This paper presents a virtual reality (VR) system for upper limb rehabilitation. The system incorporates two motion track components, the Arm Suit and the Smart Glove which are composed of a range of the optical linear encoders (OLE) and the inertial measurement units (IMU), and two interactive practice applications designed for driving users to perform the required functional and non-functional motor recovery tasks. We describe the technique details about the two motion track components and the rational to design two practice applications. The experiment results show that, compared with the marker-based tracking system, the Arm Suit can accurately track the elbow and wrist positions. The repeatability of the Smart Glove on measuring the five fingers’ movement can be satisfied. Given the low cost, high accuracy and easy installation, the system thus promises to be a valuable complement to conventional therapeutic programs offered in rehabilitation clinics and at home.
Wireless capsule endoscopy has become a common procedure for diagnostic inspection of gastrointestinal tract. This method offers a less-invasive alternative to traditional endoscopy by eliminating uncomfortable procedures of the traditional endoscopy. Moreover, it provides the opportunity for exploring inaccessible areas of the small intestine. Current capsule endoscopes, however, move by peristalsis and are not capable of detailed and on-demand inspection of desired locations. Here, we propose and develop two wireless endoscopes with maneuverable vision systems to enhance diagnosis of gastrointestinal disorders. The vision systems in these capsules are equipped with mechanical actuators to adjust the position of the camera. This may help to cover larger areas of the digestive tract and investigate desired locations. The preliminary experimental results showed that the developed platform could successfully communicate with the external control unit via human body and adjust the position of camera to limited degrees.
In this paper, an anthropomimetic design of a 7-DOF dexterous robotic arm is proposed. Similar to the human arm, the arm consists of three sequentially connected modules, i.e., a 3-DOF shoulder module, a 1-DOF elbow module, and a 3-DOF wrist module. All three arm modules are also driven by cables in order to mimic the driving scheme and functionality of the human muscles. This paper addresses three critical design analysis issues, i.e., the displacement analysis, the tension-closure analysis, and the workspace analysis. A closed-form solution approach is presented for the forward displacement analysis, while the inverse displacement solution is obtained through an efficient optimization algorithm, in which both task-decomposition and dimension-reduction techniques are employed. An effective tension-closure analysis algorithm is also formulated based on the theory of convex analysis. The orientation workspace for the 3-DOF shoulder and wrist modules are then analyzed using a new equi-volumetric partition scheme based on the intuitive Tilt-and-Torsion angle parameterization. An optimization approach is then investigated for the kinematic design of the three joint modules, in which the design objective is to maximize the matched workspace of the robotic arm joints with that of the human arm joints. A research prototype of the 7-DOF cable-driven robotic arm has also been developed in order to demonstrate the anthropomimetic design concept. With a lightweight structure of 1 kg, the cable-driven robotic arm can carry a payload of 5 kg and has motion repeatability of±2.5mm.
The choice of non-anthropomorphic kinematic solutions for wearable robots is motivated both by the necessity of improving the ergonomics of physical Human-Robot Interaction and by the chance of exploiting the intrinsic dynamical properties of the robotic structure so to improve its performances. Under these aspects, this new class of robotic solutions is potentially advantageous over the one of anthropomorphic robotic orthoses. However, the process of kinematic synthesis of non-anthropomorphic wearable robots can be too complex to be solved uniquely by relying on conventional synthesis methods, due to the large number of open design parameters. A systematic approach can be useful for this purpose, since it allows to obtain the complete list of independent kinematic solutions with desired properties. In this perspective, this paper presents a method, which allows to generalize the problem of kinematic synthesis of a non-anthropomorphic wearable robot for the assistance of a specified set of contiguous body segments. The methodology also includes two novel tests, specifically devised to solve the problem of enumeration of kinematic structures of wearable robots: the HR-isomorphism and the HR-degeneracy tests. This method has been implemented to derive the atlas of independent kinematic solutions suitable to be used for the kinematic design of a planar wearable robot for the lower limbs.
This paper describes the Brain Computer Interface (BCI) system and the experiments to allow post-acute (<3 months) stroke patients to use electroencephalogram (EEG) to trigger neuromuscular electrical stimulation (NMES)-assisted extension of the wrist/fingers, which are essential pre-requisites for useful hand function. EEG was recorded while subjects performed motor imagery of their paretic limb, and then analyzed to determine the optimal frequency range within the
This paper describes an interdisciplinary approach to the assessment on infants’ behavior, with a focus on the technology. The goal is an objective, quantitative analysis of concurrent maturation of sensory, motor and cognitive abilities in young children, in relation to the achievement of developmental milestones. An instrumented block-box toy specifically developed to assess the ability to insert objects into holes is presented. The functional specifications are derived from experimental protocols devised by neuroscientists to assess spatial cognition skills. Technological choices are emphasized with respect to ecological requirements. An ad hoc calibration procedure is also presented which is suitable to unstructured environments. Finally, preliminary tests carried out at a local day-care with 12–24 months old infants are presented which prove the in-field usability of the proposed technology.
The aim of this paper was to address the rolling contact fatigue (RCF) failure mechanisms of plasma-sprayed Cr3C2-NiCr coatings under different tribological conditions of contact stress. Weibull distribution plots of fatigue lives of the coated specimens at different contact stresses were obtained. The failure modes of coatings were identified on the basis of wore surface observations of the failed coatings. Results showed that the RCF failure modes can be classified into four main categories, i.e., surface abrasion, spalling, cohesive delamination, and interfacial delamination. The probabilities of the surface abrasion and spalling type failures were relatively high at low contact stress. When the coatings were subjected to abrasion and spalling type failures, the failure of the coating was depended on the microstrcture of the coating. The stress concentration near the micro-defects in the coating may be the may reason for the formation of spall. The coatings were prone to fail in delamination under higher contact stresses. However, the delamination of coating may be related to distribution of shear stress amplitude within coating. The location of maximum shear stress amplitude can be used as a key parameter to predict the initiation of subsurface cracks within coating in rolling contact.
Finding a good solution method for topology optimization problems is always paid attention to by the research field because they are subject to the large number of the design variables and to the complexity that occurs because the objective and constraint functions are usually implicit with respect to design variables. Guide-Weight method, proposed first by Chen in 1980s, was effectively and successfully used in antenna structures’ optimization. This paper makes some improvement to it so that it possesses the characteristics of both the optimality criteria methods and the mathematical programming methods. When the Guide-Weight method is applied into topology optimization, it works very well with unified and simple form, wide availability and fast convergence. The algorithm of the Guide-Weight method and the improvement on it are described; two formulations of topology optimization solved by the Guide-Weight method combining with SIMP method are presented; subsequently, three numerical examples are provided, and comparison of the Guide-Weight method with other methods is made.