the reliability and accuracy of contact detection for quadruped robots, a detection approach based on the probabilistic contact model with multi-information fusion is presented to detect the actual contact states of robotic feet with the ground. Moreover, a relevant control strategy to address unexpected early and delayed contacts is planned. The approach combines the internal state information of the robot with the measurements from external sensors mounted on the legs and feet of the prototype. The overall contact states are obtained by the classification of the model-based predicted probabilities. The control strategy for unexpected foot-to-ground contacts can correct the control actions of each leg of the robot to traverse cluttered environments by changing the contact state. The probabilistic model parameters are determined by testing on the single-leg experimental platform. The experiments are conducted on the experimental prototype, and results validate the contact detection and control strategy for unexpected contacts in unstructured terrains during walking and trotting. Compared with the body orientation under the time-based control method regardless of terrain, the root mean square errors of roll, pitch, and yaw respectively decreased by 60.07%, 54.73%, and 64.50% during walking and 73.40%, 61.49%, and 61.48% during trotting.
Impact force identification is important for structure health monitoring especially in applications involving composite structures. Different from the traditional direct measurement method, the impact force identification technique is more cost effective and feasible because it only requires a few sensors to capture the system response and infer the information about the applied forces. This technique enables the acquisition of impact locations and time histories of forces, aiding in the rapid assessment of potentially damaged areas and the extent of the damage. As a typical inverse problem, impact force reconstruction and localization is a challenging task, which has led to the development of numerous methods aimed at obtaining stable solutions. The classical
Modern rotating machines, which are represented by high-end grinding machines, have developed toward high precision, intelligence, and high durability in recent years. As the core components of grinding machine spindles, grinding wheels greatly affect the vibration level during operation. The unbalance vibration self-recovery regulation (UVSRR) system is proposed to suppress the vibration of grinding wheels during workpiece processing, eliminating or minimizing the imbalance. First, technical principles and the system composition are introduced. Second, the balancing actuator in the UVSRR system is analyzed in detail. The advanced nature of the improved structure is presented through structure introduction and advantage analysis. The performance of the balancing actuator is mutually verified by the theoretical calculation of torque and software simulation. Results show that the self-locking torque satisfies the actual demand, and the driving torque is increased by 1.73 times compared with the traditional structure. Finally, the engineering application value of the UVSRR system is verified by laboratory performance comparison and actual factory application. The balancing speed and effect of the UVSRR system are better than those of an international mainstream product and, the quality of the workpieces machined in the factory improved by 40%.